
Astronomy 142 — Practice Final Exam

Professor Kelly Douglass

Spring 2025

Name:

You may consult two pages of formulas and constants and a calculator while taking this test. You may
not consult any books, digital resources, or each other. All of your work must be written on the attached
pages, using the reverse sides if necessary. The final answers, and any formulas you use or derive, must be
indicated clearly (answers must be circled or boxed). You will have three hours to complete the exam. Good
luck!

• First, work on the problems you find the easiest. Come back later to the more difficult or less familiar
material. Do not get stuck.

• The amount of space left for each problem is not necessarily an indication of the amount of writing it
takes to solve it.

• Numerical answers are incomplete without units and should not be written with more significant figures
than they deserve.

• You must show your work and/or explain your answers to receive full credit.

• Remember, you can earn partial credit for being on the right track. Be sure to show enough of your
reasoning that we can figure out what you are thinking.

R⊙ = 6.96× 1010 cm Mbol = 4.74

M⊙ = 1.989× 1033 g mV = −26.71

L⊙ = 3.827× 1033 erg/s MV = 4.86

Te = 5772 K BCV = −0.12

R⊕ = 6.371× 108 cm M⊕ = 5.9736× 1027 g

1 AU = 149, 597, 870 km 1 pc = 206, 265 AU

k = 1.38× 10−16 erg/K σ = 5.6704× 10−5 erg s−1 cm−2 K−4

G = 6.674× 10−8 dyn cm2 g−2 c = 3× 1010 cm/s

H0 = 73.04 km/s/Mpc h = 6.6261× 10−27 erg s

mp = 1.6726× 10−24 g = 938.3 MeV/c2 mn = 1.6749× 10−24 g = 939.6 MeV/c2

me = 9.1094× 10−28 g = 0.511 MeV/c2 e = 4.803× 10−10 cm3/2 g1/2 s−1
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1. Answer each of the following with a few complete sentences. Feel free to use diagrams and/or equations
if you feel that they will help you answer the questions.

(a) (5 points) An object is observed at redshift z. What is the dimensionless scale factor which applies
to this object?

Solution:

a =
1

1 + z

(b) (5 points) How old is the Universe, according to current best estimates?

Solution: The age is 13.8 Gyr according to CMB data and our best guess model of the Uni-
verse, using the SH0ES value of H0 = 73.04 km s−1 Mpc−1.
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(c) (5 points) Under what conditions can the virial theorem be used to measure the mass of a cluster
of stars or galaxies?

Solution: The system must be in dynamic (thermal) equilibrium for the virial theorem to be
applied. A system is considered to be in equilibrium when its age is older than its relaxation
time.

(d) (5 points) Who invented the use of standard candles, and how was it done?

Solution: Henrietta Leavitt, one of the “computers” employed by Edward Pickering at Harvard
College Observatory. She discovered the relation between the apparent magnitude and pulsation
period of Cepheids in the Magellanic clouds and realized that since all the Cepheids in each
cloud are at the same distance from us, this is really a period-luminosity relation.
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(e) (5 points) Calculate the average density in g/cm3 of a classical Cepheid variable star with a 10-day
period.

Solution:

Π =

√
6π

γGρ

ρ =
6π

Π2γG
=

6π

(10 days)2(24 hr/day)2(60 min/hr)2(60 s/min)2( 53 )(6.674× 10−8 dyn cm2 g−2)

ρ = 2.27× 10−4 g/cm
3

(f) (5 points) With what speed do galaxies 100 Mpc away recede from us? What is their redshift?

Solution:

v = H0d = (73.04 km/s/Mpc)(100 Mpc)

v = 7304 km/s

z ≈ v

c
=

7304 km/s

3× 105 km/s

z ≈ 0.024
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2. The distance ladder

(a) (10 points) In the outer reaches of a certain galaxy, a variable star is detected with a period of 30
days and a total flux of 3.3× 10−15 erg s−1 cm−2. Under the assumption that the star is a Cepheid
I, calculate the distance to the galaxy.

