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The Milky Way & Normal Galaxies

↭ Stars as a gas: The mass per unit
area of the disk, stellar relaxation
time, and equilibrium

↭ Differential rotation of the stars in
the disk

↭ The local standard of rest
↭ Rotation curves and the

distribution of mass
↭ Spiral structure in the Galaxy
↭ The Hubble sequence for the

shapes of normal galaxies

Reading: Kutner Ch. 17.1–17.2, Ryden
Sec. 20.1 M101 (NGC 5457), the “Pinwheel” Galaxy (Kuntz et al. 2006).

March 27, 2025 (UR) Astronomy 142 | Spring 2025 2 / 64

http://hubblesite.org/image/1865/news_release/2006-10


M/A of the Disk in the Solar neighborhood

Pressure: Recall the formula for pressure in terms of number density, speed, and
momentum (derived in discussion of Pauli Exclusion pressure):

P =
F
A

=
1
A

dp
dt

→=
1
A

nAδz
δt

pz

= nvzpz = ρv2
z

Consider a certain class of stars to be gas particles, and consider the component of each of
their motions that is ↑ to the Galactic plane.

Suppose the distribution of the stars extends above and below the plane by some scale
height H/2. E.g., imagine the stars are lying on the end faces of a cylinder of Galactic
matter that extends one scale height above and below the plane.
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M/A of the Disk in the Solar Neighborhood

H/2

dA

dW

dW

Approximate weight of cylinder:

w =
dW
dA

=
gzdm
dA

= gzρH

If the stellar pressure balances gravity,

ρv2
z = ρgzH, or gz =

v2
z

H

From above, for a self-gravitating disk:

F = 2εGµm = mgz

=↓ µ =
gz

2εG
=

v2
z

2εGH

All terms in red are observable!
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M/A of the Disk in the Solar neighborhood

Put the numbers in for the solar neighborhood:

µ↔ = 1.5 ↗ 10↘3 g cm↘2 = 7.2 M↔ pc↘2

Star counts in the solar neighborhood enable us to estimate the local luminosity per unit
area L — also called the surface brightness — of the disk. This leads to a mass to light
ratio ( µ

L

)

↔
= 5M↔L↘1

↔

On average, the solar neighborhood emits light less efficiently than the Sun. This is
consistent with there being more low-mass stars than high-mass stars.
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Relaxation time of a stellar cluster

In order to behave as a gas, stars need to elastically collide enough times for their random
kinetic energy to be shared in a thermal fashion.

↭ However, stellar encounters, even distant ones, are rare on human time scales.

↭ Relaxation time: The time between elastic stellar encounters, based on the density
and velocity distribution, is one way to quantify how long it takes for a cluster of
stars to thermalize

↭ If a gravitationally bound cluster is much older than its relaxation time, the stars can
be described as a gas (the system has a relatively uniform temperature, pressure,
etc.).
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Relaxation time of a stellar cluster

r
v

vt

Suppose that a star has a gravitational “sphere of influence” of radius r ≃ R⇐ and moves
at speed v between encounters. In time t, its sphere of influence sweeps out a cylinder of
volume V = εr2vt.

If the number density of stars is n, there will be exactly one star in the cylinder if

nV = nεr2vtc = 1

=↓ tc =
1

nεr2v
Relaxation time
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Relaxation time of a stellar cluster

What is the appropriate radius r? Choose r such that the gravitational potential energy is
equal to the average stellar kinetic energy:

Gm2

r
=

1
2

mv2 =↓ tc =
v3

4εG2m2n

Done in more detail (ASTR 232): for a spherical cluster with a “core” radius R, it can be
shown that

tc =
v3

4εG2m2n
1

ln (2R/r)

Not far from our rough estimate, as the logarithm is a very slow function.
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Relaxation time of a stellar cluster

In your homework, you will show that, for such a cluster of N stars with core radius R
and typical stellar mass m,

v2 =
G(N ↘ 1)m

2R
Assuming N ≃ 1 and substituting these into the expression for relaxation time tc gives

tc ⇒
(

2R
v

)
N

24 ln (N/2)

