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ABSTRACT

This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a
common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and
potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–
Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius,
and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed
stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that
involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide
range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an
upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an
angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may
not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag
rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as
a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently
gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA
formalism.
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1. INTRODUCTION

As stars evolve off of the main sequence their radius grows
dramatically. This expansion has major consequences for stars
in close binaries. A common envelope (CE) phase occurs when
one star grows to the point that it engulfs its more compact
companion within a shared envelope (Paczynski 1976). This
process is not rare (Kochanek et al. 2014); the majority of stars
exist in binary or multiple systems (e.g., Duchêne and
Kraus 2013), and interactions or mergers should mark the
evolution of 30% of massive stars (Sana et al. 2012; de Mink
et al. 2014). During the CE phase, orbital energy and angular
momentum are shared with the surrounding gaseous envelope
tightening the orbit of the embedded binary cores (Pac-
zynski 1976; Iben & Livio 1993; Taam & Sandquist 2000;
Ivanova et al. 2013). Whether the surrounding envelope is
ejected, and the binary survives the CE phase, depends on the
efficiency with which energy (Webbink 1984; Iben & Livio 1993;
Han et al. 1995; Tauris & Dewi 2001) and angular momentum
(Nelemans et al. 2000; van der Sluys et al. 2006; Toonen &
Nelemans 2013) can be harnessed to expel envelope material.

CE episodes, and their outcomes, are therefore critical in
shaping populations of close binaries (e.g., Belczynski
et al. 2002; Stairs 2004; Kalogera et al. 2007; Toonen &
Nelemans 2013) as well as their merger products (Sana
et al. 2012; de Mink et al. 2013, 2014). Substantial progress
has been made by constraining the efficiencies of CE ejection
compared to the change in orbital energy via the parameter
aCE (Webbink 1984; Iben & Livio 1993), or the change in
orbital angular momentum with the parameter gCE (Nelemans
et al. 2000). These binary population synthesis methods are
powerful but also very sensitive to the details of stellar
envelope structure at the onset of the CE event (e.g., Han
et al. 1995; Tauris & Dewi 2001; de Marco et al. 2011;
Soker 2013), as well as the specific post-CE binary system

under consideration; there do not appear to be universal
answers with respect to the outcome of CE events (Ivanova
et al. 2013).
Theoretical efforts to constrain the physics and properties of

CE dispersal have recently been extended to include three-
dimensional (3D) hydrodynamic simulations of the early
inspiral process (Livio & Soker 1988; Taam et al. 1994;
Terman et al. 1994, 1995; Terman & Taam 1996; Sandquist
et al. 1998b; Ricker & Taam 2008, 2012; Passy et al. 2012b).
By necessity, the embedded object in these simulations is
described only by its gravitational influence on the gas, and the
region that would represent the companion may be unresolved
(e.g., Passy et al. 2012b), or resolved by a few numerical cells
(e.g., Ricker & Taam 2012). Determining flow properties in the
immediate vicinity of an embedded object remains an unmet
challenge because of the huge range of spatial and temporal
scales described by a CE episode (Taam & Ricker 2010).
The traditional approach to understanding flows around an

embedded object during CE evolution has focused on analytic
work by Hoyle & Lyttleton (1939), Bondi & Hoyle (1944), and
Bondi (1952). These studies developed an analytic understanding
of the nature of accretion onto a gravitational source moving
supersonically through its surrounding medium (see Edgar 2004,
for a recent review). Semi-analytical work has used these
prescriptions to estimate the inspiral and accretion experienced by
an object embedded in an envelope. In some cases, the co-
evolution of the envelope and accretor are treated in one
dimension (e.g., Taam et al. 1978; Meyer & Meyer-Hofmeis-
ter 1979; Kato & Hachisu 1991; Shankar et al. 1991; Siess &
Livio 1999a, 1999b; Passy et al. 2012a), while in others, the
initial envelope properties are used as motivation for the relevant
parameters for the embedded object (e.g., Livio & Soker 1988;
Chevalier 1993; Iben & Livio 1993; Bethe & Brown 1998;
Metzger et al. 2012). An issue, of course, is that stellar envelopes
are not uniform density media, an effect that can be seen
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particularly clearly in recent 3D simulations by Passy et al.
(2012b) and Ricker & Taam (2008, 2012).

