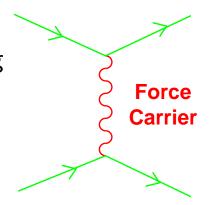
"The Standard Model" of Elementary Particles: What is it? Where did it come from? What is it good for?

Kevin McFarland
University of Rochester
STANYS Pre-conference Workshop
November 4, 2001

"The Standard Model"

This is the last slide on which you will hear me voluntarily use that phrase. . .

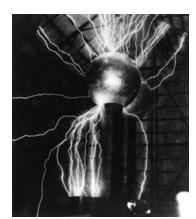

- I don't like the implication that we understand it all!
 We don't!
- So what does the phrase usually refer to?
 - → A description of the weak, strong and electromagnetic forces caused by exchanges of fundmental particles
 - → Unification of weak and electromagnetic forces
 - → Proton, neutron, etc. modeled by strongly bound quarks
- What else might be out there?
 - → New forces, particles, "symmetries"?

 - → Unification of strong and electro-weak forces
 - → Gravity?

Four Fundamental Forces

Gravity, Electromagnetism, Strong and Weak Nuclear Forces

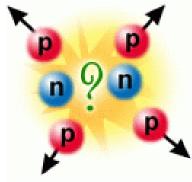
Mediated by Force Carriers


Gravity at Work

Gravity

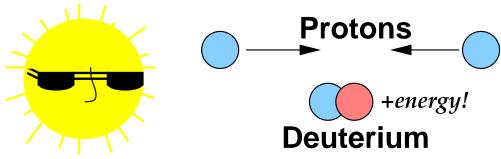
- → Attractive force between particles with mass or energy
- → Long range, macroscopic
- → Holds planets, solar systems, galaxies together

Electromagnetism


- → Attractive or repulsive force between particles with electric charge
- → Long range, macroscopic
- → Holds atoms together, keeps matter from collapsing under gravity

Shockingly Electromagnetic

Four Fundamental Forces

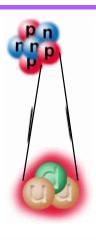


Strong Nuclear Force

- → The nucleus of an atom contains lots of protons that repeleach other electromagnetically
- → Strong force binds them
- → Microscopic because it is strong!

Weak Nuclear Force

- \hookrightarrow Responsible for β decay... of nuclei
- \hookrightarrow So who cares?


- → Fusion requires that a proton change into a neutron
- \hookrightarrow This is the inverse process of β decay!

Anti-Matter

Not just for Star Trek anymore. . .

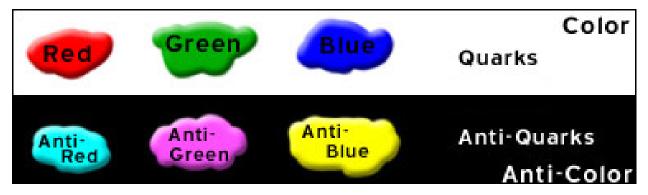
- Every particle we know about has a corresponding antiparticle
 - → Proton has an anti-proton; electron has positron
 - → Photon is its own anti-particle!
- Anti-particle has all the same properties, include same mass, but opposite electric charge
- Matter and anti-matter can be combined to make "pure energy"
 - → Meaning force carriers for a particle physicist
 - → And energy can make pairs of matter and antimatter particles

Building Protons: Quarks

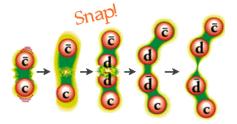
- Protons (and neutrons) are made up of three quarks
 - \hookrightarrow "Up" quarks have charge +2/3
 - \hookrightarrow "Down" quarks have charge -1/3
 - \hookrightarrow Proton = uud
 - \hookrightarrow Neutron = udd

- How can charged "u" be bound to "ud" combination?
 - → Strong force is strong as glue!
 - → So strong, that free quarks cannot be found

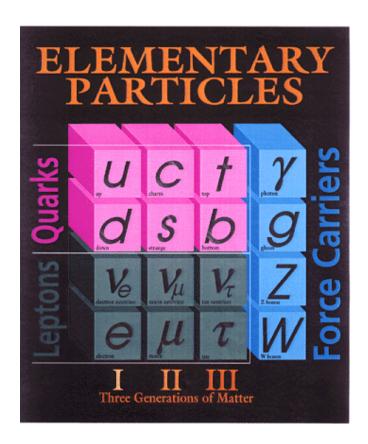
Quarks carry a color



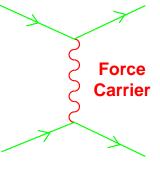
- What quark combinations are found?
 - → The key is making it "color neutral"
 - → Three colors (red, blue, green) combine like light


