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ABSTRACT
The energy budget in common-envelope events (CEEs) is not well understood, with substantial
uncertainty even over to what extent the recombination energy stored in ionized hydrogen and
helium might be used to help envelope ejection. We investigate the reaction of a red giant
envelope to heating which mimics limiting cases of energy input provided by the orbital decay
of a binary during a CEE, specifically during the post-plunge-in phase during which the spiral-
in has been argued to occur on a time-scale longer than dynamical. We show that the outcome of
such a CEE depends less on the total amount of energy by which the envelope is heated than on
how rapidly the energy was transferred to the envelope and on where the envelope was heated.
The envelope always becomes dynamically unstable before receiving net heat energy equal
to the envelope’s initial binding energy. We find two types of outcome, both of which likely
lead to at least partial envelope ejection: ‘runaway’ solutions in which the expansion of the
radius becomes undeniably dynamical, and superficially ‘self-regulated’ solutions, in which
the expansion of the stellar radius stops but a significant fraction of the envelope becomes
formally dynamically unstable. Almost the entire reservoir of initial helium recombination
energy is used for envelope expansion. Hydrogen recombination is less energetically useful,
but is nonetheless important for the development of the dynamical instabilities. However, this
result requires the companion to have already plunged deep into the envelope; therefore this
release of recombination energy does not help to explain wide post-common-envelope orbits.
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1 IN T RO D U C T I O N

A common-envelope event (CEE) is a brief episode in the life of
a binary star during which two stars share an envelope that sur-
rounds their orbit (Paczynski 1976). For the cases in which the
envelope is successfully ejected, a CEE might be regarded as a
temporary merger, capable of transforming an initially wide bi-
nary system into a compact binary. This mechanism is thought to
be involved in the production of X-ray binaries, Type Ia super-
nova progenitors and stellar mass gravitational-wave sources, and
is also important in binary models for the progenitors of gamma-ray
bursts. However, whilst CEEs are vitally important for a significant
fraction of all binaries including the production of a wide vari-
ety of energetic stellar exotica, the overall process is still poorly
understood.

The overwhelming reasons for our difficulty in understanding
CEEs are the complexity of the physical processes involved in each
CEE and the extreme ranges in both time-scales (up to a factor
of 1010) and length-scales (up to 108) on which those physical
processes take place (Ivanova et al. 2013a). For example, it has
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been shown first in one-dimensional studies that employed stellar
evolution codes (Meyer & Meyer-Hofmeister 1979; Podsiadlowski
2001), and then later reconfirmed by three-dimensional studies that
used different hydrodynamical codes (Ricker & Taam 2008; Passy
et al. 2012), that for most considered binary configurations the or-
bital shrinkage, also known as spiral-in, slows down from evolving
on a dynamical time-scale – this phase is referred to as the plunge-in
– to a thermal time-scale, which is referred to as a ‘self-regulated’
spiral-in. At this slow stage, modern hydrodynamical codes are
no longer capable of treating the physics involved (e.g. convective
energy transport), nor are they able to integrate for the expected
duration of the stage whilst keeping the most important quantities,
such as angular momentum and energy, conserved (Ivanova et al.
2013a).

During the self-regulated spiral-in, the presence of the secondary
within the primary star results in energy being deposited into the
envelope of the primary. This heating luminosity is normally ex-
pected to be dominated by dissipation of orbital energy, i.e. release
of gravitational potential energy during the in-spiral, although it
is unclear which dissipation mechanism dominates; candidates in-
clude viscous friction in differentially rotating layers, tidal friction,
and spiral shocks. Another potential source of heating luminosity is
accretion on to the secondary star. Convection is expected to advect
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the energy to the surface, and the envelope is expected to adapt its
structure to the new total luminosity.

However, the self-regulated spiral-in cannot continue forever, and
one of the possible endings is an eventual ejection of the envelope
(e.g. via delayed dynamical ejection; Han et al. 2002; Ivanova 2002).
Whilst delayed dynamical envelope ejection was reported to take
place in those simulations, there were no clear physical reasons for
the ejection.

The situation of envelope ejection during a CEE may well be
very analogous to the case of asymptotic giant branch (AGB) stars,
during which stars eject their own luminous envelopes to form plan-
etary nebulae. The specific instability which causes AGB envelope
ejection is still debated, but numerous previous studies exist (see
e.g. Paczyński & Zió łkowski 1968; Kutter & Sparks 1972; Sparks
& Kutter 1972; Kutter & Sparks 1974; Tuchman, Sack & Barkat
1978, 1979; Fox & Wood 1982; Han, Podsiadlowski & Eggleton
1994; Wagenhuber & Weiss 1994; Soker 2008).

One further similarity between CEEs and AGB stars is that it
has been suggested that energy released from the recombination of
ionized plasma may help to eject the envelope in both cases (see
especially Paczyński & Ziółkowski 1968; Han et al. 1994, 2002;
Wagenhuber & Weiss 1994; Han, Podsiadlowski & Eggleton 1995;
Ivanova et al. 2013a). Whilst evidence was recently presented which
suggests that hydrogen recombination is unlikely to be helpful in
unbinding the envelope for a large fraction of CEE events (since
recombination happens very near to the photosphere of the already
ejected envelope; Ivanova et al. 2013b), our physical understanding
of envelope ejection remains highly incomplete. In addition, since
helium recombination is expected to occur at higher optical depths
than hydrogen recombination, it is particularly plausible that helium
recombination could affect the outcome of a CEE (see the discussion
in section 3.3.2 of Ivanova et al. 2013a).

This paper systematically examines the physics of envelope ejec-
tion and the development of instabilities during CEEs. We adopt a
simplified model in order to try to understand the energy budget and
the criteria for envelope ejection. The main difference between these
calculations and previous work on AGB envelopes is the addition
of an artificial heating term. This term is intended to approximately
mimic the energy release during the spiral-in of the companion star
during CEE in a deliberately simplified way.

We introduce the main quantities that we use for the analysis of
instabilities and of the ejection criterion in Section 2 and describe the
numerical method for the stellar heating in Section 3. We describe
the outcomes for the two limiting cases we use to heat the model star
in Sections 4 and 5. In Section 6, we analyse the physical processes
that affect the results, including the development of instabilities in
the envelope and potential envelope ejection.

2 QUANTITIES

We first introduce several important integrated properties of matter
in the envelope: the potential energy Epot, the internal energy Eint,
enthalpy H = Eint + P/V, recombination energy Erec (which we
define as the energy which is stored in ionized matter) and kinetic
energy Ekin. In all cases, these are functions of the mass from which
the quantity was integrated to the surface:

Epot(mbot) =
∫ M

mbot

Gm

r
dm; (1)

Eint(mbot) =
∫ M

mbot

u dm; (2)

H (mbot) = Eint(mbot) +
∫ M∗

mbot

P/ρ dm; (3)

Erec(mbot) =
∫ M

mbot

εrec dm; (4)

Ekin(mbot) =
∫ M

mbot

1

2
v2 dm. (5)

Here M is the total mass of the star, m is the local mass coordi-
nate, r is the radial coordinate, u is the specific internal energy
(no recombination energy is taken into account), εrec is the specific
recombination energy, P is the pressure and ρ is the density. The
recombination energy stored in ionized matter can be further de-
scribed through its three main components, i.e. the energy stored in
ionized hydrogen (EH I

rec ), singly ionized helium (EHe II
rec ) and doubly

ionized helium (EHe III
rec ).

The binding energy of the envelope above mbot, as is typically
used for estimates of the common-envelope (CE) energy budget, is
then

Ebind(mbot) = Epot(mbot) + Eint(mbot). (6)

The CE energy formalism presumes that this amount of energy must
be supplied to eject the envelope, and equates this requirement with
the energy available from orbital decay. However, we stress that it
is not clear what energy reservoir is truly available (Webbink 2008;
Ivanova et al. 2013a) nor how much energy is truly required to
expel the envelope and whether that energy is as simply linked to the
envelope binding energy as assumed above (Ivanova & Chaichenets
2011).

An exact determination of the post-CE core is very important
for the energy balance, as the binding energy of the layers closest
to the core can dramatically change the overall envelope binding
energy (see e.g. Tauris & Dewi 2001; Deloye & Taam 2010; Ivanova
2011; Ivanova et al. 2013a). Unfortunately, it is not clear whether
the outer boundary of a post-CE core would be at the inner mass
coordinate of the ejected envelope, mbot, as might reasonably be
expected (see, e.g. the discussion about a possible post-CE thermal
time-scale mass transfer in Ivanova 2011).

Dynamical stability is often characterized using the first adiabatic
index �1 (Ledoux 1945):

�1 =
(

∂ ln P

∂ ln ρ

)
ad

. (7)

The dynamical stability criterion then depends on the pressure-
weighted volume-averaged value of �1 (Ledoux 1945; see also
Stothers 1999):

〈�1(mbot)〉 =
∫ M∗

mbot
�1P dV∫ M∗

mbot
P dV

, (8)

such that, if 〈�1(0)〉 < 4/3, the whole star is dynamically unstable.
Lobel (2001) argued that the envelope in cool giants becomes un-
stable if 〈�1(menv)〉 < 4/3, where menv is the bottom of the envelope.

