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Stellar-mass sized black holes
↭ Radial and nonradial pulsations in stars
↭ Pulsating stars and the instability strip
↭ Helioseismology and the standard solar model
↭ Degeneracy pressure of electrons and neutrons
↭ White dwarfs & neutron stars
↭ Brown dwarfs & giant planets
↭ General relativity & its prediction of black holes
↭ Hyperspace
↭ Hawking radiation
↭ Gravitational radiation

Reading: Kutner Sec. 8.4 & 11.5, Ryden Sec. 18.3
Right: HST image of the Andromeda galaxy with an X-ray image inset of an ultra-luminous X-ray source (a
stellar-mass black hole). From the MPE.
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https://phys.org/news/2012-02-spectacularly-bright-andromeda-black-hole.html


Acoustic waves in stars
Now consider the “pipe” to be represented by the surface and center of a star. The “pipe”
is open on the surface and closed at the center, since the compression wave cannot move to
r < 0. Hence, the period of the longest standing wave is
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Acoustic waves in stars

For a uniform density star that is the mass and size of the Sun, we get

Π =

√
6π

γGε
= 11, 700 s = 183 min = 3 hr

and the period increases if the density of the star decreases.

Note that:
↭ Pressure waves manifest themselves as oscillations of surface temperature and

radius of the star, which in turn cause oscillations of the magnitude of the star.
↭ The details of the periods and amplitudes of the oscillations are sensitive to the

density, its variations, and the equation of state (P ↑ ε relation) inside the star.
↭ There is good agreement with the “loudest” pulsating stars.
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Loud sound waves in stars: Pulsators

Since the discovery of the pulsation of Mira (o Ceti) around 1600 and ϱ Cephei in 1784,
eight types of pulsating stars have been found:

Type Period Ampl. (∆m) Notes
Long-period (Mira) variables 100–700 days 2–7 mag red giants
Classical (Pop I) Cepheids 1–50 days 0.5–1.5 mag supergiants
W Virginis stars (Pop II Cepheids) 2–45 days 0.5–1.5 mag giants
RR Lyrae stars 1–48 hr 1–1.5 mag giants
ϱ Scuti stars 1–3 hr 0.1–0.6 mag near the main sequence
β Cephei stars 3–7 hr 0.05–0.2 mag near the main sequence
SX Phoenicis stars (Pop II ϱ Scus) 1–12 hr 0.01–0.15 mag near the main sequence
ZZ Ceti stars 100–1000 s 0.1–0.3 mag white dwarfs

More information: General Catalog of Variable Stars.
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http://www.sai.msu.su/groups/cluster/gcvs/gcvs/


Patterns of pulsators: The instability strip (IS)

From Wikimedia commons.

Pulsating stars are not spread randomly in the
luminosity-temperature space of the H-R diagram,
nor are they all of a certain composition.
↭ Mira variables are supergiants on the asymptotic

giant branch
↭ β Cep stars are all B stars lying just above the

main sequence (MS).
↭ All the others lie along a long, narrow, nearly

vertical patch of the H-R diagram at effective
temperatures ↓ 104 K; this is the instability strip
(IS).

↭ ϱ Scu stars are close to the main sequence but
most IS inhabitants are not there long; they
develop rapidly after leaving the MS.
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https://commons.wikimedia.org/wiki/File:HR-vartype.svg


Origin of the instability strip: the κ-mechanism

In a typical star,
↭ An increase in the compression of a layer of the star’s interior causes an increase in

the temperature and density of the material.
↭ While opacity increases with increasing density, it decreases with increasing

temperature. Opacity is more strongly dependent on the temperature than the
density, so an increase in compression results in a decrease in the opacity.

↭ A decrease in opacity allows more radiation to escape, thus cooling down the
interior.

↭ This maintains an equilibrium condition in the star’s interior, where its temperature
and pressure are kept constant.
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Origin of the instability strip: the κ-mechanism

Variable stars have a layer of helium towards their surface.
↭ When this layer is heated beyond 40,000 K, the He atoms become fully ionized.
↭ This increases the number of free particles, so the increase in density supersedes the

increase in temperature, causing the opacity to increase.
↭ This results in a build-up of radiation pressure behind the layer.
↭ Eventually, the layer is pushed outward, cools, and the He ions recombine with the

free electrons.
↭ This decrease in density causes the opacity to decrease, reducing the outward

pressure and allowing the layer to fall back towards the center of the star.
This is called the κ-mechanism, named after the symbol most astrophysicists use for
opacity. The period of this cycle perfectly matches the period for acoustic oscillations in
these stars.
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https://en.wikipedia.org/wiki/Kappa_mechanism


Nonradial stellar oscillations

↭ Some pressure waves may
have transverse components as
well as radial components.

