
Astronomy 142 — Practice Midterm Exam #1

Professor Kelly Douglass

Spring 2024

Name:

You may consult only one page of formulas and constants and a calculator while taking this test. You
may not consult any books, digital resources, or each other. All of your work must be written on the attached
pages, using the reverse sides if necessary. The final answers, and any formulas you use or derive, must be
indicated clearly (answers must be circled or boxed). You will have one hour and fifteen minutes to complete
the exam. Good luck!

• First, work on the problems you find the easiest. Come back later to the more difficult or less familiar
material. Do not get stuck.

• The amount of space left for each problem is not necessarily an indication of the amount of writing it
takes to solve it.

• Numerical answers are incomplete without units and should not be written with more significant figures
than they deserve.

• Remember, you can earn partial credit for being on the right track. Be sure to show enough of your
reasoning that we can figure out what you are thinking.

R⊙ = 6.96× 1010 cm Mbol = 4.74

M⊙ = 1.989× 1033 g mV = −26.71

L⊙ = 3.827× 1033 erg/s MV = 4.86

Te = 5772 K BCV = −0.12

1 AU = 149, 597, 870 km 1 pc = 206, 265 AU

k = 1.38× 10−16 erg/K σ = 5.6704× 10−5 erg s−1 cm−2 K−4

G = 6.674× 10−8 dyn cm2 g−2 c = 3× 1010 cm/s

h = 6.6261× 10−27 erg s mp = 1.6726× 10−24 g

mn = 1.6749× 10−24 g me = 9.1094× 10−28 g

qe = 4.803× 10−10 esu
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1. Short answers: Please write in complete sentences, and feel free to use equations and/or sketches to
help explain your thoughts.

(a) (5 points) A celestial object is above the horizon for exactly 12 hours. What is its declination?

Solution: For an object above the horizon for exactly 12h, it will be at the horizon (altitude
= 0◦) when its HA = 6h. The zenith angle is the complement of the altitude, so an altitude of
0 corresponds to a zenith angle

ZA = 90◦ − altitude = 90◦

Therefore,

cos ZA = cos δ cosλ cosHA + sin δ sinλ

cos 90◦ = cos δ cosλ cos 6h + sin δ sinλ

0 = sin δ sinλ

So either δ = 0◦ or λ = 0◦. Since the question does not specify where we are, the more general

answer is that δ = 0◦

(b) (5 points) Explain why there is a maximum degeneracy pressure that electrons are capable of
exerting, and therefore a maximum mass for white dwarf stars.

Solution: This is directly traceable to the finite speed of light. To support a greater weight,
the electrons in a degenerate gas need to each be confined to a smaller volume V — that is,
the object needs to get smaller — so that, by the uncertainty principle, they will move faster
and hit the walls of their “cells” harder. (In other, nonrelativistic, words, make ∆x ∝ V 1/3

smaller to make ∆px ≥ h̄/2∆x larger.) Since electrons cannot move faster than the speed of
light, there is an eventual upper limit to the gained momentum uncertainty (and degeneracy
pressure) from the reduction of the volume uncertainty.
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(c) (5 points) Describe the difference in nature between the pulsations exhibited by the Sun — the
“five minute oscillations” — and those found in Mira, Cepheid, and RR Lyrae variables.

Solution: The long-period variables (like Mira) and the variables lying along the instability
strip in the H-R diagram exhibit purely radial oscillations dominated by the fundamental mode.
Their boundary conditions involve a pressure maximum at the center and the first pressure node
at the surface. The Solar five-minute oscillations are non-radial: the waves have components
perpendicular to radius and thus rattle between the solar surface and a “turning point” in
the interior whose depth depends upon how many pressure nodes are involved on the surface.
Instead of having a wavelength determined by how many waves fit between center and surface,
nonradial oscillations have wavelengths determined by how many waves fit in a complete circuit
of the star.