However, it is not clear where menv is located, especially since
during a CEE the bottom of the outer convective zone moves up-
wards in mass coordinate (Ivanova 2002). To help characterize the
instability of the envelope, we therefore also introduce three derived
quantities:

(i) muns – the mass coordinate above which the envelope is
unstable to ejection, such that 〈�1(muns)〉 < 4/3.
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(ii) �menv, 4/3 – the mass of the envelope where in each mass
shell the local �1(m) < 4/3.

(iii) �mesc – the mass of the upper part of the envelope in which
the expansion velocities exceed the local escape velocity. Of course,
the validity of hydrostatic stellar models after �mesc starts to in-
crease is questionable.

In this study, we follow the evolution of the above quantities as we
inject thermal energy into the envelope of a stellar model. Instead
of using time as the main independent variable we will often use the
amount of heat which has been added to the star by following both
the total heat energy added through the artificial heating, Egross

heat , and
also the total net heat energy that the star received, Enet

heat – this is
the total heat energy added plus all of the nuclear energy that was
generated in the star during its heating, Enuc, less all the energy that
was radiated away from the surface of the star. Another quantity
that we trace is the change of the total energy of the core, �Ecore,
in the part of the star that is below mbot.

In a realistic CEE, the distribution of the heat input within the
envelope would not be a simple function of radius or mass, and
the details would probably depend on many initial conditions such
as the mass ratio of the two stars, the initial density profile in the
envelope, the degree of corotation at the onset of the in-spiral, how
angular momentum is transported through the CE and where this
leads to direct kinetic energy deposition, and more (see e.g. Meyer
& Meyer-Hofmeister 1979; Podsiadlowski 2001; Ricker & Taam
2012; Ivanova et al. 2013a). One might therefore explore a large
parameter space in trying to evaluate the importance of the heat
distribution. In this work, we concentrate on two limiting cases: (a)
uniform specific heat input throughout the envelope and (b) intense
heating in a narrow mass range at the bottom of the envelope.

Note that the outcomes of CEEs are typically estimated by using
a standard energy formalism which compares the available energy
(in this case the change in the orbital energy �Eorb) to the binding
energy of the envelope. The energy input is presumed to be utilized
at some efficiency called αCE ≤ 1, although it has been common
for binary population synthesis codes to resort to ‘efficiencies’ of
greater than unity (typically in lieu of an assumed additional en-
ergy source). The broad physical picture underlying this formalism
implicitly assumes that the orbital energy is converted into kinetic
energy of the envelope. Whilst this is natural during a dynami-
cal time-scale plunge-in, conversion of orbital energy into kinetic
energy during a self-regulated spiral-in is definitely indirect.

If the internal energy of the envelope is included in the bind-
ing energy calculation, then the standard energy formalism also
assumes that the internal energy of the envelope is converted into
kinetic energy of the outflow. Whether or not internal energy can
be converted into kinetic energy in this way is not established, even
less whether the internal energy would be converted with the same
efficiency as the energy input from orbital decay.

3 IN I T I A L C O N D I T I O N S A N D N U M E R I C A L
C O D E

For the main calculations, in this paper we adopt the same initial
stellar model (we briefly describe tests on an alternative model in
Section 6.8). The model was chosen to be representative of the low-
mass giant stars which are commonly subject to CEEs. This model is
a red giant of mass M = 1.6 M� and radius R = 100 R�, with core
mass Mcore = 0.422 M� (defined as the hydrogen-exhausted region,
where X < 10−10; the radius of the core is ∼0.02 R�). The bottom
of the convective envelope is at mass coordinate Mce = 0.426 M�

Figure 1. Energies as a function of mbot, in the 1.6 M� giant with a radius of
100 R�. Epot – the potential energy, Eint – the internal energy, H – enthalpy,
Erec – the recombination energy reservoir. For definitions see Section 2.

(the distance to the centre is ∼0.8 R�). The model was created by
evolving a M = 1.6 M� zero-age main-sequence star with metal-
licity Z = 0.02 and hydrogen fraction Y = 0.70.

The hydrogen-burning shell in this star, as in all large-radius low-
mass giants, is very low in mass and vast in size. Since the radius
coordinate changes strongly with the mass coordinate, the potential
and thermal energies are strong functions of mbot. This can be seen
in Fig. 1, in which we show the energies in the region of the star
near in mass coordinate to the burning shell and to the bottom of
the convective zone. We note that the top curve in Fig. 1 becomes
positive near the base of the envelope; this suggests that if enthalpy
defines the stability and departure of the envelope, and if the recom-
bination energy reservoir can also be fully utilized, the envelope
would have been unbound even before any additional heating. Ob-
viously, this joint condition requires that the recombination energy
must become available and hence something would need to trigger
recombination.

It is also important to realize that the total binding energy of
the star is about 250 times larger than the binding energy of the
envelope. Therefore, any thermal feedback between the core and the
envelope – including changes in the energy output of the burning
shell – may significantly alter the energy balance in the envelope:
indeed, only a 1 per cent change in the core binding energy could
potentially unbind the envelope! Heating of the envelope during
CEEs may well perturb the interior layers sufficiently to cause such
a feedback. Hence it seems unlikely that the changes in the energy
of a stellar envelope during a CEE could be described properly by
assuming that the envelope is a closed system.

The stellar models were evolved using the code and input physics
described in Ivanova & Taam (2004). This code is capable of per-
forming both hydrostatic and hydrodynamic stellar evolution cal-
culations. However, for this study, our calculations do not employ
the ‘dynamical term’ in the pressure equation (i.e. hydrostatic equi-
librium is assumed). Clearly this will alter our results, especially
smoothing over details of pulsational instabilities prior to ejection
(see e.g. Wood 1974; Tuchman et al. 1978; Wagenhuber & Weiss
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Table 1. Energies in the envelope: uniform heating.

�E
gross
heat �Enet

heat Eint + Epot H + Epot Erec EH II
rec EHe II

rec EHe III
rec Ekin 〈�1(mbot)〉 �menv, 4/3 munst �mesc L∗/L�

Unperturbed star
0.00 0.00 −6.63 −2.35 3.12 2.05 0.08 0.99 0.00 1.62 0.01 1.56 0.00 1594

Case 1: Lheat = 1045 erg yr−1 ≡ 8267 × L�
1.99 1.85 −4.65 −1.60 3.00 2.04 0.12 0.83 0.00 1.60 0.04 1.51 0.00 2835
10.00 4.35 −1.53 −0.50 2.29 1.90 0.19 0.20 0.00 1.49 0.29 0.97 0.00 9656

Case 2: Lheat = 2 × 1045 erg yr−1 ≡ 16535 × L�
2.00 1.91 −4.59 −1.59 2.99 2.04 0.12 0.83 0.00 1.60 0.04 1.49 0.00 3366
4.00 3.46 −2.73 −0.96 2.64 1.99 0.18 0.47 0.00 1.54 0.15 1.26 0.00 7663
6.00 4.26 −1.41 −0.49 2.09 1.78 0.16 0.15 0.00 1.47 0.35 0.84 0.00 14 617
8.00 4.51 −0.95 −0.32 1.87 1.66 0.13 0.07 0.00 1.43 0.45 0.65 0.00 16 498
10.00 4.55 −0.83 −0.28 1.77 1.60 0.12 0.06 0.00 1.41 0.47 0.60 0.00 17 626

Case 3: Lheat = 5 × 1045 erg yr−1 ≡ 41335 × L�
2.00 1.95 −4.52 −1.58 2.97 2.04 0.13 0.80 0.00 1.59 0.05 1.49 0.00 4229
4.00 3.58 −2.36 −0.85 2.40 1.90 0.20 0.30 0.00 1.55 0.20 1.13 0.00 18 901
5.00 3.91 −1.51 −0.55 1.87 1.59 0.13 0.14 0.01 1.51 0.36 0.71 0.00 38 300
5.50 3.94 −1.26 −0.46 1.66 1.44 0.11 0.11 0.01 1.49 0.40 0.61 0.00 40 643
6.01 3.97 −1.08 −0.39 1.50 1.33 0.09 0.09 0.00 1.48 0.41 0.56 0.00 40 758
6.51 3.99 −0.97 −0.35 1.41 1.26 0.08 0.07 0.00 1.47 0.43 0.53 0.00 40 098

Case 4: Lheat = 1046 erg yr−1 ≡ 82672 × L� = 1.3 × LEdd, TS

2.00 1.97 −4.48 −1.57 2.96 2.04 0.14 0.78 0.00 1.59 0.04 1.50 0.00 5028
3.00 2.89 −3.35 −1.20 2.73 2.01 0.19 0.53 0.00 1.57 0.09 1.38 0.00 12 115
4.00 3.61 −2.21 −0.80 2.29 1.85 0.18 0.26 0.05 1.54 0.26 0.96 0.00 44 039
5.00 3.82 −1.37 −0.48 1.64 1.43 0.08 0.13 0.04 1.51 0.35 0.62 0.00 83 600
6.00 3.80 −1.00 −0.35 1.25 1.12 0.05 0.08 0.01 1.48 0.42 0.47 0.00 83 391
8.00 3.83 −0.70 −0.24 0.99 0.91 0.03 0.04 0.00 1.45 0.42 0.45 0.00 81 374
10.01 3.89 −0.55 −0.19 0.90 0.85 0.02 0.03 0.14 1.42 0.42 0.44 0.00 82 271

