

Take a Guess

How old is the universe?

A. 4,600 years old

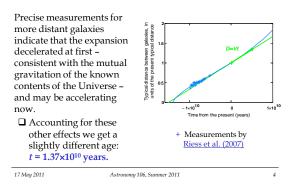
B. 13.7 billion years old

C. 4.6 billion years old

D. 13,700 years old

E. Really old.

17 May 2011


Age of the Universe from expansion

The Universe began in an explosion we can still see today, which we call the Big Bang. This set the Universe's contents into expansion, which currently is described by Hubble's Law, $V = H_0 D ~ (H_0 = 20 \text{ km sec}^{-1} \text{ Mly}^{-1})$.

□ But if the Universe has always **expanded at constant speed**, and if the Big Bang happened when *t* = 0, then the expansion to *D* took a time given by *D* = *Vt*, or

$$t = \frac{1}{H_0} = \frac{1}{20 \text{ km sec}^{-1} \text{ Mly}^{-1}}$$
$$= \frac{1}{20 \text{ km sec}^{-1} \text{ Mly}^{-1}} \left(\frac{\text{km}}{10^5 \text{ cm}}\right) \left(\frac{9.46 \times 10^{23} \text{ cm}}{\text{Mly}}\right)$$
$$= 4.73 \times 10^{17} \text{ sec} = 1.5 \times 10^{10} \text{ years.}$$

Age of the Universe from expansion (continued)

When Universal expansion was discovered, astronomers weren't as good at measuring distances as they are now, and the first value reported for the Hubble constant was

$$H_0 = 140 \text{ km sec}^{-1} \text{ Mly}^{-1}$$

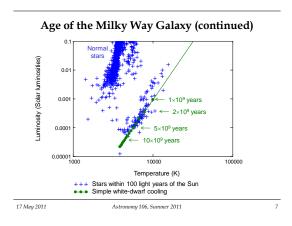
What would the age of the Universe be, if this were true?

A. 1920 billion years	B. 95.9 billion years
C. 1.96 billion years	D. 0.01 billion years

17 May 2011

Astronomy 106, Summer 2011

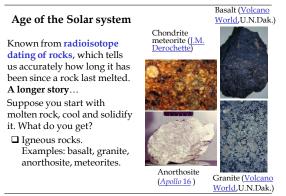
5


Age of the Milky Way Galaxy

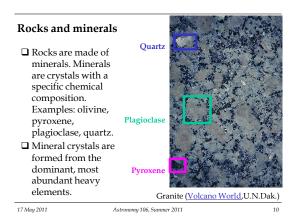
The Milky Way cannot be younger than its oldest contents. Some the oldest stars in the Milky Way are **white dwarfs**. □ White dwarfs are very simple objects: the remains of dead

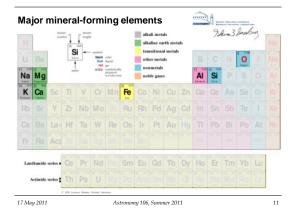
[□] Since there are many white dwarfs nearby, their distances can be measured, and combined with their apparent brightness to yield accurate luminosity measurements.

17 May 2011 Astronomy 106, Summer 2011 6



Age of the Milky Way Galaxy (continued)


- □ These observations show a spread of luminosity and temperature that agrees very nicely with the expected cooling rate, **except** that there aren't any luminosities and temperatures that correspond to ages greater than 9.5×10⁹ years. The Galaxy is thus at least this old.
- □ The shortest-lived stars that give rise to white dwarfs live about 2×10⁹ years, so in all the Milky Way is probably about 12×10⁹ years old. (Younger than the Universe!)



Astronomy 106, Summer 2011

		_
		_

Trace elements (impurities) in minerals

Elements that are not very abundant can substitute for abundant ones in the mineral crystals.

Examples: rubidium (Rb) can replace the moreabundant Na or K in minerals. Strontium (Sr) can similarly replace Mg or Ca.

Some minerals have greater capacities than others

- for replacing normal ingredients with impurities. Examples: olivines and pyroxenes can take more (LBNL) Rb per amount of Sr, than plagioclase can.
- □ At the temperatures that minerals crystallize, different isotopes of the elements are chemically identical. So there would be no preference among the two isotopes of Rb (85Rb and 87Rb), nor the four of Sr (84Sr, 86Sr, 87Sr, 88Sr). 12

17 May 2011 Astronomy 106, Summer 2011

Radioactive trace elements in minerals

Some atomic nuclei, of course, are **radioactive**, and will transmute into other nuclides over time. If one starts with a bunch of groups of radioactive nuclei,

each group having a total of n_0 at t = 0, then after a time t the average number remaining in a group is t

$$n = n_0 e^{-t \ln 2/t_{1/2}} = n_0 \times \left(\frac{1}{2}\right)^{\overline{t_{1/2}}}$$

where $t_{1/2}$ is the **halflife** for the radionuclide, a quantity that has (usually) been measured accurately in the laboratory.