Building with Quarks

- Red+green+blue \Rightarrow colorless
- These three quark combinations are called "hadrons"
- Quark+antiquark combinations ("mesons") are also allowed
 - \hookrightarrow Color+anticolor \Rightarrow colorless

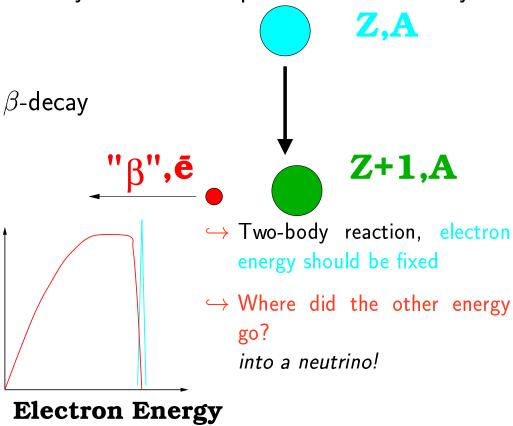


- What holds a nucleus together?
 (protons and neutrons are colorless)
 - → Residual strong forces
 - → This is why nucleus is not so much bigger than proton
- What happens if you try to defeat confinement?



Elementary Particles

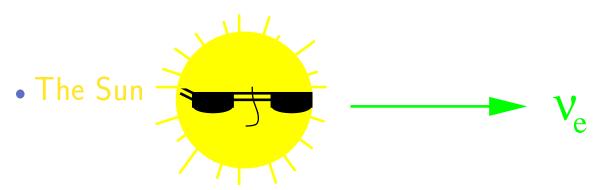
What are these things?


• "Force Carriers" are the particles responsible for creating the four forces

- "Quarks" are the things that make up protons and neutrons and are bound together inside a nucleus
- "Leptons" include the electron and the neutrino

What's a Neutrino?

• The mysterious extra particle in beta decay



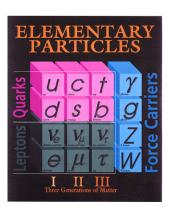
• Has no electric or "color" charge; interacts weakly!

Where do we find neutrinos?

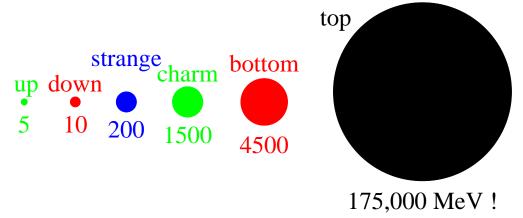
The Early Universe

- \hookrightarrow Decays of the heavy generations leave $\sim 100/{\rm cc}$ of each type of neutrino behind
- → These are, by now, very cold (slow) and hard to detect
- → But, if the neutrino has significant mass (10 eV), they would make up most of the mass in the Universe!

- → If the sun shines from fusion, energy flux on earth from light and neutrinos are similar
- \hookrightarrow About 100 billion neutrinos per cm^2 per second rain down on the earth