Case 5: Lheat = 1047 erg yr−1 ≡ 826720 × L� = 12.8 × LEdd, TS

2.00 1.99 −4.45 −1.57 2.96 2.05 0.15 0.76 0.10 1.60 0.02 1.52 0.00 7363
2.10 2.10 −4.34 −1.54 2.94 2.05 0.15 0.74 0.12 1.59 0.03 1.51 0.00 8339
2.25 2.24 −4.17 −1.48 2.91 2.05 0.16 0.70 0.19 1.59 0.04 1.50 0.00 10 099
2.50 2.49 −3.88 −1.38 2.86 2.04 0.18 0.64 0.37 1.58 0.05 1.45 0.06 15 372
2.65 2.64 −3.70 −1.32 2.82 2.04 0.18 0.60 0.61 1.58 0.07 1.40 0.09 21 110
2.80 2.78 −3.50 −1.24 2.78 2.04 0.19 0.55 1.00 1.57 0.09 1.35 0.13 31 625

All energies in this table are in units of 1046 erg. Lheat is the rate of heating which was applied to the star. E
gross
heat records how much additional energy

input was provided to the star, whilst Enet
heat is the resulting net energy gained by the star (accounting for the nuclear energy input from the core

and radiative losses from the surface). Epot, Eint and H are, respectively, the potential energy, internal thermal energy and integrated enthalpy of the
envelope. The reservoir of recombination energy stored in the envelope at each epoch is given by Erec, with the contributions from ionized hydrogen,
singly ionized Helium and doubly ionized Helium correspondingly given as EH II

rec , EHe II
rec and EHe III

rec . Ekin is the kinetic energy of the envelope. mbot is
the mass coordinate of the base of the envelope. 〈�1(mbot)〉 is the pressure-weighted volume-averaged value of �1 in the envelope. �menv, 4/3 is the
mass of the envelope where in each mass shell �1(m) < 4/3 (locally). �mesc is the mass of the upper part of the envelope in which the expansion
velocities exceed the local escape velocity. L� is the surface luminosity. For definitions of these quantities see also Section 2.

1994). However, we consider that the effect on the overall energy
balance is likely to be far smaller than our current uncertainty. For
AGB envelope ejection, Wagenhuber & Weiss (1994) find that in-
cluding the dynamical terms leads to pulsations and then envelope
ejection marginally earlier than when assuming hydrostatic equi-
librium (in which case ejection occurs without pulsations), i.e. the
dynamics of the ejection are substantially different, but the occur-
rence of an instability is found for both assumptions. For this first
study, we feel that consciously avoiding pulsations should clarify
the rest of the physics.

4 U N I F O R M H E ATI N G O F TH E E N V E L O P E

To study systematically the envelope response during a self-
regulated spiral-in, we first consider simple cases for which the
heating is uniformly distributed through the mass of the envelope
(at various constant rates). In this set of calculations we also adopt

that no mass is lost even if it has a velocity above the escape ve-
locity. We introduced the heating as an additional energy source,
constant per gram, in the entire initial convective envelope, with
mbot = Mce = 0.426 M�. The heating is not turned on and off
sharply at the edges of this region, but is smoothed such that the
specific rate of additional energy input decreases to zero over a tran-
sition zone with thickness 0.01 M�. We calculated sequences for
five different rates of heating Lheat ranging from 1045 to 1047 erg yr−1

(see Table 1 and Fig. 2).
We estimate that these rates of energy input cover a reasonable

range of values for a likely self-regulated spiral-in. This follows
if we first assume that this star is in a binary with a companion
of 0.3 M�, and that the self-regulating spiral-in starts when the
companion is orbiting somewhat below the region where the original
convective envelope was located (though during the spiral-in the
envelope expands and so the radiative layer might then be bigger
than before the plunge, see Han et al. 2002; Ivanova 2002). In that
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Figure 2. The response of the star – its expansion – as a function of the
amount of heat injected into the envelope, for five heating rates. The top
panel shows the case when heat is evenly distributed by mass over the whole
envelope, and the bottom panel shows that case when the heat is distributed
evenly by mass into a shell with mass 0.1 M� at the bottom of the initial
convective envelope. For higher heating rates, less integrated energy input is
required before ejection occurs, whilst for sufficiently low heating rates the
stellar structure can adjust in order to reradiate all of the extra luminosity.
In the upper panel, the star symbol marks where equation (12) indicates that
the radius expansion is faster than the surface escape velocity.

case, the orbital energy at that stage could be up to of the order
of 1048 erg. This CEE is destined to eject the envelope leaving a
binary behind; however, how compact the final binary is depends on
when the envelope is ejected. For a range of time-scales for a self-
regulated spiral-in of between 10 and 1000 yr, the heating luminosity

can therefore be expected to be between ≈1045 and ≈1047 erg yr−1.
Clearly, we would not expect the heating rate to be constant in a real
situation, but to depend on the response of the envelope. However,
we do anticipate that in a realistic CEE at least the frictional heating
could be distributed throughout the differentially rotating envelope,
and that the entire envelope could be differentially rotating.

It is convenient to present this additional heat in two different
units, both in erg per year (for ease of comparison with the binding
energies of the initial star) and in solar luminosities (to compare
with the unperturbed stellar luminosity). The Eddington luminosity
of our initial model star is LEdd = 5 × 1037 erg s−1 κ−1

ph (M/M�),
where κph is the opacity of the photosphere in cm2 g−1. For com-
parisons of surface luminosities and the energy input, we adopt
Thompson scattering, not the actual material opacity. So we write
LEdd, TS. For our star, LEdd, TS ≈ 64300 L� = 7.8 × 1045 erg yr−1.
Note that, in two of our model sequences, the additional energy
input to the star’s envelope appears to exceed LEdd, TS. We also note
that the convective turnover time for the envelope of the unperturbed
model was calculated as approximately 495 d.

We now discuss the outcomes of our calculations, in order of
increasing rate of artificial heating.

4.1 Cases 1 and 2: readjustment and formal stability

Case 1. This model star was heated at a rate of 1045 erg yr−1.
The stellar structure expanded until the star reached the surface
luminosity at which it radiates the same amount of energy as the
artificial heating source and the burning hydrogen shell provide
together. Most of the initially doubly ionized helium has recombined
in the envelope above mbot, while only several per cent of the initially
ionized hydrogen has done so (see Table 1). Although in Table 1 we
show only the model with �E

gross
heat = 10 × 1046 erg, the star kept

evolving in an unchanged state until the total artificial energy input
had been at least �E

gross
heat = 30 × 1046 erg, i.e. about five times the

initial binding energy of the star. At that point, we stopped the
simulations.

However, except for a tiny mass of about 0.03 M� near to the
surface, in which the local �1 > 4/3, a significant fraction of the
envelope is mechanically unstable (see the Table 1 and Fig. 3) and
any perturbation may drive its ejection. Since the orbiting binary
will very probably cause such a perturbation, it seems reasonable
to expect that this part of the envelope could be ejected instead of
settling into an eternal self-regulating spiral-in.

Case 2. As in Case 1, the star approaches a stable state in which
it radiates away the combined nuclear and heating luminosity. For
this higher heating rate, the mass of the envelope that is potentially
dynamically unstable is bigger, but so is the mass of the near-surface
region with local �1 > 4/3 (see Fig. 3). This stable near-surface re-
gion is more massive because the hydrogen partial ionization zone,
H II, has moved inwards. In Fig. 3, we show the location of the
partially ionized layers and the way that 〈�(m)〉 changes in the
envelope. This suggests that any potential dynamical instability is
driven by a low �1 in the zone of partial ionization of hydrogen and
the first partial ionization zone of helium, He II. Note that in Case 2
almost the entire envelope has its helium incompletely ionized, i.e.
the helium partial ionization zone is at the bottom of the envelope.
This is also traced by the change in Erec – almost all of the recom-
bination energy initially stored in doubly ionized helium, He III,
has been released. Another interesting quantity is �menv, 4/3 – this
is how much of the envelope mass has its local �1 < 4/3 – which
appears to trace the thickness of the partially ionized hydrogen layer
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Figure 3. Envelope structure and partial ionization of helium and hydrogen
in Cases 1 and 2, uniform heating, at steady-state, in both cases at �E

gross
heat =

10 × 1046erg. 〈�1(m)〉 is the pressure-weighted volume-averaged value of
�1 above the mass coordinate m.

plus the mass where He II >0.01. Almost the entire envelope (all
the mass above 0.6 M�) is dynamically unstable.