↭ Such waves can be trapped
between the surface and a
layer of certain density in the
interior as they propagate.

↭ At the surface, the waves
reflect due to the density
drop-off.

↭ In the interior, the waves
refract, bending up due to the
increase of vs with depth.

Propagation of acoustic waves corresponding to modes with ω = 30 and
ν = 3 mHz (deeply penetrating rays) and ω = 100, ν = 3 mHz
(shallowly penetrating rays) (Christiansen 2003).
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http://astro.phys.au.dk/~jcd/oscilnotes/


Solar oscillations & helioseismology

The Sun oscillates in many different modes with periods of ↓5 min. This was discovered
in 1962 (Leighton et al. 1962) and later explained as nonradial oscillations (Ulrich 1970).
↭ It took a long time to notice these oscillations because they are so small. The velocity

amplitudes are typically 100 cm/s with displacements of tens of meters.
↭ Many thousands of modes have now been identified.
↭ The period of each mode gives the integral of

1
vs

=
√

ε

γP

along a different path through the Sun’s interior.
↭ Different modes penetrate more deeply into the interior, providing good coverage for

the outer 90% of the volume.
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http://adsabs.harvard.edu/abs/1962ApJ...135..474L
http://adsabs.harvard.edu/abs/1970ApJ...162..993U


Precise knowledge of the solar interior
To summarize, we have:
↭ A direct measure of pp fusion per unit time at the very center of the Sun using

measurements of solar neutrinos, corrected for neutrino oscillation.
↭ Thousands of measurements of integrals of

1
vs

=
√

ε

γP

from which the density, pressure, temperature, abundances, etc. can be determined
over most of the solar volume.

↭ Confidence that we know precisely and accurately the thermodynamic parameters of
all parts of the solar interior without being able to see the interior directly.

↭ The result is the Standard Solar Model (see, e.g., Bahcall et al. 2004, Vinyoles et al.,
2017).
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https://ui.adsabs.harvard.edu/abs/2005ApJ...621L..85B
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..202V
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..202V


The Standard Solar Model

P(r), T(r), ε(r), and M(r) from Carroll and Ostlie, An Introduction to Modern Astrophysics
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http://wps.aw.com/aw_carroll_ostlie_astro_2e/48/12319/3153834.cw/index.html


The Standard Solar Model

Fusion power generation (left) and radiation and convection zones (right), showing the dominant energy transport
mechanism for each region, from Carroll and Ostlie, An Introduction to Modern Astrophysics
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http://wps.aw.com/aw_carroll_ostlie_astro_2e/48/12319/3153834.cw/index.html


Electron degeneracy pressure
Consider a gas of electrons, produced by ionization from atoms with nuclear charge Ze
and baryon number A. The electron and nuclear densities are related by

ne = Zn+

and the mass density is

ε = mene + Ampn+ (mp ↔ mn)

↔ Ampn+ (mp ↗ me)

Therefore, ne = Zε/Amp and the equation of state for electron degeneracy pressure is

Pe = 0.0485
h2

me

(
Z
A

)5/3 ( ε

mp

)5/3
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Polytropic equation of state

Note that the equation of state is polytropic:

P ∝ εγ

where γ = (n + 1)/n is called the polytropic exponent and n is called the polytropic
index. This is one of the few functional forms for which the equations of stellar structure
yield simple solutions. Example models:

Index n Notes
0.5 ↑ 1 Neutron stars
1.5 Fully convective cores, brown dwarfs, gaseous planets
3 MS stars (Sun) and relativistic degenerate cores (WDs)

As n increases, the density distribution is more heavily weighted toward r = 0.
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https://en.wikipedia.org/wiki/Polytrope


Electron degeneracy in stars

Suppose we use the new EOS (equation of state) instead of the ideal gas law to balance
gravity and support a star. Our former scaling relationships derived from the ideal gas
law and gravity were

Pc ∝
GM2

R4 εc ∝
M
R3

Precise calculations for the polytropic EOS P ∝ ε5/3 and gravity turn out to give

Pc = 0.77
GM2

R4 εc = 1.43
M
R3

We can now use this to estimate the typical size of a star balanced by electron degeneracy
pressure.
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Size of an electron degenerate star

Pc = Pe

0.77
GM2
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↫ R = 0.114
h2

Gmem5/3
p

(
Z
A
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M↑1/3

A couple of points:
↭ There is no temperature dependence here! This is much more simple than a normal

star.
↭ R is much smaller than a normal star of equal mass.
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White dwarfs

Numerical example

For M = 1M↘ and Z/A = 0.5, R = 9 ≃ 108 cm ↔ 1.4R⇐. This object, a white dwarf, has
the mass of a star and the size of a planet!