Solution: According to Leavitt’s Law,

MV = −2.77 logΠ− 1.69

Since the Cepheid I stars are located on the Instability Strip of the H-R diagram, they are
comprised of mainly F and G stars which have zero bolometric correction. Therefore, Mbol =
MV , so

Mbol = −2.77 logΠ− 1.69

4.75− 2.5 log

(
L

L⊙

)
=

4.75− 2.5 log

(
4πr2f̄

L⊙

)
=

r =

√
L⊙

4πf̄
10(1.108 log Π+2.576) =

√
3.827× 1033 erg/s

4π(3.3× 10−15 erg/s/cm
2
)
10(1.108 log(30)+2.576)

r = 3.88× 1025 cm = 12.6 Mpc
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(b) (10 points) In the same galaxy, a supernova remnant is monitored for two years. Visible spectral
lines show that during this time the gas has a maximum velocity along the line of sight of 5000 km/s.
Radio images show the remnant to be circular in appearance. During the two-year period, the
diameter of the remnant increases by 0.84 × 10−3 arcseconds. Using these data, calculate the
distance to the galaxy.

Solution: The increase in radius over two years was

∆R = vt = (5000 km/s)(2 yr)(3.16× 107 s/yr)

∆R = 3.16× 1011km = 3.16× 1016 cm

During this same time, the increase in angular diameter observed was

∆θ =
2∆R

r

r =
2∆R

∆θ
=

2(3.16× 1016 cm)

(0.84× 10−3 arcsec)(648000/π rad/arcsec)

r = 1.5× 1025 cm = 5 Mpc

(c) (5 points) Which of these measurements is likely to be more accurate? If the two estimates are
different, describe the source of the discrepancy.

Solution: The method used in part b is geometric and therefore a much more reliable distance
measurement than the Cepheid-based method, which relies upon correct identification of the
star, accurate measurement of its magnitudes, and calibration of Leavitt’s Law. Thus, the
5 Mpc determination is more likely to be correct.
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3. Consider a universe in which Λ = 0 and the normalized matter density is Ω = ΩM0 > 1.

(a) (20 points) Derive an expression for the comoving radial distance between z = 0 (that is, today)
and zd = 1090, the redshift of the decoupling surface.

Solution: The comoving radial distance is that traveled by light between decoupling and us,
which by the Robertson-Walker interval is given by

0 = ds2 = c2dt2 − a2dr2

a2dr2 = c2dt2∫ r

rd

dr′ = c

∫ t

td

dt′

a

∆r = c

∫ t

td

dt′

a

da

da

∆r = c

∫ a

ad

da

aȧ

We can use the Friedmann equation to replace ȧ.

∆r =
c

H0

∫ 1

ad

da

a
√
1 + Ω

(
1
a − 1

)
=

c

H0

√
Ω

∫ 1

ad

da√
a
(
1− aΩ−1

Ω

)
=

c

H0

√
Ω

√
Ω

Ω− 1

∫ (Ω−1)/Ω

(Ω−1)ad/Ω

dx√
x(1− x)

=
2c

H0

√
Ω− 1

∫ sin−1
√

(Ω−1)/Ω

sin−1
√

(Ω−1)ad/Ω

cos θ sin θ√
sin2 θ(1− sin2 θ)

dθ

=
2c

H0

√
Ω− 1

∫ sin−1
√

(Ω−1)/Ω

sin−1
√

(Ω−1)ad/Ω

dθ

=
2c

H0

√
Ω− 1

[
sin−1

√
Ω− 1

Ω
− sin−1

√
ad

Ω− 1

Ω

]

∆r =
2c

H0

√
Ω− 1

[
sin−1

√
Ω− 1

Ω
− sin−1

√
1

1 + zd

Ω− 1

Ω

]
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(b) (5 points) Independent of the curvature of the universe, the acoustic horizon size is given as

ℓd =
2c

3H0

√
ad
ΩM0

=
2c

3H0

√
ΩM0

(1 + zd)

Calculate the angular size, in degrees, of the fundamental mode of acoustic oscillations visible on
the decoupling surface as the cosmic-background anisotropies, using the results of part a and a
normalized matter density of ΩM0 = 2. How does your answer compare to the measured angular
size of the fundamental mode, θd = 0.66◦?