4.2 Case 3: readjustment and then instability

These calculations become unstable after the last model shown in
Table 1. In part this instability may well be numerical, and we cannot
be sure that it is not entirely numerical. The calculations seem to be-
come undecided over whether the models should converge to either
a smaller or a larger radius, each with differently distributed ioniza-
tion zones. This numerical instability can be suppressed for some
time by manual control of the time steps, as the code’s automatic
time-step choices are not designed for this situation.1 Nonetheless,
we consider that there is a physical reason leading to this instability.
The initial dynamical time-scale for the star, before the artificial
heating, is τ dyn = 0.04 yr. As the star expands in response to the
energy input, τ dyn also increases. For example, the steady-state ex-
panded stars in Cases 1 and 2 have τ dyn ≈ 0.5 yr; in Case 3, at
the plateau state, τ dyn ≈ 1.1 yr. Each gram of the material in this
stellar envelope is heated by ∼2 × 1012 erg g−1 yr−1, while the local
specific binding energy of the envelope material at this moment is
only ∼3 × 1012 erg. So in roughly one dynamical time, the outer
layers are being heated by more than their binding energy, i.e. the
heating of the outermost layers has become dynamical. In addition,
most of the envelope mass is already dynamically unstable. We feel
this combination indicates that physical envelope ejection is likely,
not just a numerical instability. Nonetheless, confirming that this

1 There appears to be a narrow range of time steps for which the models
converge which we are not always able to find. If the time step is too
small, the finite numerical precision at which mesh points in each stellar
model converge can cause problems, whilst, if the time step is too large,
the rate at which recombination energy is released cannot be calculated
accurately. (For additional details about the computational complexities in
recombination calculations, see Pavlovskii & Ivanova 2014).

instability is physical will require future calculations in which we
follow the dynamics of the envelope.

4.3 Case 4: a super-Eddington star

The heating rate for this sequence exceeds LEdd, TS, but this star is
able to expand to a luminosity L > LEdd, TS (see Fig. 2 and Table 1).
This has become possible because the opacities at the surface of
this very cold star (Teff < 3000K) are lower than for Thompson
scattering.

In this example, recombination drives the expansion of the star.
Table 1 shows that the total release of recombination energy be-
comes comparable to the rate of heating (e.g. the recombination
energy release is 65 per cent of the total heating luminosity –
0.65 × 1046 erg yr−1 – between the moments when E

gross
heat increases

from 4 to 5 × 1045 erg). That recombination energy is released in a
smaller mass than the heating luminosity and so is locally dominant.
We note that this energy mostly comes from hydrogen recombina-
tion and is dominant in the mass regions which expand at the fastest
rate (see Fig. 4).2

This model is on the edge of instability; almost the entire envelope
above mbot is unstable, and the star becomes unstable soon after the
last model shown in the table. The fact that Case 4 appears to be
more stable than Case 3 is in part numerical – due to better fine-
tuning of the time steps – and in part because a larger fraction of
the outer envelope is radiative: this star has a radiative envelope
above 1.44 M�, while in Case 3 the outer radiative envelope starts
at 1.51 M�. So it may be that for uniform heating of the envelope,
instability and ejection is not a monotonic function of the rate of
energy input – because of the way the heating of the outer regions
alters the structure of the outer envelope.

4.4 Case 5: dynamical heating

For our unperturbed star, one needs to add ∼3 × 1013 erg g−1 to the
material in the outer envelope to unbind that matter. The uniform
heating rate of 1047 erg yr−1 corresponds to heating of the envelope
by 4.3 × 1013 erg g−1 yr−1. It is therefore not surprising that this
heating will result in the dynamical ejection of the surface layers
when the star has expanded such that the dynamical time-scale
approaches a year.

We can write the star’s expansion with time as a function of
heating energy. We use the fact that Lheat ≡ dE

gross
heat /dt and that,

because the heating occurs at a constant rate, Lheat = �E
gross
heat /�t .

For this case of rapid heating, we also take �Enet
heat ≈ �E

gross
heat (which

2 Plots which present 15 different internal quantities for 13 models can be
found in the supplementary online material. Five calculations at different
heating rates are shown for each of uniform and bottom heating, as well as
models X6, X8 and MS015. The plots show luminosity, entropy, the rate of
the recombination energy release, the distribution of convective and radiative
zones, opacity, the radial coordinate of each mass point, velocity, the ratio of
the local luminosity to the local Eddington luminosity in convective regions
in which convection would need to be supersonic to carry the predicted
convective flux, the ‘work’ term in the gravitational energy P/ρ2dρ/dt,
the time derivative of the internal energy dU/dt, the local value of �1,
the pressure-weighted volume-averaged 〈�m〉 integrated inwards from the
surface, and the ionization fractions of hydrogen, of singly ionized helium
and of doubly ionized helium.
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Figure 4. The rate of recombination energy release (the left-hand panel) and expansion velocities (the right-hand panel) in the Case 4 uniform heating.

we have confirmed using the calculations). Then at the moment �t
after the heating had started,

dR

dt
= Lheat

dR

dE
gross
heat

≈ Lheat
�R

�E
gross
heat

, (9)

where �R gives the change in radius after time �t. Since we know
that the expansion velocity is increasing with time, the instantaneous
expansion velocity must be larger than the mean expansion velocity,
i.e. (dR/dt) > (�R/�t). In the same units as in Fig. 2, for Case 5,
we then have

dR(�t)

dt
>10 × �R/R�

�E
gross
heat /1046 erg

R� yr−1. (10)

The surface escape velocity for our star is vesc = 7.8 ×
107 × (R/R�)−1/2 cm s−1. In the unperturbed star vesc = 78 km s−1.
As the star expands, the surface escape velocity decreases, and can
be written as

vesc = 35, 300√
R/R�

R� yr−1. (11)

We can thereby estimate when the star’s expansion will be faster
than its surface escape velocity√

R

R�

(
�R

R�

)
> 3530

dE
gross
heat

1046 erg
. (12)

Note that, because we use (dR/dt) > (�R/�t), the speed of expan-
sion will exceed vesc before this point.

From this, we can estimate that free streaming should be expected
to start before the star has expanded to ∼900 R�, as the initial
binding energy of the envelope is less than 7 × 1046 erg. This
estimate is supported by our calculations, as shown in Fig. 2, in
which the star symbol marks where the radius derivative satisfies
equation (12) above. This moment, at which the star’s surface layers
start to expand at a speed comparable to the star’s current escape
velocity, occurs well before the radius reaches 900 R�. At later
times, deeper layers reach escape velocity. By the last model shown
in Fig. 2, ∼0.13 M� of the envelope had a velocity higher than the
local escape velocity.

We also note that the final envelope is less recombined than in
Cases 1 and 2, i.e. more energy is still stored in the ionized plasma
when the dynamical instability begins.

4.5 Consequences for CEE from uniform heating

(i) In none of the models was the total net heat added to the
envelope greater than the initial binding energy of the envelope.

(ii) The additional heat input also leads to a change in the binding
energy of the interior. There is no simple but accurate energy balance
that considers only the envelope, and the energy balance would
strongly depend on the time-scale of the self-regulated spiral-in.

(iii) The outcome depends on the rate at which heat was provided,
not on the total energy added. Faster heating causes the stellar
envelope to begin streaming away at lower �Enet

heat.
(iv) For constant energy deposition rate then, if the heating lumi-

nosity is significantly lower than star’s Eddington luminosity, the
star will adjust to radiate away all of the additional energy input.

(v) The star’s envelope can recombine when it attempts to reach
a ‘steady’ state, i.e. readjusting to try to reradiate the additional
energy input. Then the helium will have recombined through most
of the envelope. Since the second partial ionization zone of helium
is rather thick in mass, this seems likely to lead to Cepheid-type
pulsations; note that we cannot obtain normal Cepheid pulsations
naturally with the hydrostatic code we used.

One large inconsistency with this model is that the heating is
uniform all the way to the surface. This causes heating of the outer
envelope on a dynamical time-scale, which leads to instabilities. In
a more realistic situation, this surface heating would not occur.

5 B OT TO M H E AT I N G

For this set of simulations, the additional energy input was intro-
duced into the bottom 0.1 M� of the initial convective envelope.
This situation more closely resembles the local heating during a
phase of self-regulating spiral-in, albeit it lacks subsidiary heating
of the surface layers that would be present in a more realistic case
of CEEs. We injected the same total amount of energy as in the case
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of uniform envelope heating, again uniformly distributed in mass
but only spread over the 0.1 M� shell.

Overall, this more concentrated bottom heating is significantly
more effective in causing the stellar envelope to stream out at a
smaller imposed �E

gross
heat .

The upper and lower extreme heating rates (Case 1 and Case 5)
produce outcomes which are qualitatively similar to the correspond-
ing simulations with uniform heating. In Case 1, the star adjusts to
enable eternal self-regulation, and in Case 5 the envelope is dy-
namically ejected. All the intermediate simulations (Cases 2, 3 and
4) also lead to dynamical ejection after �Enet

heat ≈ 4.5 × 1046. At
that moment, �menv, 4/3 ≈ 0.5 for all models. The envelopes have
�1 < 4/3 down to 0.5 M� and �1 = 1.4 down to mbot.

The development of the envelope expansion is smooth and does
not cause obvious numerical problems until the local velocities
exceed their local escape velocities; at this point, we cannot fully
trust the stellar models anymore (although we still list the output
in the table). We also note that the rate of the total energy release
provided by recombinations at this moment exceeds LEdd, TS (see
Fig. 7 and also the discussion in Section 6.3). Strictly speaking, the
models may become unreliable somewhat earlier than that, when
the local expansion velocities exceed the convective velocities.