The time tx = 2R/v is called the crossing time. It is the time it takes a star moving at mean
speed v to traverse the core of the cluster of diameter 2R if it does not collide.
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Thermal equilibrium: The virial theorem
A handy way for bookkeeping random motions in thermal equilibrium is the virial
theorem:

In an isolated system of particles that exert forces on each other described by scalar
potentials (gravity, Coulomb force, etc.), the system’s moment of inertia I, total kinetic
energy K, total potential energy U, and total mechanical energy E are related by

d2I
dt2 = 2K + U = K + E

In many cases d2I/dt2 = 0, in which case K, U, and E are related by

K = ↘1
2

U = ↘E

It is often easy to calculate U and the systematic-motion part of K; thus we can get the
random-motion part of K via the virial theorem.
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Thermal equilibrium
Uniform Density Cluster
Suppose a uniform-density star cluster (N ≃ 1 stars of mass m, total mass M = Nm) has
radius R and rotates like a solid body at angular speed Ω. What is the random speed v of
a typical star in this cluster?

Since the cluster structure is in equilibrium, d2I/dt2 = 0, so

K =
1
2 ∑

i
miv2

i +
1
2

IΩ2 = ↘1
2

U

1
2

Nmv2 +
1
2

(
2
5

MR2
)

Ω2 =
1
2

(
3
5

GM2

R

)

v =

√
3
5

GM
R

↘ 2
5

R2Ω2

Note that we assumed a constant density sphere to compute I.
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Thermal equilibrium

The proof of the virial theorem is not difficult but it is long, so we will skip it for now.
↭ The proof will be given in PHYS 235 and ASTR 232.
↭ You can also see Chapter 3 of Ryden.

Caveats related to the use of the virial theorem:
↭ The theorem only applies to thermal equilibrium or steady-state motion.
↭ Thus, before every use, the system should be checked to see that it is old enough to

be in thermal equilibrium.
↭ “Old enough” means that the system’s age is much longer than the relaxation time.
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Rotation curves
Earlier, we discussed how to weigh the Milky Way’s disk in the solar neighborhood. How
can we measure the mass elsewhere in the galaxy?

This would be straightforward, if we could stand in a nonrevolving reference frame
outside of the Galaxy — say, in another galaxy, from which we could view the Milky
Way’s disk edge-on:
↭ A measurement of the radial velocity of the stars or gas at any radius allows a

determination of the mass within that radius. This is called a rotation curve.

↭ The largest radial velocity at a given position, vr,max, is from motion tangent to the
line of sight; thus, material in orbit with radius r, if the orbits are circular.

↭ The mass contained within the radius r is given simply by Newton’s second law:

F = ↘GMm
r2 = ma = ↘m

v2
r,max

r
=↓ M(r) =

rv2
r,max

G
=

r3Ω2

G
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Rotation curves

Point mass M
Consider a test mass m orbiting a point mass M. The rotation curve of the point mass is
given by

F =
GMm

r2 =
mv2

r

v(r) =
√

GM
r

This is Keplerian motion; v decreases with increasing r.
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Rotation curves

Constant density, spherically symmetric mass M
In this case, the test mass orbits a constant density spherically symmetric mass:

M(r) =
4ε

3
ρ0r3

F =
GM(r)m

r2 =
mv2

r
Gm
r2

4ε

3
ρ0r3 =

mv2

r

v(r) = r
√

4εGρ0

3

This is solid body rotation; v increases linearly with increasing r.
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Rotation curves

Spherical symmetry with 1/r2 density distribution

In this case, the test mass orbits a spherically symmetric mass with ρ(r) = ρ0(r0/r)2,
where r0 is the core radius of the Galaxy.