In this paper, we adopt an idealized approach to perform
numerical simulations that explore the behavior of flows in the
immediate vicinity of the embedded object. In particular,
accretion structures, as we discuss in Section 2, typically span a
large portion of the stellar radius (e.g., Iben & Livio 1993).
They impinge on a large portion of the envelope, and sweep
across a huge radial gradient of envelope density (Ricker &
Taam 2012). We extend traditional simulations of three-
dimensional Hoyle–Lyttleton accretion (HLA) to consider the
effects of these substantial density gradients on flow patterns,
drag force on the object’s motion, and the rate of mass and
angular momentum accretion by the embedded object.

This work builds on analytic considerations (Dodd &
McCrea 1952; Illarionov & Sunyaev 1975; Shapiro & Light-
man 1976; Davies & Pringle 1980) and simulations of non-
axisymmetric flow conditions in HLA (Soker & Livio 1984;
Soker et al. 1986; Livio et al. 1986a; Fryxell & Taam 1988;
Ruffert 1999). However, since much of this work was motivated
by inhomogeneities in wind-capture binaries, typical density
gradients tend to be much milder than those experienced by an
embedded object within a CE.1 We will compare our results in
detail to conceptually similar but 2D simulations by Armitage &
Livio (2000) to discuss the significant effect of 3D flow
geometries. Of course, this idealized approach carries many
compromises in that local simulations do not capture the full
geometry, gravitational potential, eccentric orbital motions (Passy
et al. 2012b), microphysics of energy sources or sinks (Iben &
Livio 1993; Ivanova et al. 2013), or disturbed background flow
present in true CE events (Ricker & Taam 2012). Even so, we
will argue that the effects of a density gradient on HLA-like flows
are so dramatic that a detailed understanding of these idealized
cases carries important implications for CE evolution.

The remainder of this paper is organized as follows. In
Section 2, we parameterize typical flow characteristics around
an object embedded in a CE. Typical properties range from
one to several density scale heights per characteristic accretion
radius. In Sections 3 and 4 we describe the methods and
results, respectively, of 3D hydrodynamic simulations of planar
flow with an imposed density gradient past a gravitating object.
We derive fitting formulae for the drag force and for rates of
accretion of mass and angular momentum as a function of
density gradient in these simulations. In Section 5, we discuss
the implications of our findings for CE events, and in Section 6
we conclude.

2. STELLAR PROPERTIES, TYPICAL SCALES, AND
GRADIENTS

At the onset of a CE episode, there is a dynamical phase
following the loss of corotation between the envelope and the
binary in which one object becomes embedded within the
envelope of its companion and begins to spiral inward
(Podsiadlowski 2001). In our simplified analysis, we will
suppose that the properties of the companion’s envelope are
unperturbed by the presence of the embedded object. We note
that this assumption is most justified when the embedded object
is a small fraction of the total mass (Iben & Livio 1993), but
we defer the reader to Section 5.3 for a discussion of the

potential implications of a perturbed envelope. In this section,
we analyze the characteristic dimensionless scales that
parameterize the flows that arise during this phase of dynamical
flow.

2.1. Characteristic Scales

The first characteristic scale of the upstream flow is the Mach
number,
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¥

¥
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c
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where ¥cs, is the sound speed and ¥v is the relative speed of
motion through the gas. In the context of a stellar envelope, the
relevant sound speed is that evaluated at the radius of the
embedded object within the star. The speed of the incoming flow
is approximately the circular velocity of the orbiting stellar cores
at that radius, = = +¥ ( )v v G m a M a*( )circ where m a*( ) is
the enclosed stellar mass at a given separation a, and is some
fraction of the total stellar mass M*. To be embedded, a must be
less than the envelope radius, R*. As we will show in the next
subsection, typical Mach numbers are mildly supersonic,
 ~ -¥ 1.5 5.