We can identify the following stages of envelope ejection (see
also Fig. 5).

(i) Expansion of the inner envelope leads to cooling. When the
cooling is sufficient, this causes helium recombination.

(ii) Helium recombination proceeds and can sometimes produce
a higher rate of energy input than the heating which led to the
recombination: Ėrec > Ė

gross
heat . Heating of the layers where helium

has already recombined causes more rapid expansion than before
recombination. The envelope above the helium recombination zone
expands rather uniformly.

(iii) Hydrogen recombination then moves inwards in mass as the
envelope expands. This can also release energy at a higher rate than
the heating. Because this occurs in the outer parts of the envelope,
they are the most affected by this release of energy, and so the outer
layers begin to expand rapidly. Hydrogen recombination and first
helium recombination zones are quickly moving inwards in mass.
This is the stage during which the envelope acquires a kinetic energy
above 1044 erg and some mass can start moving with a speed above
its local escape velocity.

For all of the models calculated for this paper, almost all of the
energy which is initially stored in ionized helium was used to help
expand the envelope. We are therefore tempted to conclude that it is
normally true that the vast majority of helium recombination energy
is useful in envelope expansion. However, a smaller fraction of the
energy stored in ionized hydrogen is used to expand the envelope –
we estimate between a few per cent and 60 per cent – and we stress
that hydrogen recombination is less efficient in the case of runaway
envelopes than in cases of self-regulated expansion (see also the
discussion on the role of recombination in Section 6.3).

We find that in all models which ended with a runaway, the rate
of energy input from the recombination of helium at each epoch
exceeds that from hydrogen recombination. When the recombina-
tion zone approaches the bottom-heated layer then the relative rate
of recombination energy release between models follows the rela-
tive differences in the heating rate between those models. For the
self-regulated models, the maximum rate of recombination energy
release from helium also changes with the heating rate, albeit for
those models the rate of energy release from hydrogen recombina-
tion can be higher than that from helium at the same instant. This

Figure 5. The stages of envelope ejection in the bottom-heating case.

leads us to the conclusion that one of the most important effects of
the heating is to trigger helium recombination and that the local rate
of that helium recombination depends strongly on the heating rate.

5.1 Testing for the moment of instability

Since the instability takes a finite time to develop, we tested whether
our heating had been applied for longer than necessary to trigger the
instability. Perhaps the constant heating in our earlier simulations
had continued even after the envelope had become unstable?

One could expect a star to develop dynamically instability on its
dynamical time, which is about a year for our expanded stars. For
Case 4, a year of heating implies a different gross energy input by
≈1046 erg!

For this test, we took several stars from the heating sequence and
let them evolve freely, without further heating, and studied whether
the star continued to expand and eject the envelope or remained
bound and contracted back towards the initial configuration. In the
Case 4 bottom-heating sequence, the star with �Eheat

gross = 4.62 (see
Table 2) is the last star that contracts when heating is switched off.
Later models in the sequence keep expanding. This demonstrates
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Table 2. Energies in the envelope: bottom heating.

�E
gross
heat �Enet

heat Eint + Epot H + Epot Erec EH II
rec EHe II

rec EHe III
rec Ekin 〈�1(mbot)〉 �menv, 4/3 munst �mesc L∗/L�

Unperturbed star
0.00 0.00 −6.63 −2.35 3.12 2.05 0.08 0.99 0.00 1.62 0.01 1.56 0.00 1594

Case 1: Lheat = 1045 erg yr−1 ≡ 8267 × L�
2.00 1.87 −4.63 −1.60 2.98 2.04 0.12 0.81 0.00 1.60 0.04 1.51 0.00 2625
4.00 3.36 −2.93 −1.01 2.73 2.02 0.18 0.53 0.00 1.55 0.11 1.36 0.00 4691
10.00 4.40 −1.39 −0.47 2.20 1.86 0.18 0.17 0.00 1.47 0.33 0.92 0.00 9625

Case 2: Lheat = 2 × 1045 erg yr−1 ≡ 16535 × L�
2.00 1.95 −4.54 −1.57 2.98 2.04 0.13 0.80 0.00 1.60 0.04 1.50 0.00 2673
4.00 3.66 −2.53 −0.88 2.63 2.00 0.19 0.44 0.00 1.54 0.15 1.29 0.00 5540
5.00 4.31 −1.55 −0.53 2.28 1.90 0.19 0.20 0.00 1.49 0.31 1.00 0.00 9383
5.50 4.51 −1.05 −0.36 1.97 1.73 0.14 0.10 0.00 1.44 0.44 0.71 0.00 13 929
5.70 4.53 −0.77 −0.26 1.70 1.55 0.09 0.05 0.04 1.39 0.50 0.52 0.00 22 661

Case 3: Lheat = 5 × 1045 erg yr−1 ≡ 41335 × L�
2.00 1.98 −4.52 −1.58 2.96 2.04 0.13 0.79 0.00 1.59 0.04 1.50 0.00 2655
3.99 3.85 −2.29 −0.80 2.56 1.99 0.20 0.37 0.00 1.53 0.18 1.23 0.00 6328
4.51 4.29 −1.59 −0.55 2.29 1.91 0.18 0.20 0.01 1.49 0.31 1.00 0.00 10 496
4.61 4.37 −1.44 −0.50 2.21 1.87 0.17 0.16 0.01 1.48 0.34 0.89 0.00 12 324
4.71 4.44 −1.27 −0.44 2.11 1.82 0.16 0.13 0.02 1.46 0.41 0.80 0.00 15 208
4.81 4.50 −1.06 −0.37 1.96 1.74 0.13 0.09 0.10 1.44 0.47 0.68 0.00 21 987
4.86 4.52 −0.91 −0.31 1.81 1.65 0.10 0.07 0.71 1.41 0.50 0.54 0.29 33 605

Case 4: Lheat = 1046 erg yr−1 ≡ 82672 × L� = 1.3 × LEdd, TS

2.01 2.00 −4.48 −1.57 2.96 2.04 0.13 0.78 0.00 1.59 0.04 1.50 0.00 2637
4.01 3.94 −2.11 −0.75 2.49 1.98 0.20 0.31 0.01 1.52 0.20 1.16 0.00 7268
4.50 4.38 −1.33 −0.47 2.14 1.85 0.16 0.14 0.10 1.47 0.41 0.80 0.00 17 473
4.60 4.45 −1.10 −0.39 1.98 1.76 0.12 0.09 0.50 1.44 0.49 0.66 0.14 28 370
4.62 4.46 −1.04 −0.37 1.93 1.73 0.11 0.08 1.32 1.43 0.49 0.61 0.37 33 629
4.64 4.47 −0.96 −0.34 1.85 1.69 0.10 0.07 3.21 1.41 0.51 0.54 0.63 42 871

All energies in this table are in units of 1046 erg. For descriptions of the variables see Table 1 and Section 2.

that, in this case, the moment when the star has become unstable
and our final model are not very different.

5.2 Testing for the role of the recombination energy input

To investigate the role of the recombination energy release in the
outcome of heating, we tested what happens in an imaginary situa-
tion in which recombination energy cannot be used. We recalculated
Cases 2, 3 and 4 with bottom heating, but instantaneously removed
the recombination energy from the gravitational energy source in
the stellar structure equations. However, we anticipate that removal
of the recombination energy could introduce numerical instabilities;
therefore, these calculations should be considered less trustworthy
than our main results.

All of these modified calculations produced results which were
different from the unmodified case. For the bottom-heated Case 4
with no recombination energy input – where helium recombination
would have played a smaller role in the total energy budget than in
Case 2 – we found slower radius expansion for equivalent �Eheat

than for the Case 4 calculations which included recombination en-
ergy input (for either uniformly distributed or bottom-concentrated
heating). However, the expansion of this star is still very fast com-
pared to that of the star in Case 2. In the final converged time
step, this stellar model possesses a radius smaller than in either
of the standard Case 4 models. Hence, although the envelope is
strongly formally dynamically unstable at this point, it is not clear
to us whether the star would experience dynamical instability dur-
ing a self-regulated spiral-in or eject the envelope during runaway
expansion.

The difference between Case 3 models with and without recom-
bination energy release was similar to the situation in Case 4. That
is, the stellar expansion was slower than in both the bottom and
uniformly heated Case 3, however, envelope expansion still runs
away after the hydrogen recombination front begins to propagate
inwards.

The biggest difference between the cases with and without re-
combination energy was in Case 2, in which recombination energy
would have played a stronger role compared to the other cases.
When the recombination energy was removed, the star did not run
away and entered a self-regulated spiral-in, reaching the same ra-
dius as in the Case 2 uniform heating. However, the envelope is
slightly more formally unstable than in the standard Case 2, having
〈�1(mbot)〉 = 1.39 at �E

gross
heat = 8.4 × 1046 erg (which is the last

converged model).
We conclude that this definitively demonstrates that helium re-

combination energy affects the change of the stellar structure during
a CE spiral-in and thereby alters the outcome of the CE phase.