M(r) =
∫ r

0
ρ(r⇑)4εr⇑2 dr⇑ = 4ερ0r2

0

∫ r

0
dr⇑ = 4ερ0r2

0r ∝ r

F =
GM(r)m

r2 =
mv2

r
Gm
r2 4ερ0r2

0r =
mv2

r

v(r) =
√

4εGρ0r2
0 = constant

This is a flat rotation curve and is observed in disk galaxies, including ours.
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Mass as a function of radius in the Milky Way
It is more complicated than this to measure the mass of the Milky Way, because we live in
the disk in a reference frame that revolves around the Galactic center.

Larry Landolfi

Longitude, ω

Latitude, b

M95, by Nesli Erez using Mees

from North

r↔

vϱ
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Rotation of the stellar population

Averaging over the random motions, the radial velocities of nearby stars (d ↫ 500 pc)
reveal differential rotation in the disk of the Galaxy.

↭ The rotation is differential in the sense that different radii have different angular
velocities, decreasing monotonically as a function of galactocentric radius.

↭ The radial and transverse motions are related to the differential rotation by the Oort
constants.
↭ The Oort constants are the first-order coefficients in a Taylor series expansion of the

stellar velocity field, with respect to the distance d from the Sun.
↭ There are four of these: A, B, C, and K. We only need to worry about the first two for

now.
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Rotation of the stellar population & Oort’s constants

The Oort constants combine four
observables: radial velocity, vr, proper
motion, vt, Galactic longitude, ω, and
distance, d:

vr = Ad sin 2ω vt = Ad cos 2ω+ Bd

where Oort’s constants are defined as

A = ↘ r
2

dΩ
dr

B = ↘ 1
2r

d
dr
(r2Ω)

with Ω = A ↘ B.

r↔
r

v↔

v⇐

d

vr

vt

GC

Sun

ω

α

α
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Oort’s constants

Measuring the Oort constants requires accurate radial
velocity measurements vr, proper motions vt, and
distances d over a wide range of distance.

The Gaia mission is substantially improving these
measurements.

The best determinations (Bovy 2017, Li et al. 2019) do not
even use vr, opting instead for the use of the ω and b
components of the proper motion:

A = 15.1 ± 0.1 km/s/kpc
B = ↘13.4 ± 0.1 km/s/kpc
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The local standard of rest
From A and B, we get the average rotational motion of the Sun’s orbit, called the local
standard of rest (LSR). For the values above, and r↔ = 8.15 ± 0.15 pc (Reid et al. 2019),

Ω = A ↘ B = (9.24 ± 0.06)↗ 10↘16 rad/s
vϱ = r↔Ω = 232 ± 5 km/s

P =
2ε

Ω
= (216 ± 6)↗ 106 yr

The Solar System actually moves slightly with respect to the LSR (average circular
motion) at about 7 km/s.

From the motion of the LSR, the Galaxy within r↔ = 8.15 kpc can be weighed:

M =
v2

ϱr↔
G

= (1.02 ± 0.04)↗ 1011M↔
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Rotation curves from HI and CO lines
Unlike stars, diffuse and molecular clouds can be detected throughout the disk of the
Galaxy, notably via the HI 21 cm line and the CO J = 1–0 2.6 mm line.

These clouds are too fuzzy and distant to generally measure their proper motions, but
their radial velocities (velocity along the line of sight) using the Doppler shifts of spectral
lines can be measured with exquisite accuracy:

λ ↘ λ0

λ0
=

∆λ

λ0
= ↘∆v

v0
=

vr

c

Along a given line of sight through the plane:
↭ Maximum radial velocity must come from an orbit tangent to the line of sight.

Motion parallel to the line of sight has cos θ = 1.
↭ Thus, distance and rotational motion of tangent points is very well determined:

r = r↔ tan ω.
↭ Elsewhere, there is a distance ambiguity: for lines of sight toward the inner Galaxy

(first and fourth quadrant), there are two locations with the same radial velocity.
March 27, 2025 (UR) Astronomy 142 | Spring 2025 28 / 64



Interpretation of HI line profiles

r↔

r2

ω

GC

Sun

LOS

1

2

3

4

5
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