The theory of gravitational accretion onto a supersonically
moving point mass was first elaborated by Hoyle & Lyttleton
(1939). It is useful here to frame the accretion flows that are set
up within a stellar envelope in the context of those realized in
HLA. The accretion radius, R ,a is a gravitational cross section
for material in supersonic motion to be focused toward the
accretor,
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This scale defines the material whose kinetic energy is
sufficiently small that it will be focused to a line of symmetry
downstream of the massive object and accrete (Blondin &
Raymer 2012). The accretion radius defines the material with
which the embedded object can be expected to interact.
The accretion radius and the properties of the upstream flow

suggest a characteristic accretion rate onto the embedded
object. The HLA accretion rate is defined by the flux of
material with impact parameter less than the accretion radius,

r= ¥ ¥M πR v˙ , (3)HL a
2

where r¥ is the density of the upstream flow.
Within a stellar envelope, the radial density gradient of the star

ensures that the accretor experiences an upstream density gradient
of incoming material. The key difference that this work will
emphasize is the role of this gradient in shaping flow structures
around the embedded object. We will characterize these density
gradients in terms of the local density scale height, rH . The
density scale height is defined as

r
r

= -rH
dr

d
, (4)

and is evaluated at the radius of the embedded object within
the stellar envelope. It will be useful to define a parameter
that describes the number of density scale heights swept by the

1 For example, 3D calculations involving mild density gradients in HLA are
currently being performed by Raymer (2014).
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accretion radius,
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In this context, traditional HLA flow is characterized by upstream
homogeneity,  =r 0. The density profile may then be expanded
around a point, r0, as
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An example of this expansion is shown for the radial run of
density in a stellar model in Figure 1. We show exponential
approximations, Equation (6), of the local density profile that
extendRa from embedded radii of 0.2, 0.5, and R0.8 *. These
expansions show that an object embedded at those radii
encounters significant density inhomogeneity, which can be
expected to play a key role in shaping the flow.

2.2. MESA Simulations

We perform a set of stellar evolution calculations to explore
the time evolution and range of typical values for the
characteristic dimensionless scales outlined in the previous
subsection. Our simulations use the MESA stellar evolution
code, version 5527 (Paxton et al. 2011, 2013). We evolve stars
of 1–16 M from the zero-age main sequence to their giant-
branch expansion, during which a CE phase may be initiated.

2.2.1. Time Evolution

In Figure 2, we show the time evolution of a M1 star
ascending the red giant branch (RGB). Under the simplifying
assumption that the envelope structure is not immediately
perturbed by the the presence of the embedded object, we plot
the upstream Mach number, the accretion radius as a fraction of
the stellar radius, and the number of density scale heights per
accretion radius, r. These panels display the conditions
assuming the object is embedded at a separation a from the
center of its companion. The left panels show separation in
units of the solar radius, the right panels normalize the radius to
a fraction of the stellar envelope radius R*.
The immediate conclusion we can draw from Figure 2 is that

although the envelope expands dramatically during the course of
the star’s giant branch evolution, when normalized to a fraction
of the radius, a R*, the basic upstream conditions for the flow
are remarkably consistent. In Figure 2, we color individual
models based on their radius, which maps to the binary
separation at the onset of CE. Typical Mach numbers range from
 ~¥ 2 in the deep interior to ¥  5 near the stellar limb.
Although various local features develop due to opacity
transitions and equation of state effects, this qualitative trend
holds across the entire giant branch expansion. The accretion
radius is a relatively constant fraction of the separation such that

Figure 1. Density gradients encountered by objects embedded within the
envelope of a giant star (as drawn schematically in the inset image). In the inset
cartoon, an embedded star orbits within its companions envelope, shocking the
surrounding material. In the main panel, we show the radial density profile of a