5.3 Testing for the role of the location of the heating source

We tested what would happen if heating was applied at the same
specific rate (i.e. the same εheat in erg g−1), but when the location of
the heating was changed. For this test, we chose to shift the bottom
boundary outwards by −0.02, 0.05, 0.1 and 0.15 M� compared
to our standard bottom heating. We also chose the Case 2 rate
of heating because this is the case for which changing between
uniformly distributed and bottom heating qualitatively alters the
outcome from self-regulated to runaway expansion. The first three
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changes of location made little difference to the results, but when the
inner boundary was moved outwards by 0.15 M�, then the stellar
expansion started earlier, increasing the star’s surface luminosity. In
this calculation, the model approached the self-regulated solution
(we will refer to this model as the MS015 version of Case 2 bottom
heating).

5.4 Testing different heating concentrations

We also tested the change in outcome when the same total rate of
heating was concentrated within a different amount of mass. Again
we chose to compare to the Case 2 bottom-heating model, in which
the heat was injected into a 0.1 M� layer. In models with uniform
heating, the energy input is distributed over almost 1.4 M� of
envelope. For this test, we calculated examples where the Case 2
rate of energy input was distributed in layers with masses of 0.025,
0.05, 0.2, 0.4, 0.6 and 0.8 M�, with inner edges located at the
bottom of the convective envelope. In each of the first four of those
examples (i.e. with the specific heating rate up to four times higher
or four times lower than the baseline model), the radius evolution did
not differ at all from the standard Case 2 bottom-heating calculation.

When the mass of the heated layer was increased to 0.6 M�
(we will refer to this model as the X6 version of Case 2 bottom
heating), then the radius evolution was slightly different – with
earlier expansion as the effects of heating reached the surface earlier.
This calculation also appears to almost reach a self-regulated state,
but fails to do so (see more in Section 6.6). The last converged
model has a radius which is almost the same as in the comparison
calculations with a smaller heated mass (including the standard Case
2 bottom-heating calculation), but which is larger than the steady
self-regulating radius reached by the uniformly heated calculation
with the Case 2 energy input rate.

When the energy input was distributed in 0.8 M� (which we shall
call the X8 version of Case 2 bottom heating), the initial expansion
of the star was just slightly slower than for the uniformly heated
Case 2 and slightly faster than for the standard bottom-heated Case
2 calculations. At �E

gross
heat ≈ 5 × 1046 erg, the stellar expansion

overtook the uniform case and the model reached a nearly self-
regulated radius at �E

gross
heat ≈ 5.5 × 1046 erg, slightly earlier than

in the uniformly heated calculation. However, the self-regulation
was not perfect, and the star continued to expand very slowly. This
expansion eventually ran away at the same radius at which the
runaway happened for the calculations with smaller δmheat.

6 D ISCUSSION OF PHYSICAL PROCESSES

6.1 Convective and radiative regions and an entropy bubble

There is a striking difference between uniform and bottom heating
in the internal energy transport: the distribution of radiative and con-
vective zones. For uniform heating, convection halts. This is due to
a snowball effect which is triggered by heating throughout the enve-
lope. That heating leads to a temperature increase and, accordingly,
to a small decrease in opacities, decreasing the radiative gradient.
As radiation plays an increasing role in transporting the energy and
convection becomes relatively less efficient (see examples in Fig. 6),
an internal radiative zone is created. As a result, the local specific
entropy increases, creating an ‘entropy bubble’. The growth of this
entropy, and specifically the presence of a negative entropy gradient
(i.e. ds/dm < 0) leads to the re-establishment of convection. Even
though the convection zone again extends further inside, it never

penetrates as deep as it had done before. At the surface, once hy-
drogen recombination starts, each of our uniform-heating models
develops a radiative zone.

By contrast, the convective zone for bottom-heated models does
not change with time, except for the creation of a small surface
radiative zone in some cases. We note that this implies that the
structure of the envelope during the evolution of the bottom-heated
models remains close to isentropic, but that this is not generally
true for uniform heating. We have checked that the absolute value
of the adiabat in bottom-heated models is almost constant in time.
Hence the envelope expansion caused by bottom-concentrated heat-
ing is close to adiabatic, whilst uniform heating leads to a strongly
non-adiabatic envelope expansion. The exception is Case 5 of uni-
form heating, for which the specific entropy is also mostly uniform
throughout the envelope, most likely because the duration of the
evolution is too short for it to change. In Section 6.3, we argue
that this difference in ‘adiabatic’ versus ‘non-adiabatic’ envelope
expansion is significant in understanding the differing usefulness of
recombination energies.

6.2 The location of the photosphere

Once the hydrogen recombination front begins to move inwards
from the surface, the opacities of the outer layers drop dramatically.
It is these layers with recombined hydrogen that become radiative.
Sometimes as much as the outer 0.2 M� can contain neutral hydro-
gen and be radiative. Moreover, a significant fraction of that mass
can be optically very thin and is likely located above the photosphere
of the star.

This is qualitatively similar to the expected structure of a red
supergiant, with a cool extended atmosphere and convection starting
to play a role in the energy transport only at large optical depths
(see Paczyński 1969). It is not intuitively clear whether any simple
photospheric condition can be used to model such stars. In the past,
it was even argued that a zero boundary condition at τ = 0 with L =
8πσR2T 4

0 should be used (Paczyński 1969, see this paper for how to
obtain the radiative temperature gradient in the atmosphere with this
boundary condition). Here T0 is the temperature at τ = 0. However,
it has also been shown that, for these optically thin atmospheres,
the chosen boundary condition does not affect the solution as long
as the atmospheric opacities are sufficiently low (Paczyński 1969).
Although the stellar structures we obtain are no more inconsistent
than standard stellar models of red supergiants, we realize that it
may be interesting for future studies to investigate how modified
atmospheric models affect our results.

The work of Ivanova et al. (2013b) suggested that the recombi-
nation of hydrogen in a large fraction of the envelope mass did not
occur until after the envelope was ejected. This may well still be
consistent with our results here if the remainder of the envelope is
rapidly ejected. We note that, as discussed in Section 1, our neglect
of the dynamical terms seems likely to lead to systematically later
ejection in these calculations than in reality. So perhaps in reality the
hydrogen recombination front has less time to propagate inwards
before envelope ejection.

6.3 Recombination energies

We introduce the recombination luminosities

Lrec,H =
∫

M

εrec,Hdm (13)
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Figure 6. The entropy (the left-hand panels), radiative and convective zones (the middle panels) and opacities (the right-hand panels) for the Case 4 heating rate
when adopting both uniform heating (the top panels) and bottom heating (the bottom panels). The radiative and convective zones are shown as the difference in
gradients δ∇ = ∇ad − ∇rad, where brown indicates convective regions and shades of purple show radiative regions. To clarify the presentation of the gradients,
we truncated the value of δ∇ at −0.1 in convective regions and at 0.1 in radiative regions.

and

Lrec,He =
∫

M

εrec,Hedm. (14)

Here εrec, H and εrec, He are local specific energy generation rates due
to the recombination of hydrogen and helium (respectively).

We also define the ‘dynamical’ luminosity as the ratio of the
binding energy of the envelope to the dynamical time-scale of the
star, τ dyn:

Ldyn = Ebind(mbot)

τdyn
. (15)

For this estimate, we use τdyn =
√

R3/GM .
In Fig. 7, we show the recombination luminosities Lrec, H and

Lrec, He, as well as the ratio of the total recombination luminosity
Lrec = Lrec, H + Lrec, He to the star’s dynamical luminosity. We find
that in all the models where the envelope expansion runs away, the
total recombination luminosity exceeds the dynamical luminosity.
This helps to explain why those stars cannot remain in equilib-
rium. In this ‘runaway’ regime, the recombination luminosity is pre-
dominantly provided by hydrogen recombination, which increases
sharply just before the expansion runs away. The rapid growth of
Lrec, H appears to drive a similar increase in Lrec, He. Before the onset
of this runaway behaviour, the evolution of Lrec, He is almost inde-

pendent of how the heating regions are distributed, only on the total
energy input.