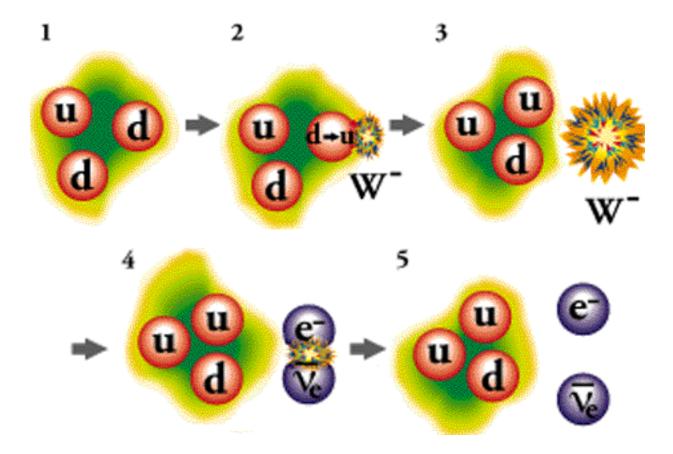

Natural Radioactivity

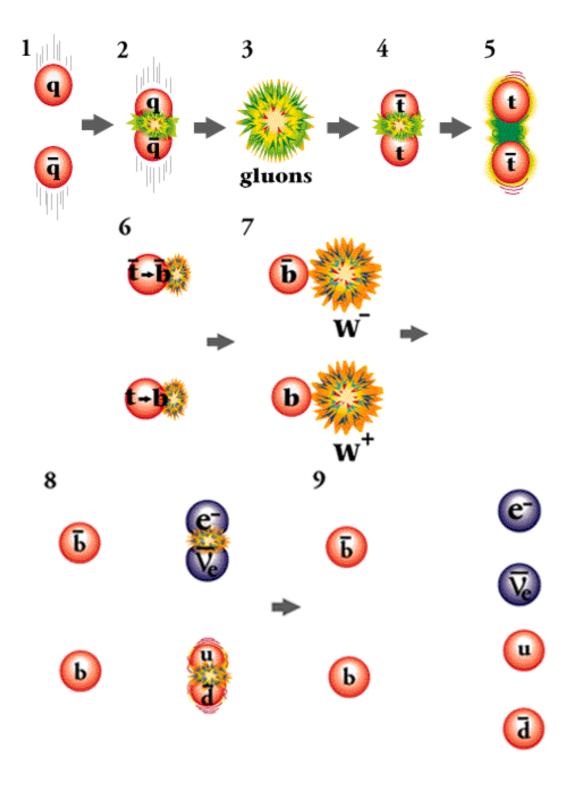
- \hookrightarrow We contain about 20 mg of 40 K, which is a radioactive β emitter
 - \star Each of us emits about 0.3 billion ν/sec
- \hookrightarrow At the earth's surface, the natural radioactivity in the earth results in 10 milliion $\nu/{\rm cm}^2/{\rm sec}$


Generations

If ordinary matter around us is made of up and down quarks and electrons...

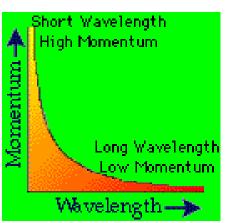
... what are all those other particles doing there?

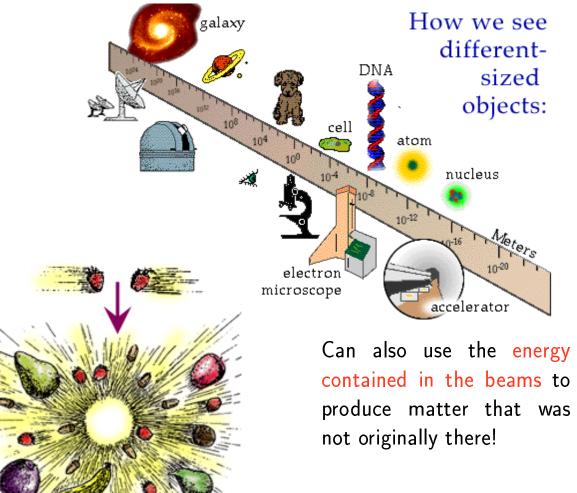

- Good question!
- There appear to be three copies of each of the "light" particles that make up ordinary matter
- Particle physicists call these "generations"
- The only property that seems to separate them is mass


 And the only way for particles of one generation to change into another is...

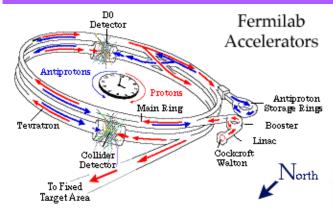
the weak interaction ("\beta-decay")

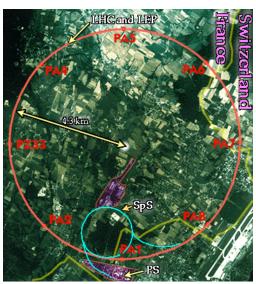
Radioactive Beta Decay



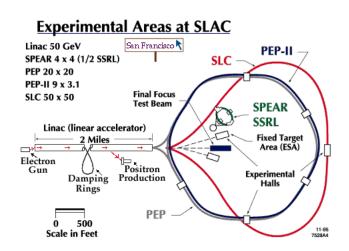

Producing Top Quarks

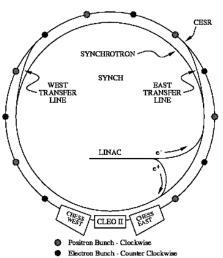
What Are Particle Accelerators For?