M16 red supergiant, and assume the embedded object is a M1.4 neutron star.
The overplotted, dashed, lines show local exponential fits to the density profile
following Equation (6). The dashed lines extend for Ra as evaluated at the
position of the embedded object (shown with points). We show examples of
objects embedded at R0.2 *, R0.5 * and R0.8 *. Because it is a significant fraction
of the envelope radius, Ra subtends a substantial density gradient implying that
density asymmetries play an important role in shaping flow morphologies in
CE evolution. Figure 2. Time evolution of characteristic flow parameters within the envelope

of a M1 star as it evolves up the RGB, with the embedded object mass
assumed to be M0.7 . The left series of figures show orbital separation in units
of the solar radius, showing the expansion of the star as it ascends to the tip of
the RGB and its maximum radius. The right-hand panels normalize the radius
to the current stellar radius. From top to bottom, we plot Mach number,
accretion radius as a fraction of stellar radius, and density gradient. Flow
parameters vary with normalized radius, but are remarkably consistent over the
RGB evolution. This implies that regardless of where on the RGB the onset of
CE occurs, we can expect relatively consistent hydrodynamic conditions.
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R R*a is roughly proportional to a R*, as shown in the center-
right panel of Figure 2. The density gradient, as parameterized
by r, is the parameter that exhibits the most temporal variation.
In particular, near the stellar limb, the density gradient is
extremely step, r  10, in the early RGB phases, while
maintaining more moderate values of r  8 near the tip of the
RGB. As an object spirals to smaller a R*, the density gradient
becomes shallower.

That these dimensionless scales remain relatively constant
throughout the evolution implies that the global flow morphology
in a wide variety of encounters can be sufficiently well described
by a relatively small set of typical numbers. In the next subsection,
we evaluate the conditions found in a representative set of CE
encounters.

2.2.2. Typical Scales in a Variety of Encounters

In this subsection we examine a small variety of representa-
tive CE events including those involving embedded planets,
main sequence stars, and compact objects. In so doing, we hope
to capture some of the diversity of CE events and explore how
it manifests itself in the range of typical flow parameters.

We provide estimates for the properties of the following
systems:

1. Jupiter + M1 RGB star: With increasing evidence that
many low-mass stars host planetary systems—including
those with giant planets close to their host stars—it is
interesting to consider the final fate of these systems
(e.g., Sandquist et al. 1998a; Siess & Livio 1999a, 1999b;
Sandquist et al. 2002; Metzger et al. 2012; Passy
et al. 2012a). A CE with extreme mass ratio may be
initiated as the host star evolves up the giant branch. In
these cases, the geometric cross section is very similar to
the accretion radius, and the gravitational focusing of
material from the upstream flow (as discussed in the
remainder of this paper) is not a strong effect on the flow
properties. Sandquist et al. (2002) has shown that more
relevant effects include entrainment of planetary material
into the star, and possible consequences for the pollution
of the host star.

2. M0.7 white dwarf (WD) + M1 RGB star: This low-
mass CE scenario might precede the formation of a
double-WD binary, where the CE is initiated as the
lower-mass star evolves off of the main sequence.
Nelemans et al. (2000) and van der Sluys et al. (2006)
model the formation of these double WD systems, with
typical progenitor masses in the 1–3 M range. Hall et al.
(2013) have recently studied the structure and evolution
of the low-mass stripped giant that would arise from such
a system, and how this evolution would imprint itself
during an ensuing planetary nebula phase.

3. Sun + M2 asymptotic giant branch (AGB) star: In this
case, a main sequence star of solar mass and radius is
interacting with a CE donated by a slightly more massive
AGB star. This scenario would lead to the formation of a
close WD–Main sequence binary. Broadly defined, this
main sequence with giant branch scenario is expected to
be relatively common and was invoked by Paczynski
(1976) in the original description of the CE scenario. A
cataclysmic variable state is among the possible outcomes
from this channel if the post-CE binary is sufficiently
close that it can be drawn into resumed mass transfer

(Paczynski 1976). Variants of this scenario have been
studied in the Double Core Evolution series of papers
(Taam & Bodenheimer 1989, 1991; Yorke et al. 1995;
Terman & Taam 1996). A population synthesis of post-
CE WD–main sequence binaries has been recently
undertaken by Toonen & Nelemans (2013).