The maximum Lrec, H with which we see the star enter a self-
regulated state is log Lrec, H/L� = 4.6 (the Case 4 uniform heating).
For any model, in which we have calculated log Lrec, H/L� > 4.6, we
find that the envelope expansion starts to run away. The connection
between recombination luminosity and the mass of stellar material
that is recombining is

Lrec,H/L� ≈ 2.1 × 105 XṀrec,H[M� yr−1] (16)

and

Lrec,He/L� ≈ 3.2 × 105 YṀrec,He[M� yr−1], (17)

where X and Y are the mass fractions of hydrogen and helium,
and Ṁrec,H and Ṁrec,He are the rates at which hydrogen and he-
lium recombine, in M� yr−1. When log Lrec, H = 4.6, as in the
case described above, the recombination of hydrogen proceeds at
a rate of ∼0.3 M�yr−1. Therefore, the associated recombination
front is moving inwards through the envelope on a time-scale al-
most as short as the dynamical time-scale of the expanded star. We
note that for these ‘self-regulated’ stellar structures, or when the
expansion starts to run away, the hydrogen recombination zones
are at an optical depth significantly more than 1. Because the
recombination front is not thin, there is no single unambiguous
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Figure 7. The role of recombination luminosities in Cases 2 (upper pairs of plots) and 4 (bottom pairs of plots), uniform heating (left) and bottom (right)
heating. The top panels in each case show the energies provided by hydrogen Lrec, H (blue) and helium Lrec, He (red) recombination. The bottom panels show
the ratio between the total recombination luminosity Lrec = Lrec, H + Lrec, He and the ‘dynamical’ luminosity – which we define as the current binding energy
of the envelope divided by the envelope’s current dynamical time. Note that all of the recombination luminosities are derived quantities which were not used
during the evolutionary calculations. The noise is mainly due to the way in which the changes in the ionization states between models were calculated during
the post-processing, with larger noise when the models were remeshed by mass.

way to define the depth of the recombination zones. The simula-
tions show εrec < 103 erg g−1s−1 when the ionization fraction is
below 0.1, which is at τ � 500. We also see εrec � 102 erg g−1s−1

at τ � 50. Hence, is it plausible that a significant fraction of the
hydrogen recombination energy is used to expand the star in these
situations.

Helium recombination energy is usually almost fully utilized for
driving envelope expansion. Only at each extreme of the heating
rates we considered, a large fraction of this energy was not released
by the end of the simulations. For Case 1, the rate of energy input
is so small that Ṁrec,He is also very small. For Case 5 with uniform

heating, the expansion of the stellar surface runs away before the
inner layers expand sufficiently to start recombining (i.e. ‘dynamical
heating’ of the surface).

But why does the expanding star sometimes survive hydrogen
recombination whilst for other models the expansion runs away?
Consider the Saha equation for pure hydrogen, where we denote
the ionization fraction of hydrogen as y =H II/H:

y2

1 − y
= 4 × 10−9

(
T

K

)3/2 (
gcm−3

ρ

)
exp

(
−1.58 · 105 K

T

)
≡ F (ρ, T ). (18)
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Here, T is the temperature in K and ρ the density in gcm−3. The left-
hand side of the equation, y2/(1 − y), monotonically changes with
y. When the right-hand side of the equation (F(ρ, T)) decreases, the
ionization fraction y also decreases. Hydrogen recombination starts
with decreasing F(ρ, T), and hydrogen becomes half recombined
when F(ρ, T) = 0.5. While we anticipate that in a complete equation
of state (EOS), F(ρ, T) has a more complicated form due to the
presence of helium and free electrons from other elements, the
dependence on the temperature and density for hydrogen ionization
fractions is broadly determined by the simple Saha equation for
pure hydrogen as above, since helium ionization is very small until
hydrogen is almost fully ionized, and hence helium does not provide
many free electrons. The density and temperature, through F(ρ, T),
therefore determine the degree of hydrogen ionization.

For this analysis, we will assume a simple power-law EOS of
the form T ∝ ρx. Here, x = 2/3 would correspond to adiabatic
changes of a monatomic ideal gas, and so the term T3/2/ρ in F(ρ,
T) is constant in case of an adiabatic change. If the entropy of the
material increases, the change is non-adiabatic, and this situation
could be described by using x < 2/3. Plasma with a higher entropy
has a larger F(ρ, T) and is less recombined.

The rate of recombination energy release from hydrogen is pro-
portional to the change in ionization fraction: εrec, H ∝ − dy/dt.
From equation (18) we obtain

dy

dt
= (y − 1)2

(2 − y)y

(
3

2
x − 1 + x

1.58 · 105 K

T

)
d ln ρ

dt
F (ρ, T )

≈ 6.3 × 10−4 (y − 1)2

(2 − y)y

(
T

K

)1/2 (
gcm−3

ρ

)

× exp

(
−1.58 × 105 K

T

)
x

d ln ρ

dt
. (19)

We can now use the framework described above to examine the
differing outcomes of envelope expansion (as parametrized by de-
creasing density). We have previously argued that the two relevant
limiting cases are adiabatic expansion and expansion with entropy
increase (see Section 6.1). For the same expansion rate (d ln ρ/dt),
at every instant, the temperature in the adiabatic case will be higher.
The value of x is also higher for adiabatic expansion than for ex-
pansion with entropy increase. Therefore, equation (19) helps to
explain why the recombination energy release occurs at a higher
rate for adiabatic expansion. Of course, once recombination starts,
the plasma does not continuously move along its adiabat, and so
this discussion can only indicate the characteristic behaviour in a
very simplified way.

We now compare stellar envelopes with the same radius and for
the same heating rate. Note that these stars may have received a
different total heating energy input from each other when they have
the same radius, but this difference is small before the envelope
expansion settles to a self-regulated solution or starts to run away.

For bottom-heating cases, due to the ongoing convection (see
Section 6.1), the envelopes are almost ideally isentropic both in
space (throughout the envelope) and in time (see Fig. 6). On the other
hand, the cases with uniformly distributed heating form strongly
non-isentropic envelopes, also both in space and in time. Hence,
when stars with the same radius and which are heated at the same rate
are compared, F(ρ, T) values in the bottom-heated cases are overall
smaller than in stars with significantly non-isentropic envelopes.
In addition, the F(ρ, T) derivative with respect to mass is smaller
in isentropic envelopes – it is more nearly constant over a larger
mass range within the envelope. Because hydrogen recombination

follows F(ρ, T), at any instant in an isentropic envelope: (i) hydrogen
is recombining in a larger range of mass and (ii) the envelope is
overall more recombined than in a non-isentropic envelope with the
same radius.

Whilst this analysis is very simplified, this difference in behaviour
is present in our simulations that use complete EOS. We see a
noticeable difference in F(ρ, T) values and profiles when comparing
these two types of envelopes. The difference can be obvious when
the stars have only expanded to 200 R�, well before the expansion
starts to run away.

For envelopes with the same radius, we therefore expect that
the rate of recombination energy release is greater in isentropic
envelopes. Accordingly, we see higher local values of εrec, H at every
single moment in the calculations of isotropic envelopes (i.e. those
with bottom heating) than in the non-isentropic envelopes (i.e. those
with uniform heating).

We estimate the local rate of energy input which is capable of
disturbing local hydrostatic equilibrium as εpot = GM/(rτ dyn(r))
(comparable to the global dynamical luminosity Ldyn, as defined
earlier). This provides a natural scale to which we can compare the
local rate of energy release from recombination, εrec. Comparing
two stars heated at the same total rate and with the same stellar
radius, we find that models with adiabatic envelopes have a sig-
nificantly higher εrec/εpot than those with non-adiabatic (‘entropy-
bubble’) envelopes. For those adiabatic envelopes, the ratio εrec/εpot

can be as high as 10. When εrec/εpot 
 1 in a substantial part of the
envelope, then hydrogen recombination provides ‘dynamical’ heat-
ing, and the envelope expansion runs away. (Recall that isentropic
envelopes tend to show significant recombination over a relatively
large range of masses, which also helps to produce this outcome.)

From all of the above, we conclude the radiative zone which
develops in uniformly heated envelopes is key in slowing down the
overall rate of recombination and consequently prevents runaway
expansion.

6.4 Supersonic and super-Eddington convection and mass-loss

While in the uniform case the luminosity increases towards the sur-
face, in the bottom heating the luminosity decreases towards the
surface. Within radiative zones, as expected, the luminosity is al-
ways locally sub-Eddington (here the local Eddington luminosity
was calculated using local opacities). However, for bottom heat-
ing, the local luminosity in convective zones can be substantially
super-Eddington.

When the internal heating becomes sufficiently high, the out-
wards energy flux may also exceed the amount which normal sub-
sonic convection described by the mixing length theory would be
capable of carrying (see Fig. 8). A similar problem is known to occur
sometimes in very massive stars when neither subsonic convection
nor radiation can carry all of the required energy flux (Quataert &
Shiode 2012; Shiode & Quataert 2014). If that joint condition on
radiative and convective energy transport is met when the star also
has a surface radiative zone, it has been argued that wave-driven
mass-loss will occur (Quataert & Shiode 2012; Shiode & Quataert
2014). The rate of this mass-loss has been predicted to be as large
as 1 M� yr−1 (Quataert & Shiode 2012; Shiode & Quataert 2014).
While this situation does not occur in all the models we consid-
ered, it did happen for Cases 2, 3 and 4 (uniform heating), and for
three variations of the Case 2 bottom-heating model (X6, X8 and
MS015). The luminosity at the top of the convective zone is usu-
ally up to a few times larger than the local Eddington luminosity,
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Figure 8. The ratio of the local luminosity to local Eddington luminosity,
shown only for those convective regions where subsonic convection cannot
carry the energy flux anymore for the uniform heating Case 4.

suggesting that the heated envelope may experience substantial
wind mass-loss.

6.5 Growth of instability

Hydrogen recombination plays the most important role in the overall
formal instability of the envelope – in the region of partial hydrogen
recombination, �1 is minimal (see Fig. 9). The integral of this
quantity inwards from the surface, 〈�(m)〉, implies that most of
the envelope in almost all of the models we calculated is formally
dynamically unstable (the only exception is that of Case 5 with
uniform heating – ‘dynamical’ heating). We stress that we are not
referring here to the importance of hydrogen recombination to the
energetics of ejection, but to the value of �1.