□ As one halflife elapses, the number of radioactive nuclei drops by a factor of two.

n and n₀ can be number of nuclei, or number per gram of sample, or number times any constant.

· 1		/	
17 May 2011	Astronomy 106	5, Summer 2011	13

Radioactive trace elements in minerals (continued)

□ For example: ⁸⁵Rb is not radioactive, but ⁸⁷Rb beta-decays into ⁸⁷Sr:

$$^{87}\text{Rb} \rightarrow ^{87}\text{Sr} + e^- + \overline{\nu}_e + \text{energy}$$

$$t_{1/2} = 4.99 \times 10^{10}$$
 years

- □ Terminology: the radioactive species (like ⁸⁷Rb) is called the radionuclide, and the species produced in the decay (like ⁸⁷Sr) the daughter.
- And species that are neither radionuclides nor daughters - that is, are not involved in a radioactive decay chain – can be used as a reference. ⁸⁶Sr often plays this role for Rb and Sr.

17 May 2011

Astronomy 106, Summer 2011

14

15

After 12 halflives have passed, what fraction of a sample of radioactive atoms remains, un-decayed?

A. 1/12 B. 1/256 C. 1/1024 D. 1/4096 E. None of these.

17 May 2011

Astronomy 106, Summer 2011

Mid-lecture Break

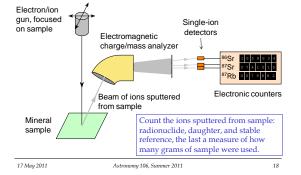
- □ Homework problem set #1 will appear on WeBWorK on Wednesday. We'll remind you by email.
- No recitation today, as there's no homework to discuss yet.

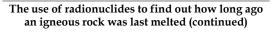
Top: anorthosite boulder, retrieved from the Lunar highlands by the crew of <u>Apollo 16</u>. Bottom: anorthosite boulder, left behind in the Adirondack highlands, by <u>Ronald Correia</u>.

17 May 2011

Astronomy 106, Summer 2011

The use of radionuclides to find out how long ago an igneous rock was last melted

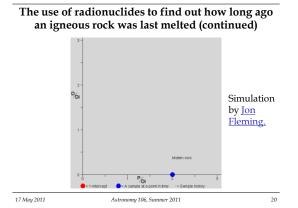

- □ There are many radioisotopes, with halflives spread from thousands to many billions of years, all accurately and precisely measured in the laboratory.
- □ We can measure the abundances of stable and radioactive isotopes "simply" by taking rocks apart into the minerals of which they are made, and in turn taking the minerals apart into atoms, counting the number for each **element** and **isotope** in a **mass spectrometer**.
- □ These days mass spectrometers are often built like scanning electron microscopes, so that an experimenter can make images of tiny mineral inclusions in rocks or meteorites, and then selectively dissect them and count the numbers of each element and isotope present.


17 May 2011

Astronomy 106, Summer 2011

17

Mass spectrometer analysis of mineral sample



So as time goes on, n(radionuclide) decreases, and n(daughter) increases by the same amount.

- In order to compare results on different minerals and samples, though, we should rather speak of the concentrations: the numbers per gram of sample.
- □ Or, better yet, the ratios of *n*(radionuclide) or *n*(daughter) to the number of **reference** nuclei counted, since *n*(reference) is constant for each mineral: define

N = n(radionuclide)		D = n(daughter)
n(reference)	'	$D = \frac{1}{n(\text{reference})}$

 $N = N_0 \times (1/2)^{t/t_{1/2}}$ Astronomy 106, Summer 2011 and, still, 17 May 2011 19

A simple case: two minerals

A little bit of algebra is useful at this point. You won't have to do any algebra on homework or exams, but in the interest of offering a simple proof of an important formula I'll show you some here. If you prefer a faith-based approach you may doze until the final result.

Suppose a rock solidifies at t = 0. A mineral in this rock has radionuclide and daughter number ratios N_0 and D_0 at that instant.

 \Box Different minerals will have different values of N_{0} but all will have the same value of D_0 .

□ We live at time *t*, and can measure *N* and *D*.