4. Neutron star (NS) + 2, 8, 16 M giants: Following these
scenarios in which an NS becomes embedded within the
envelope of its companion, possible outcomes include
close binaries consisting of an NS and either a WD (in the
lower mass companion cases) or He-star (in the higher
companion-mass cases). The He-star could then undergo
a core collapse supernova, which might leave behind a
double NS or NS–BH binary (Postnov & Yungel-
son 2014). The hydrodynamics of this scenario have
been considered by (Taam et al. 1978; Bodenheimer &
Taam 1984). Accretion onto the NS during this phase is
relatively efficient as neutrinos provide a cooling channel
(Houck & Chevalier 1991; Chevalier 1993, 1996; Fryer
et al. 1996), leading to the suggestion that the NS might
grow to collapse to a BH in some, but not all, cases
(Chevalier 1993; Brown 1995; Bethe & Brown 1998;
Fryer & Woosley 1998; Belczynski et al. 2002; Kalogera
et al. 2007; Chevalier 2012).

5. BH + 16 M red supergiant (RSG): In this scenario, a
stellar mass BH interacts with its massive companion. This
scenario might be realized under several circumstances.
If, as suggested above, accretion-induced collapse from
NS to BH ever occurs during CE evolution, that would
leave a BH interacting with a massive-star envelope mid
CE event. Perhaps more simply, if a massive star evolves
and produces a stellar mass BH remnant, the post
supernova orbit may lead to CE evolution (Postnov &
Yungelson 2014).

Figure 3 is analogous to the upper and lower right-hand
panels of Figure 2, where we plot typical Mach numbers and
gradients as a function of normalized radius. Rather than
showing a time evolution, we plot representative models for
each encounter combination in seven different representative
CE pairings of objects. Mach numbers vary by at most a factor
of a few at a given radius. This is not entirely unexpected
because the highest Mach numbers are realized when the two
objects are close to equal mass, while the lower limit occurs
when the giant dominates the total mass. The gradients differ
somewhat more significantly. In the extreme limit shown of a
Jupiter-like planet embedded in a M1 giant, the gradient across
the accretion radius is nearly zero. In general, gradients are
steepest near the limb of the envelope because energy diffusion
dictates that the density scale height becomes very steep at the
photosphere. The most-nearly equal mass cases exhibit the
steepest gradients, on average, in large part because the
accretion radius tends to be a larger fraction of the stellar radius
and thus encompasses a broader range of densities.
The properties of these encounters are further summarized in

Figure 4. In the upper panel we plot the density gradient as
parameterized by r against the radius of the embedded object
compared to the accretion radius. The ratio R Robj a effectively

compares the geometric (~πRobj
2 ) to the gravitational (~πRa

2)
cross section. In the case of an embedded Jupiter-like planet,
these scales are similar. However, for embedded stars and
compact objects the accretion radius is typically 102–107 times
larger than the object radius. The symbols plotted show the
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values evaluated at =a 0.2, 0.5, and R0.8 *. The lower panel of
Figure 4 shows the other two characteristic parameters, the
Mach number, ¥, and the size of of the accretion radius as a
fraction of the stellar radius, R R*a . The mass ratio of the
embedded object to its companion is significant. In cases where
the embedded object’s mass is small compared to the envelope
mass, the accretion radius is a small fraction of the total radius.
In this case, fewer density scale heights are subtended by the
accretion radius, leading to weaker density gradients, r.
However, when the objects are relatively similar in mass, the
accretion radius is of similar order of magnitude to the
envelope radius, and it can therefore sweep across many
density scale heights. These results are summarized in Table 1,
in which we give the numerical values evaluated at a single
separation, =a R0.5 *.