(d) (5 points) Most of the double-line spectroscopic binaries that we see involve two stars of similar
mass. Why?

Solution: We see the sum of the light from the two stars in a spectroscopic binary; we do
not resolve them spatially. Luminosity increases very sharply with mass (L ∝ M4). Thus, if
one member of the pair is less massive than the other one, it is much fainter, and its signal
will be swamped by the signal of the more massive star; the signal will appear as a single-line
spectroscopic binary.
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2. Consider two fusion mechanisms: the main proton-proton chain and deuterium fusion. The masses of
deuterium and helium are

m(21H) = 3.3426× 10−24 g m(42He) = 6.6447× 10−24 g

(a) (10 points) Fill in the blanks in the nuclear reaction chains for these two processes:

p-p chain I d-d fusion :

211H → 2
1H+ 0

1e
+ + 0

0νe (2×)

2
1H+ 1

1H → 3
2He + 0

0γ (2×) 221H → 4
2He + 0

0γ

232He → 4
2He + 211H

Total: 41
1H → 4

2He + 20
1e

+ + 20
0νe + 20

0γ

(b) (5 points) Calculate the energy ∆Ep-p and ∆Ed-d released by fusion and available for the lightweight
products (electrons, photons, etc.) in each of the “total” reactions. Express your answer in ergs.

Solution:

∆Ep−p =
(
m(42He)− 4m(11H)

)
c2 = 4.12× 10−5 erg

∆Ed−d =
(
m(42He)− 2m(21H)

)
c2 = 3.82× 10−5 erg
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(c) (5 points) Compare the neutrino production in these two mechanisms. Which is a better explana-
tion of the detected quantity of solar neutrinos: neutrino oscillation or the Sun being made of pure
deuterium? In other words, if the core of the Sun were made of pure deuterium, would the original
solar neutrino problem be solved or does neutrino oscillation still look like a better explanation?

Solution: Solar neutrinos are detected at about one-third the rate that the p–p chains produce
them (see above; each 4

2He comes with two electron neutrinos in p–p I). This deficit is the
celebrated solar-neutrino problem. Deuterium fusion, on the other hand, produces no neutrinos,
so the observations would be a huge excess over expectations — an infinite excess, in ratio terms.
Thus, pure deuterium, while it would certainly produce fewer neutrinos than p–p, would make
the situation worse. Looks like p–p fusion and neutrino oscillations work better.
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3. A deuterium star. A 1M⊙ main-sequence star like the Sun has a central temperature of 1.57× 107 K
and the subatomic particles in its center (electrons, protons, and other ions) have an average mass of
0.62mp. Consider a 1M⊙ star made completely of deuterium 2

1H, which produces energy by d-d fusion
into helium. Assume its internal structure is like that of the Sun, apart from its different internal
composition.

(a) (5 points) Calculate the average particle mass µ in the deuterium star’s interior assuming that the
material is fully ionized. Express your answer in terms of mp.

Solution: The deuterium nucleus has a mass of about 2mp, since it contains a proton and
neutron. Two particles — the nucleus and an electron— result from the ionization of deuterium.
Thus,

µ =
md +me

2
≈ md

2
≈ mp

(b) (10 points) Suppose the deuterium star has the same radius as the Sun. Calculate its central
temperature.

Solution: Balance the central pressure with the ideal-gas pressure:

PC ∝ GM2

R4
=

ρkTC

µ
∝ MkTC

R3µ

TC ∝ GMµ

kR

Write this again for the Sun and divide the two expressions:

TC

TC,⊙
=

Mµ

R

R⊙

M⊙µ⊙
=

µ

µ⊙

TC = TC,⊙
µ

µ⊙
= 2.53× 107 K

Page 6



(c) (10 points) Show that at this temperature, d-d fusion reactions in the core of the deuterium star
occur a bit less than half as often as p-p reactions in the Sun’s core.

