The Galaxy Population

Halo mass & Star formation history

November 19, 2024

University of Rochester

The galaxy luminosity function

To see the explicit relationship between halo mass and luminosity, we can write the galaxy luminosity function as

$$\phi(L,z) dL = dL \int \Phi(L|M,z) n(M,z) dM$$

The mass function of the halos can be approximated by the Press-Schechter function,

$$n(M) dM = \frac{\bar{\rho}}{M} f_{PS} \left[\frac{\sigma(M^*)}{\sigma(M)} \right] \frac{dM}{M}$$

where

$$f_{PS} = \sqrt{\frac{2}{\pi}} \left(1 + \frac{n}{3} \right) x^{(n+3)/6} \exp \left[-\frac{1}{2} x^{(n+3)/3} \right]$$

and $x \equiv M/M^*$ with $n \sim 2$.

< □ > < □ > < Ē > < Ē > Ē Ŷ < ♡

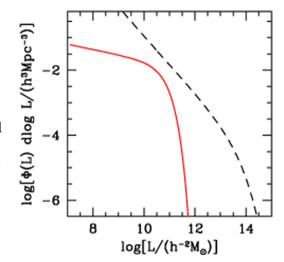
Relating the halo mass to the luminosity

It is simplest to assume that the total luminosity of a galaxy is directly proportional to its halo mass,

$$L = \frac{\varepsilon_{\text{SF}}}{Y_*} M_{\text{baryon}} = \frac{\varepsilon_{\text{SF}}}{Y_*} \frac{\Omega_{b,0}}{\Omega_{m,0}} M$$

As seen on the right, $\varepsilon_{SF}=Y_*=1$ (black dashed line) predicts higher luminosities at all halo masses than what is observed (red solid line), so $\varepsilon_{SF}/Y_*\ll 1$.

In addition, the shape does not match, so ε_{SF} and/or Y_* must be a function of the halo mass.



3/14

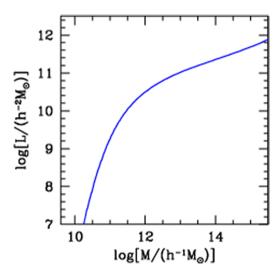
November 19, 2024 (UR) Astronomy 465 | Fall 2024

Relating the halo mass to the luminosity

The blue curve on the right is the result of matching the observed number densities n(M) and n(L) assuming a monotonic relationship between L and M.

$$\frac{\varepsilon_{\rm SF}}{{\rm Y}_*} \propto \frac{L}{M} \propto M$$

 $\varepsilon_{\rm SF}/{\rm Y_*}$ is largest at $\sim 10^{12} M_{\odot}/h$.



4/14

November 19, 2024 (UR) Astronomy 465 | Fall 2024

Luminosity function of central galaxies

We can approximate the average number of central galaxies with luminosity L in a halo of mass M as

$$\Phi(L|M) = \delta[L - L_c(M)]$$

Assuming that

$$L_c = L_0 \frac{X_L^{\beta}}{1 + X_L^{\beta - \gamma}}$$

with $0 < \gamma < \beta$, $X_L \equiv M/M_L$, and

$$L_c \propto \begin{cases} M^{\beta} & \text{for } M \ll M_L \\ M^{\gamma} & \text{for } M \gg M_L \end{cases}$$

Luminosity function of central galaxies

We find that the luminosity function for central galaxies is

$$L\phi_c(L) = \frac{\bar{\rho}}{\eta M^*} \sqrt{\frac{2}{\pi}} \left(1 + \frac{n}{3} \right) \left(\frac{L}{L_{\eta}^*} \right)^{(n-3)/6\eta} \exp \left[-\frac{1}{2} \left(\frac{L}{L_{\eta}^*} \right)^{(n+3)/3\eta} \right]$$

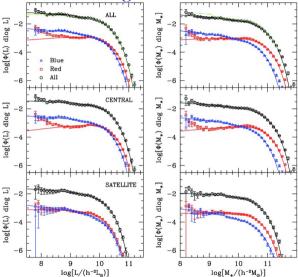
where $L_{\eta}^* = L_0 (M^*/M_L)^{\eta}$ and

$$\eta = \begin{cases} \beta & \text{for } M \ll M_L \\ \gamma & \text{for } M \gg M_L \end{cases}$$

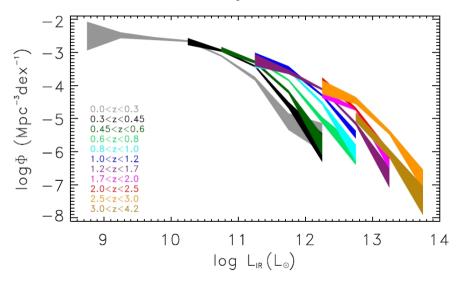
For n = -2, the faint-end slope is then predicted to be $\alpha \sim -1 - 5/6\beta$.

November 19, 2024 (UR)

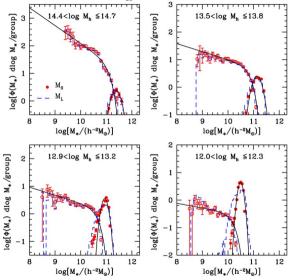
Luminosity function of central galaxies



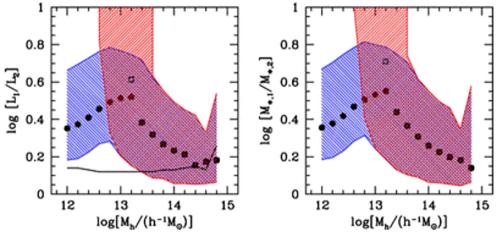
Redshift evolution of the luminosity function



Luminosity function of satellite galaxies

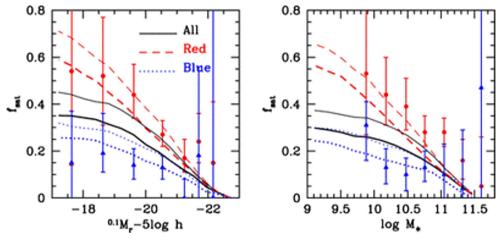


The luminosity gap



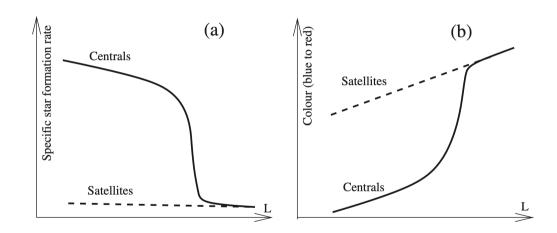
Yang et al. (2008)

The fraction of satellite galaxies

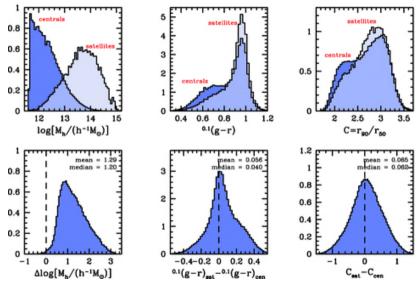


Yang et al. (2008)

sSFR and color as functions of luminosity



Differences between centrals and satellites



Cosmic star formation history