6.6 Pulsations

While we anticipate dynamical instability of the envelopes in gen-
eral, we have also encountered relaxation pulsations in our calcu-
lations. The pulsations take place at the moment when the stellar
radius is about to reach self-regulation (in terms of radiating away
the heating luminosity). If the star expands too fast at this point, the
expansion runs away. If the star is expanding sufficiently slowly,
the transition from expansion to a self-regulated state takes place
without noticeable pulsations. For intermediate rates of expansion,
the stellar envelope first overshoots the self-regulated radius and
then contracts back below the self-regulated radius. Obvious pulsa-
tions were first noticed in cases X6, X8 and MS015. The contrac-
tion phase of each pulsation is accompanied by reionization of the
material all the way towards the bottom of the envelope, and there-
fore also involves helium reionization (see Fig. 10), which absorbs
energy.

6.7 The core and its energy

It has previously been unclear whether the response of the core dur-
ing CEEs might significantly affect the energy budget of envelope
ejection (see e.g. Ivanova et al. 2013a). In all of our simulations, the
total binding energy of the core became only slightly less negative.
We presume that this energy was taken from nuclear energy release,
although we cannot be sure. However, the accumulated difference
in binding energy is roughly 0.05 × 1046 and hence is small com-
pared to the other terms in the energy budget which are discussed
elsewhere in this paper.

6.8 Are these results unique to this particular choice of the
core mass?

We have recalculated several examples using different initial stel-
lar models, specifically ones with a smaller core mass (since it
has broadly been expected that recombination energy will be more
significant for CEE involving giants with larger radii). We applied
similar prescriptions in terms of the heating rate per unit of time and
the mass distribution (i.e. with the heating confined to the bottom
0.1 M� or spread through the entire envelope). We obtained strik-
ingly similar results. The outcomes were qualitatively the same,
in that the same heating rates resulted in either runaway or self-
regulated outcomes as in our standard models, albeit at different
values of E

gross
heat . In some respects they were also quantitatively very

similar, since the steady-state luminosities and radii were roughly
the same as in our base case (they were slightly lower by an amount
which corresponds to the lower nuclear luminosity of the initial
model). For such smaller core masses, the initial binding energy
of the envelope is significantly more negative. The final outcomes
for these models take place at slightly higher values of E

gross
heat /Ebind

than in the comparable standard models.

7 C O N C L U S I O N S

We have studied simplified models of the phase of CEEs which is
expected to follow the initial dynamical plunge. These calculations
suggest that such heating could produce two types of outcome:

(i) ‘runaway’ – the envelope expansion accelerates until it starts
to escape on its current dynamical time;

(ii) ‘self-regulated’ – the envelope expands enough to radiate
away the heating luminosity. However, even in these cases most of
the envelope becomes formally dynamically unstable.

Which of these outcomes occurs is determined not only by how
much heating energy is provided to the star, but is strongly dependent
on where and at which rate the heating energy is provided.

In all the cases we considered, the envelope either reached run-
away expansion or a formally dynamically unstable state of self-
regulation after receiving less net heating energy than the initial
binding energy of the envelope (where we define this binding en-
ergy as gravitational potential energy plus internal thermal energy
but without the recombination energy terms). This confirms that the
release of recombination energy can be energetically important to
CE ejection.

To quantify and illustrate the approximate importance of recom-
bination, we define the efficiency ηmin – the ratio of the gross heating
luminosity to the binding energy (again including only gravitational
and thermal terms in Ebind, without recombination energy). Then the
standard energy formalism can be rewritten as

αCE�Eorb = ηminEbind. (20)
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Figure 9. Ionization fraction of hydrogen and helium, local �1 and integrated from the surface pressure-weighted volume-averaged 〈�1(m)〉 in the Cases 3
uniform heating.

When some of the heating occurs close to the surface, the star can
enter an energetically ‘self-regulated’ state in which the expanded
star radiates away all the additional energy input. However, even
during this ‘self-regulated’ stage, the envelope is formally dynam-
ically unstable.3 As much as 90 per cent of the envelope can be
dynamically unstable for ηmin ≈ 75 per cent. These envelopes may
also experience strong mass-loss due to wave-triggered winds (see
Section 6.4), or from Mira-type winds.

Importantly, we find that a higher heating rate makes the same
amount of input energy more effective. Less massive secondaries
are expected to plunge-in faster, and a smaller fraction of the grav-
itational energy release seems likely to be dissipated in the outer
parts of the envelope. This suggests that the orbital energy release
from relatively less massive secondaries might be more effectively
used in removal of the envelope (see also Podsiadlowski 2001).

3 Whilst this apparent self-regulation of radius expansion is not caused by
the same mechanism as the self-regulation in Meyer & Meyer-Hofmeister
(1979), we note that our results are directly relevant to that phase of slow
spiral-in. In particular, we consider it very likely that the solutions of Meyer
& Meyer-Hofmeister (1979) are close to formal dynamical instability.

We note that this argument qualitatively fits the inference from
observations that the ejection efficiency grows when the companion
is less massive (De Marco et al. 2011). However, we stress that De
Marco et al. (2011) suggested that a low-mass companion would
orbit for longer and that the longer time-scale would allow a giant
to use its thermal energy, while our results suggest that a shorter
time-scale for the spiral-in leads to a higher efficiency in the use of
recombination energy.

Further studies of these relative ejection efficiencies will require
the use of realistic frictional luminosity distributions. It might be
that in some cases viscous heating occurs through a large fraction
of a differentially rotating envelope, whilst in others the heating
is dominated by dissipation close to the secondary. For example,
the in-spiral of relatively more massive secondaries may tend to
generate more broadly differentially rotating envelopes. If so, the
envelope heating may be comparatively more widely distributed
during the in-spiral of relatively more massive companions. Our
calculations indicate that this would further reduce the envelope
ejection efficiency of more massive companions, in addition to the
differences caused by different in-spiral time-scales.

The ionization state of hydrogen plays two distinct roles in the
outcomes of our calculations. Most clearly and generally, it is most
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Figure 10. The rate of recombination energy release during the pulsations
displayed by model X6. The blank vertical region at roughly 30 yr oc-
curs during the contraction phase of the pulsation, during which matter is
reionized and absorbs energy.

important in controlling for how much of the envelope the value of
〈�(m)〉 is low enough to indicate formal dynamical instability. In
addition to that, our models sometimes show hydrogen recombina-
tion fronts which produce dynamically dominant rates of heating
(see Section 6.3). Once hydrogen recombination is triggered in a
dynamical mode, we speculate that this may be capable of removing
the entire envelope, although our models cannot yet confirm this.
Such dynamical hydrogen recombination fronts can be triggered in
our calculations for ηmin ≈ 65 per cent.

We stress that higher heating rates lead to lower ηmin. Heating
which is confined to the lower half of the envelope – which seems
likely for low-mass companions – may trigger dynamical hydrogen
recombination at heating luminosities as low as 2 × 1045 erg yr−1.
For our initial stellar model, this heating rate could be provided by
the spiral-in of a 0.3 M� companion over a time-scale as long as
500 yr.

We expect that first-ascent giants with more massive cores (i.e.
stars in which the potentially available recombination energy is a
larger fraction of the initial binding energy of the envelope) would
require even smaller ηmin to produce each of the qualitative out-
comes. However, we do not expect the change in ηmin with stellar
radius (or core mass) to be linear.

We have argued that differences in the progress of hydrogen
recombination are primarily responsible for determining which of
the qualitatively different outcomes occur. These differences are in
turn a consequence of the entropy profiles and convective-radiative
structures of the envelopes (see Sections 6.1 and 6.3). However,
we have not been able to easily parametrize the importance of
hydrogen recombination, either to the energetics or the stability of
envelope ejection. The total energy released from recombination of
hydrogen by the end of the simulations varied from 1 to 60 per cent
of the initial energy reservoir. Nonetheless, we consider that the

most important effect of hydrogen recombination effect is the way
in which the ionization state controls the formal dynamical stability
of the envelope. This dynamical destabilization takes place when
hydrogen is still almost fully ionized. The understanding of the role
of hydrogen recombination requires further study.

On the other hand, it is clear that in most cases, independent of
both the location and amount of heating, and also independent of
the qualitative outcome of the calculations (i.e. ‘runaway’ or ‘self-
regulated’), about 90 per cent of the recombination energy which
was initially stored in ionized helium is used to expand the envelope.
This apparently robust result suggests that it is safe to include helium
recombination as an additional energy source in the energy budget
for CE ejection when CEEs proceed past the dynamical plunge-in
stage.

Our results therefore support the use of this recombination energy
when CEE outcomes are estimated by use of an energy formalism.
However, in order to start helium recombination, we expect that the
companion should already have plunged deep inside the envelope,
even for envelopes which could be described as initially ‘unbound’
if their recombination energy were taken into account (e.g. AGB
stars). So our results should not be taken to support the notion
that release of recombination energy can lead to envelope ejection
without significant orbital shrinkage.
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