3. METHODS

Our numerical approach is to perform idealized simulations
based on the phase space of physically motivated flow
parameters derived in the previous section. Our simulations
follow closely in the tradition of simulations of HLA. We set
up our experiment under many of the same premises to
examine the effect of a substantial exponential density gradient
in the upstream flow. In the following subsections, we first
mention the most relevant previous numerical work on which
our simulation builds, then discuss our numerical setup, and
finally the simulation parameters chosen in our suite of runs.

3.1. Previous Numerical Studies of HLA

This work extends a long tradition of numerical study of
HLA that began with the work of Hunt (1971). The reader is

Figure 3. Characteristic Mach numbers and density gradients for a variety of
CE object pairings. Mach numbers are consistently highest and density
gradients are steepest near the limb of stars, where energy diffusion dictates
that the density scale height becomes small. Typical density gradients span a
wider range than Mach numbers do, but for separations within the inner 50% of
R*, r 0.5 4 are representative values for the embedded star and compact
object cases.

Figure 4. Typical flow parameters plotted for the set of CE scenarios shown in Figure 3. Points evaluate the conditions in a given model at R0.2 *, R0.5 *, and R0.8 *
(with circles, squares, and diamonds, respectively). Colors are the same from upper to lower panels. The upper panel shows that embedded stars and compact objects
are typically many times smaller than their gravitational capture radius. Only for an embedded Jupiter-like planet are the gravitational and geometric cross-sections
similar. The more massive objects are subject to significant density gradients, parameterized by r, while the planet is the only model with a mild gradient. The lower
panel compares the local accretion radius to the stellar radius. While this ratio depends on the structural properties of the star, it is primarily determined by the mass
ratio of the embedded object to its companion. Hydrostatic balance of the envelope structure ensures that typical Mach numbers are consistent, and mildly supersonic.
These results are tabulated for =a R0.5 * in Table 1.
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directed to Edgar (2004) a recent review, and to Foglizzo et al.
(2005) for a detailed comparison of published simulations that
attempts to synthesize results with respect to flow stability as it
depends on Mach number, accretor size, geometry, and
equation of state. Rather than restating their work here, we
review only a few of the most relevant and recent studies.

A benchmark series of 3D simulations with high spatial
resolution and a variety of flow parameters was published
beginning with Ruffert (1994a). These simulations adopted
homogeneous upstream boundary conditions. They employ
nested grids to resolve a small region surrounding a point mass,
from which a sphere is excised and a vacuum boundary
condition is applied. Within this framework, flow morpholo-
gies, stability conditions, and accretion rates for different flow
Mach numbers and equations of state were studied. Ruffert &
Arnett (1994) examined flows with adiabatic g = 5 3 and
Mach number  =¥ 3. They found that accretion rates in
steady state were reasonably approximated by the HLA
formula, but that after the flow developed in the first few
crossing times, some loss of axisymmetry occurred. This
imparted time variability to the accretion rate, but the dramatic
flip-flop instabilities seen in lower-dimensionality simulations
were, strikingly, not observed in three dimensions (Foglizzo
et al. 2005). Subsequent work (Ruffert 1994b, 1995, 1996)
confirmed the more-stable configurations of 3D flows, and
found that more violently unstable scenarios occurred with
smaller accretion boundaries, higher Mach numbers, and more
compressible equations of state.

These simulations were recently revisited in two dimensions
(Blondin & Pope 2009; Blondin 2013) and three dimensions
(Naiman et al. 2011; Toropina et al. 2011; Blondin & Raymer
2012; Lee et al. 2014). Again, major differences in flow
morphology are found between 2D and 3D geometry. In
particular, rotationally supported flows develop in 2D planar
geometries while these are not observed in three dimensions.
Blondin & Raymer (2012) study two different accretor sizes
with g = 5 3 and  =¥ 3 to find extremely stable accretion
with the larger accretor (with radius 5% of the accretion
radius), but a breathing mode instability and some variation in
accretion rate with an accretor of only 1% of Ra. Very little loss
of axisymmetry is observed in these simulations, however, with
differences as compared to Ruffert & Arnett (1994) potentially
attributable to differences in grid meshing and resolution.