↭ Remarkable feature of R–M relation: R
decreases with increasing M (Stoner
1930).

↭ Cause: larger mass M requires larger
supporting Pe

↭ Larger Pe implies larger electron
momenta p confined to a smaller “box”
∆x. The entire object is smaller!
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http://adsabs.harvard.edu/abs/1930LEDPM...9..944S
http://adsabs.harvard.edu/abs/1930LEDPM...9..944S


Earth compared to the white dwarf star Sirius B
From NASA+ESA.
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http://www.spacetelescope.org/images/heic0516c/


Special Relativity & the white dwarf mass limit

↭ To support higher mass (smaller) white dwarfs, larger electron momenta (and
speeds) are required.

↭ Special Relativity: electron velocities cannot exceed c ↔ 3 ≃ 1010 cm/s.
↭ Therefore, there is an upper bound (a maximum) to the mass that can be achieved by

a white dwarf (Anderson 1929, Stoner 1930, Chandrasekhar 1931).
↭ Note: when v ↓ c, p is not simply mv. In this extreme relativistic limit,

Pe = 0.123hcn4/3
e

↭ Note that the relativistic and nonrelativistic expressions for Pe are equal at
ne = 1030 cm↑3, about the density of the core of a 0.3M↘ white dwarf (Stoner 1930).
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https://link.springer.com/article/10.1007/BF01340146
http://adsabs.harvard.edu/abs/1930LEDPM...9..944S
http://adsabs.harvard.edu/abs/1931MNRAS..91..456C
http://adsabs.harvard.edu/abs/1930LEDPM...9..944S


Stoner-Anderson-Chandrasekhar mass (“Chandrasekhar limit”)

For P ∝ ε4/3 and gravity, the central pressure and density of a star are

Pc = 11
GM2

R4 εc = 12.9
M
R3

Balance Pc with the relativistic electron degeneracy pressure Pe and the radius disappears
from the equation (you will show this in your homework). The result is a maximum mass
known as the Stoner-Anderson-Chandrasekhar mass or the Chandrasekhar limit:

MSAC = 0.2
(

Z
A

)2
(

hc
Gm2

p

)3/2

mp = 1.44M↘

for Z/A = 0.5 (carbon).

February 18, 2025 (UR) Astronomy 142 | Spring 2025 24 / 65



Neutron stars
What happens in a dead star with M > MSAC?
↭ Such a star simply cannot be supported by electron degeneracy pressure. Add a little

too much mass and it will either collapse gravitationally or explode.
↭ During the collapse, the extra energy liberated from gravity, plus the high density,

can help drive some endothermic nuclear reactions, notably

∆E + e↑ + p ⇒ n + νe

↭ But neutrons are also fermions, and neutron degeneracy pressure can also balance
gravity. A neutron star is formed (Tolman 1939, Oppenheimer & Volkov 1939).

↭ The nonrelativistic R-M relation for a NS is

R = 0.0685
h2

Gm8/3
p

M↑1/3

This is the mass of a star and the size of a city.
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https://ui.adsabs.harvard.edu/abs/1939PhRv...55..364T
https://ui.adsabs.harvard.edu/abs/1939PhRv...55..374O


Size of a 1M↘ neutron star
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Pulsars

↭ Most of the neutron stars we observe
appear to us as pulars.

↭ A pulsar is a rapidly rotating NS (or
WD) that emits a beam of
electromagnetic radiation.

↭ Neutron stars can also be observed as
X-ray flaring members of low-mass
binary systems (LMXBs).

↭ PS B1919+21 was the first pulsar to be
discovered in 1967 (Hewish et al. 1968)

↭ Right: the center of the Crab Nebula
(M1), the remnant of SN 1054.

Optical/X-ray overlay from the Hubble and Chandra
telescopes.
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http://adsabs.harvard.edu/abs/1968Natur.217..709H