Solution: The rate at which fusion reactions take place is proportional to the fusion probability.

p = Ae−(T0/T )1/3 (1)

where

T0 =

(
3

2

)3(
8πq1q2

h

)2
mred

k
(2)

and where the qs are the electric charges, and mred = m1m2/(m1 +m2) is the reduced mass of
the fusing nuclei. Now, q1 = q2 = qe for both p–p and d–d reactions, and the reduced masses
are just half the mass of the fusing nuclei:

mred =
mpmp

mp +mp
=

mp

2
= µ (3)

for p–p, and similarly mred = md/2 for d–d. Thus,

T0,d−d =

(
3

2

)3(
8πq2e
h

)2
md

2k
= 3.131× 1010 K

T0,p−p =

(
3

2

)3(
8πq2e
h

)2
mp

2k
= 1.565× 1010 K

and

pd−d

pp−p
= exp

(
−
(
T0,d−d

TC

)1/3
)
exp

(
−
(
T0,p−p

TC,⊙

)1/3
)

= exp

(
−
(
3.131× 1010 K

2.53× 107 K

)1/3
)
exp

(
−
(
1.565× 1010 K

1.57× 107 K

)1/3
)

pd−d

pp−p
= 0.476
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4. You have observed an eclipsing double-line spectroscopic binary in which the two sets of lines are identical,
but for which the Doppler shifts are sinusoidal and opposite. The velocity amplitudes are both v =
43 km/s and the period P = 31 days. The visual magnitude of the binary is V = 10.

(a) (10 points) Make some reasonable assumptions and deductions about the shape and orientation of
the orbits and the relative masses of the stars in the binary system. Then calculate the separation
of the stars. Express your answer in terms of R⊙.

Solution: First, note that the orbits are viewed edge on (eclipsing) and are circular (sinusoidal
Doppler shifts), and that the stars have equal effective temperature (identical spectra). If they
are both in the same stage of development, this means that their masses are equal.

You can either use the formula that we derived in class or, more simply, note that each star
travels in the same circle, for which the circumference is vP and the radius is vP/2π. The stars
are always on opposite sides of the circle (center of mass at the center of the circle!), so they
are separated by the circle’s diameter a:

a = 2r =
vP

π
= 3.67× 1012 cm = 52.7R⊙ (4)

(b) (5 points) Calculate the masses of the stars in the binary system, expressing your answer in terms
of M⊙.

Solution: Use Kepler’s third law:

M1 +M2 = 2M =
4π2

GP 2
a3

M =
2π2

GP 2
a3 = 1.02M⊙ (each star)
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(c) (10 points) Calculate the visual magnitude of each star.

Solution: The stars have the same magnitude V and the same flux f . Fluxes add, but magni-
tudes do not. If the flux of a zero-magnitude star is f0, then applying m1−m2 = 2.5 log (f2/f1)
to the binary and the zero-magnitude star gives

10 = 2.5 log

(
f0
2f

)
f0
f

= 2× 104

Applying m1 −m2 = 2.5 log (f2/f1) again to this newly-found flux ratio gives

V = 2.5 log

(
f0
f

)
= 2.5 log (2× 104) = 10.75 (5)
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5. A 1M⊙ star is observed to oscillate in brightness with a period of 48 hr and an amplitude of 1 visual
magnitude.

(a) (10 points) Assume the star is uniform in density. What is its radius in terms of R⊙?

Solution:

Π =

√
6π

γGρ
=

√
6π

γG

4πR3

3M

R =

(
γGMΠ2

8π2

)1/3

=

(
(5)(6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)(48× 60× 60 s)2

(3)(8π2)

)1/3

R = 4.37× 1011 cm = 6.28R⊙

(b) (5 points) In what phase of its evolution is the star likely to be?

Solution: Large enough to be well off the main sequence, but not huge; 2-day period and
1-mag amplitude; all this sounds like an RR Lyrae star, so it must be on the horizontal branch
(i.e. the helium-burning main sequence).
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