Of particular importance to this study is work that has
extended the traditional HLA problem to look at background
gradients of velocity and density. Livio et al. (1986b), Soker
et al. (1986), Livio et al. (1986a) studied accretion from an
inhomogeneous medium using a 3D particle in cell hydro-
dynamics method. Although the resolution around the accretor

with this method is limited, they found that the introduction of
gradients lead to the accretion of only a small amount of the
angular momentum available in the upstream flow. Fryxell &
Taam (1988) and Taam & Fryxell (1989) studied density
and velocity gradients, respectively, in 2D planar accretion
with a grid-based hydrodynamics method. This approach vastly
improved the ability to study the flow just outside the
accretor. Fryxell & Taam (1988) adopted g = 4 3, and found
that small gradients of density lead to a flip-flop instability
(Livio et al. 1991) of rotation around the accretor as vortices
are shed into the wake. With steeper gradients, Fryxell & Taam
(1988) displaced structures in the wake and very limited
accretion rates. Armitage & Livio (2000) carry out relatively
similar simulations except with a hard surface rather than
inflow central boundary condition and evaluate the degree of
rotational support of material bound to the accretor. Ruffert
(1997) and Ruffert (1999) applied a mild upstream gradient
which varied by 3% or 20% in either velocity or density was
applied to their 3D accretion setup of Ruffert (1994a). In these
simulations, the inhomogeneous upstream conditions lead to
unsteady rotation of the flow but not to the formation of steady
disks surrounding the accretor with g = 5 3. Some accretion of
angular momentum from the post shock region resulted, but a
dramatic modification in the average accretion rate was not
observed.

3.2. Numerical Approach and Simulation Setup

While previous work has examined the effects of mild
upstream gradients in velocity and density on the HLA problem,
we have shown in Section 2 that in many cases the relevant
density gradients may be substantially stronger than those studied
by Ruffert (1999). Thus we extend this work and perform 3D
hydrodynamic simulations of accretion flows using the FLASH
code (Fryxell et al. 2000). We solve the fluid equations
using FLASH’s directionally split Piecewise Parabolic Method
Riemann solver (Colella & Woodward 1984). We make use of
a gamma-law equation of state, and in most cases use g = 5 3.
A 3D cartesian grid is initialized surrounding a point mass that is
fixed at the coordinate origin.
These simulations are performed in dimensionless units,

where r= = =¥ ¥R v 1a . In these units, the characteristic time
is =¥R v 1a , and the characteristic accretion rate =M π˙ HL ,
Equation (3). The-x boundary feeds a wind of material into the
box and past the point mass. A simulation is then parameterized
by the upstream Mach number, ¥, measured at = =y z 0.
We also allow for a planar density gradient in the ŷ direction,
parameterized by  =r rR Ha . The y and z boundaries are
outflow boundaries positioned at  R10 a (10 in code units).

Table 1
Typical Encounter Properties from MESA Simulations (Evaluated at R0.5 *)

Objects Stellar Radius R R*[ ]  R R*a R Robj a r
(1) (2) (3) (4) (5) (6)

Jupiter + M1 RG 103 1.84 1.22(−3) 0.82 8.64(−3)

M0.7 WD + M1 RG 103 2.53 0.47 2.50(−4) 3.34

Sun + M2 AGB 226 2.26 0.41 1.09(−2) 2.54

M1.4 NS + M2 AGB 226 2.44 0.49 1.69(−6) 3.06

M1.4 NS + M8 AGB 562 1.77 0.23 1.44(−6) 1.09

M1.4 NS + M16 RSG 807 1.69 0.12 1.99(−6) 0.56

M4 BH + M16 RSG 807 1.86 0.27 7.69(−8) 1.33
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On the downstream, +x, boundary (positioned at + R4 a) we
apply a diode boundary condition that allows for outflow but not
inflow.