Solution:

θd =
ℓd
∆r

=
2c

3H0

√
Ω(1 + zd)

H0

√
Ω− 1

2c

[
sin−1

√
Ω− 1

Ω
− sin−1

√
1

1 + zd

Ω− 1

Ω

]−1

=
1

3

√
Ω− 1

Ω

1

1 + zd

[
sin−1

√
Ω− 1

Ω
− sin−1

√
1

1 + zd

Ω− 1

Ω

]−1

=
1

3

√
2− 1

2

1

1 + 1090

[
sin−1

√
2− 1

2
− sin−1

√
1

1 + 1090

2− 1

2

]−1

θd = 9.3× 10−3 rad = 0.54◦

This is smaller than the measured value of 0.6◦.
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4. A 1M⊙ star with radius 1R⊙ has just reached the end of its main-sequence life, with a central temperature
of 1.4× 107 K and a core containing 10% of its total mass. Hydrogen fusion has recently shut off in the
core, which we assume for simplicity to be composed completely of 4

2He.

(a) (5 points) What is the central pressure (in dyne/cm2) due to the weight of the outer layers of the
star?

Solution: For stars with low to moderate mass, the central pressure is approximately

PC ≈ 19
GM2

R4
= 19

(6.674× 10−8 dyn cm2 g−2)(1.989× 1033 g)2

(6.96× 1010 cm)4

PC ≈ 2.14× 1017 dyn/cm
2

(b) (5 points) At the very center of the star, nonrelativistic electron degeneracy pressure balances
gravity. What is the density of electrons there?

Solution: Electron degeneracy pressure is equal to

P = 0.0485
h2n

5/3
e

me

ne =

(
mePC

0.0485h2

)3/5

=

(
(9.109× 10−28 g)(2.14× 1017 dyn/cm

2
)

0.0485(6.6261× 10−27 erg s)2

)3/5

ne = 2.38× 1026 cm−3
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(c) (5 points) Suppose hydrogen fusion starts up in the shell just outside the helium core. The shell is
the same temperature as the core itself. As this fusion proceeds, helium “ash” is added to the core.

The temperature scales with the core mass MC according to TC ∝ M
4/3
C . What is the mass of the

helium core when the temperature reaches 108 K, high enough to ignite 4
2He fusion?

Solution:

TC ∝ M
4/3
C

TC

TC,initial
=

(
MC

MC,initial

)4/3

MC = MC,initial

(
TC

TC,initial

)3/4

= 0.1M⊙

(
108 K

1.4× 107 K

)3/4

MC = 0.44M⊙
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5. There are three different basic types of Big Bang universes.

(a) (15 points) What are their pasts and futures, if they are matter-dominated?

Solution: The three different types of universes are an open, flat, and closed universe. All
three universes start out expanding. In an open universe, the expansion velocity is greater
than that of its “escape velocity,” so its kinetic energy is greater than its potential energy. As
a result, it will continue to accelerate as its expands. From today’s viewpoint, this universe
would be the oldest.

The flat universe has an expansion velocity equal to that of the “escape velocity,” so the total
kinetic energy is equal to the total potential energy. This universe will constantly expand, but
it will continue to do so at a constant rate.

The closed universe is the most short-lived of them all. Having an expansion velocity less than
the “escape velocity,” its kinetic energy is less than the potential energy. This results in a
negative acceleration rate; at some point, this universe will stop expanding and recompress
back to its original state.
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(b) (5 points) What determines the fate of a universe?

Solution: The relationship between the expansion velocity and the “escape velocity” in each
universe determines the universe’s fate.

(c) (5 points) What are the current ideas about the fate of our Universe?

Solution: Our universe is thought to be a flat universe that is dominated by dark energy. As a
result, its expansion rate will increase over time, eventually separating everything by an infinite
amount.
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6. Rotation curves

(a) (10 points) Draw a typical rotation curve for a spiral galaxy; label the axes and identify critical
values of the curve on the axes. Indicate the different types of rotation observed.