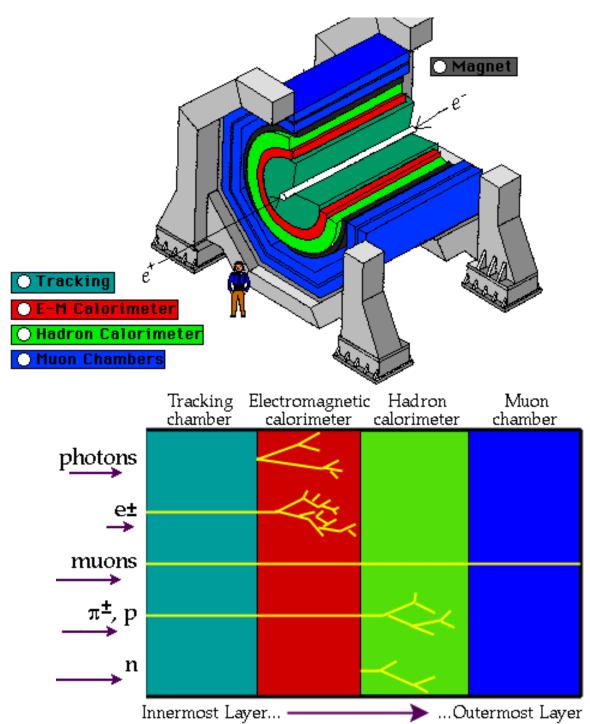

 $p\overline{p} \to \mathsf{FRUIT}$

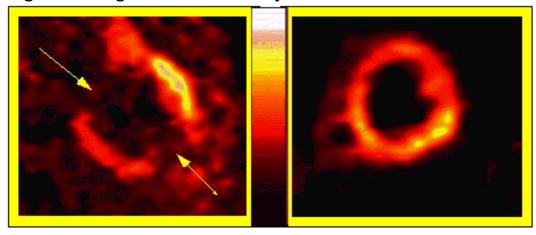
Some Accelerators in the World





FNAL $p\overline{p} \sqrt{s} = 2 \text{ TeV}$


LHC pp $\sqrt{s} = 14 \text{ TeV}$


Particle Detectors

Collider Detectors: Surround the Interaction

Of What Use is all this Techology?

- Particle physics technology is the backbone of medical imaging!
 - \hookrightarrow X-rays, MRI, PET, etc.
- Example: Positron Emission Tomography (PET)
 - → Doctors inject patient with a radioactive material that decays and emits anti-matter electrons (positrons)
 - → Positrons combine with electrons in body to emit pure energy (photons)
 - → Doctor detects photons (gamma rays)
 - → Radioactive material embedded in *biologically active compounds!*
 - ★ E.g., into sugar to feed healthy tissue

Left: Heart w/ dead Myocardial Tissue; Right: Healthy Heart

Cosmic Rays

Cosmic Rays

- Create weakly decaying particles

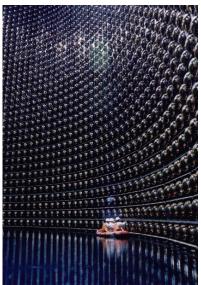
Protons

atmosphere Pions

Muons

Electrons

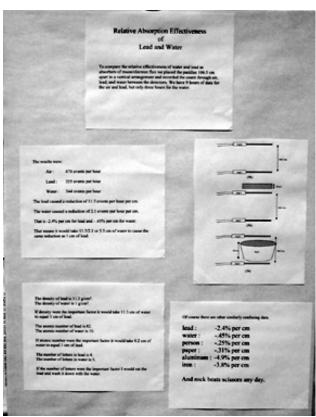
Neutrinos

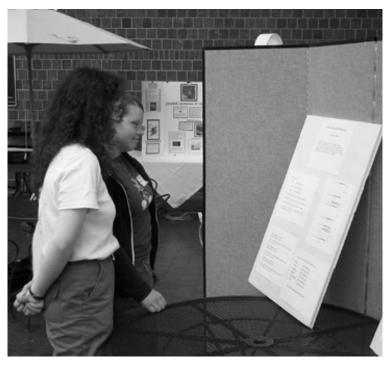

Electrons Stop...

... Neutrinos are hard to see

Atoms

Building a Detector to observe neutrinos


upper



But Muons are just right. . .

Cosmic Rays and the Classroom

Where to go to Learn More?

On the web

Particle Adventure http://particleadventure.org/ Fermilab http://www.fnal.gov/

Brookhaven http://www.bnl.gov/

Cornell http://www.lns.cornell.edu/

CERN http://www.cern.ch/

PARTICLE http://www.pas.rochester.edu/particle/

- Books
 - → "The God Particle" by Leon Lederman
 - → "The Charm of Strange Quarks", Barnett, Muehry, Quinn
- To tour
 - → Cornell Electron Storage Ring, Cornell University, Ithaca, NY
 - → Relativistic Heavy Ion Collider, Brookhaven National Laboratory, Upton, NY
 - → TeVatron Collider, Fermilab, Batavia, Illinois