At later times, each mineral will obey

$$D = D_0 + (N_0 - N) = D_0 + N \left(2^{I/T_{1/2}} - 1\right) .$$
Astronomy 106, Summer 2011

21

A simple case: two minerals (continued)

Suppose the rock contains two minerals, A and B. Then the measurements for these minerals will be related by

$$D_A = D_0 + N_A \left(2^{t/t_{1/2}} - 1 \right) \quad , \quad D_B = D_0 + N_B \left(2^{t/t_{1/2}} - 1 \right)$$

We don't know t or D_{0} , but we know it's the same D_0 for both minerals. This is two equations in two unknowns. We're mostly interested in t, the time since the rock froze. Find it by subtracting the equations (eliminating D_0) and solving for t:

$$t = \frac{t_{1/2}}{\ln 2} \ln \left(\frac{D_A - D_B}{N_A - N_B} + 1 \right) \quad .$$
You need to know how to use this formula.

17 May 2011

Astronomy 106, Summer 2011

A simple case: two minerals (continued)

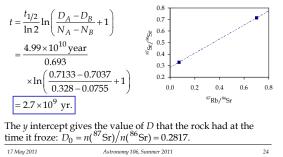
The halflife of 87 Rb is

$$t_{1/2} = 4.99 \times 10^{10}$$
 years.

Samples of two different minerals from the same igneous rock from northern Ontario are analyzed in a mass spectrometer, with these results for the number ratios *N* and *D*:

Sample	87 Rb/ 86 Sr	87 Sr/ 86 Sr
1	0.0755	0.7037
2	0.3280	0.7133
 .1 1.0		

How old is the rock?


17 May 2011

Astronomy 106, Summer 2011

23

A simple case: two minerals (continued)

Solution:

Age of the Solar system (continued)

- □ The oldest rocks in the Solar system turn out to be meteorites. All meteorites are nearly the same age.
- □ The very oldest are the "CAI" parts of primitive meteorites called carbonaceous chondrites: these all solidified precisely 4.5677±0.0009×10⁹ years ago.

University of Arizona/Joe Orman

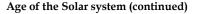
Age of the Allende (1969) meteorite,

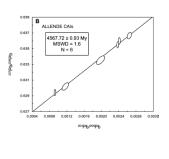
derived from U-Pb

radioisotope dating (Connelly et al. 2008).

U-Pb is the isotope system currently

favored for use on the


oldest meteorites, as Rb-Sr is for the oldest


terrestrial and lunar

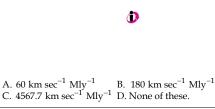
25

□ Nearly all meteorites come to us asteroids or comets, so they are members of the Solar system. Thus the Solar system has to be at least 4.5677×10⁹ years old.

17 May 2011 Astronomy 106, Summer 2011

17 May 2011

Astronomy 106, Summer 2011

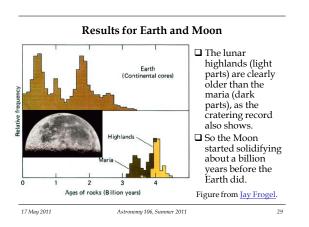

rocks.

26

27

Maybe this is unfair to all who haven't taken AST 102: If the rest of the Universe were the same age as the Solar system, what would the Hubble constant be?

Could they all have been "created" at once?


17 May 2011

Age of the surfaces of Earth and Moon

Closer to home,

- The radioisotope ages of lavas are comfortingly close to the real ages of recent (e.g. Mauna Loa) and historicallyattested (e.g. Vesuvius, Etna) eruptions.
- □ Dating of igneous rocks in Earth's crust shows the oldest rocks are about 3.8×10⁹ years; none are older.
 - ...though some minerals are older. Small zircons, found embedded in younger rock, are as old as the meteorites.
- □ Moon rocks, on the other hand, are all older than 3.2×10⁹ years, and range up to nearly the age of the meteorites.

17 May 2011	Astronomy 106, Summer 2011	28

Age summary

So we have these experimental facts:

- □ The Universe is 13.7 billion years old, give or take about 0.1 billion.
- □ The Milky Way Galaxy is about 12 billion years old; certainly it cannot be younger than the oldest white dwarfs it contains, which are 10 billion years old.
- □ The Solar system Sun, planets, asteroids, etc. is 4.5677 billion years old, give or take about a million years.

□ The Earth's surface solidified about 3.8 billion years ago. All of these timespans are **much** longer than the world was thought to be in Darwin's time. This has expanded dramatically the scope of the slow processes of **evolution**.

17 May 2011

Astronomy 106, Summer 2011

30