Solution:

(b) (5 points) Describe a rotation curve. What information can be gleaned from it?

Solution: A rotation curve of a spiral galaxy is a graphical representation of the velocity of
the elements of a galaxy as a function of the radius.

Rotation curves can help us to estimate the mass of the galaxy, since we know both the radius
and speed at a given point. They also help to prove the existence of dark matter, since the
classical prediction of the rotation curve for a spiral galaxy would be V ∝ R−2. The difference
between the two curves can only be explained by dark matter.
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7. Galaxy surface brightness

(a) (5 points) A spiral galaxy appears circular when seen face-on. The flux observed per steradian of
the galaxy is given by the relation

Σ(r) = Σ0e
−r/r0

where r is the angular distance in radians from the center of the galaxy. What is the total flux that
we observe from the galaxy?

Solution: The total flux is obtained by integrating the surface brightness profile over all radii,

F =

∫ ∞

0

Σ(r)2πr dr

= 2πΣ0

∫ ∞

0

e−r/r0r dr

F = 2πΣ0r
2
0
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(b) (10 points) You observe an elliptical E0 galaxy. The flux you measure per steradian is given by the
relation

Σ(r) = Σ0 exp
[
−(r/r0)

1/4
]

where r is the angular distance in radians from the center of the galaxy. What is the total observed
flux? Hint: You may wish to use the fact that∫ ∞

0

xne−xdx = n!

Solution: The total flux is obtained by integrating the surface brightness profile over all radii.
However, the radial dependence is a bit more complex so we need to simplify the integral

F = 2πΣ0

∫ ∞

0

e−(r/r0)
1/4

r dr

using the substitution

u = (r/r0)
1/4 r = r0u

4 dr = 4r0u
3 du

This gives

F = 2πΣ0

∫ ∞

0

e−(r/r0)
1/4

r dr

= 2πΣ0

∫ ∞

0

e−u r0u
4 4r0u

3 du

= 8πΣ0r
2
0

∫ ∞

0

u7e−u du

= 8πΣ0r
2
0 · 7!

F = 8!πΣ0r
2
0
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8. The mass density of a star with mass M and radius R decreases linearly from the center to the surface
of the star and vanishes at the surface:

ρ(r) = ρC

(
1− r

R

)
(a) (10 points) Derive an expression for the density ρC at the center of the star, in terms of M and R.

Solution:

M =

∫ R

0

ρ(r)4πr2 dr

= 4πρC

∫ R

0

r2 dr − 4πρC
R

∫ R

0

r3 dr

=
4πρC
3

R3 − 4πρC
4R

R4

=
πρCR

3

3

ρC =
3M

πR3
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(b) (20 points) Derive an expression for the pressure PC at the center of the star, in terms of M and
R.

Solution: Start with hydrostatic equilibrium:

P (R)− PC =

∫ R

0

dP

dr
dr = −

∫ R

0

GM(r)ρ(r)

r2
dr

PC =

∫ R

0

GM(r)ρ(r)

r2
dr

Now we need an expression for the mass M(r) contained within the radius r, which we get by
integrating the density between 0 and r:

M(r) =

∫ r

0

ρ(r′)4πr′2 dr′

=
12M

R3

∫ r

0

(
1− r′

R

)
r′2 dr′

=
12M

R3

[
r′3

3
− r′4

4R

]r
0

M(r) = 4M
( r

R

)3 [
1− 3

4

( r

R

)]
Now plug this into the hydrostatic equilibrium integral above:

PC =

∫ R

0

GM(r)ρ(r)

r2
dr

=
4GM

R3

3M

πR3

∫ R

0

r

(
1− 3

4

r

R

)(
1− r

R

)
dr

=
12GM

πR6

∫ R

0

(
r − 7

4

r2

R
+

3

4

r3

R2

)
dr

=
12GM2

πR6

[
1

2
r2 − 7

12

r3

R
+

3

16

r4

R2

]R
0

PC =
5GM2

4πR4
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