We create a spherical absorbing boundary condition “sink”
surrounding the central point mass, with radius Rs. The
potential of the point mass is smoothed, but only well within
this sink, at a radius of» R 10s . Thus, this smoothing does not
affect the flow outside the excised region. Each time step, the
average pressure and density are computed within a shell that
extends from Rs to R2 s. Then, the pressure and density inside
the sink are set to 10−3 of these surrounding values to create a
vacuum that does not impinge on the surrounding flow. This
vacuum condition represents accretion with no feedback on the
surrounding flow. Material in the vicinity of the sink is allowed
to expand into it at the sound speed and thus be absorbed
(Ruffert 1994a).

Before the pressure and density are overwritten within the
sink, we integrate the accreted mass and angular momentum.
The mass accretion rate is then defined as the accreted mass
divided by the time step, d=M m dt˙ ; the components of the
angular momentum accretion rate are defined similarly. As a
consistency check, we performed tests with sink density and
pressure pre-factors between 10−1 and 10−5 with no visible
difference in the accretion of mass or angular momentum.
However, a qualitatively different central boundary condition,
particularly one that did apply a feedback on the flow, would
likely result in different mass and angular momentum accumula-
tion rates. We explore the effects of such a boundary condition in
Section 5.1.

The initial conditions are of constant velocity in the x̂
direction, where the x-velocity is = ¥v vx . The initial density

field, ri, is a function of the y position as

r r= r¥ yexp ( ), (7)i

applied only within - < <y2 2 to limit the total range of
density in the background material of the computational volume.
Within this planar gradient of densities, high densities are found
at+y coordinates. We turn the point mass on progressively over
the first time unit, so that it is fully active after =¥R v 1a .
The simulations employ the PARAMESH library to provide

adaptive mesh refinement to resolve small features around
the accretor within the large simulation box (MacNeice
et al. 2000). Adaptive refinement is based on the second
derivative of pressure. The box is initialized with seven blocks
(of 83 cells) in the x direction, and 10 each in the y and z
directions. We then allow for between six to nine levels of
adaptive refinement of those coarsest blocks. To avoid devoting
all of the computational effort to features far from the accretor,
we force the maximum level of refinement allowed for a
given block to drop in proportion to the radius from the
coordinate origin (where the accretor resides). Blocks with size
less than ar , where we adopt a = 0.3, are not allowed to be
further refined. The first decrement in refinement occurs at
»r R3 s, and drops one level further each time the radius

doubles (See Couch and O’Connor 2014, for another
astrophysical problem in which this refinement criteria is
applied in FLASH).

3.3. Simulation Parameters

The primary effect we explore in this paper is the inclusion
of a significant density gradient to the upstream flow in
supersonic accretion. To that end we perform a series of

Table 2
FLASH Simulation Parameters and Results

Name  r γ R Rs a dRs min M M˙ ˙ HL r¥ ¥F πR v( )xd, a
2 2

A 2 0 5/3 0.05 12.8 7.05(−1) 1.98
B 2 0.1 5/3 0.05 12.8 6.03(−1) 1.89
C 2 0.175 5/3 0.05 12.8 5.04(−1) 1.74
D 2 0.3 5/3 0.05 12.8 2.66(−1) 1.57
E 2 0.55 5/3 0.05 12.8 1.27(−1) 1.48
F 2 1 5/3 0.05 12.8 4.09(−2) 1.18
G 2 1.75 5/3 0.05 12.8 2.56(−2) 1.58
H 2 3 5/3 0.05 12.8 2.74(−2) 3.05

I 2 0 5/3 0.01 10.2 6.41(−1) 1.94
J 2 0.1 5/3 0.01 10.2 3.78(−1) 1.71
K 2 0.175 5/3 0.01 10.2 2.51(−1) 1.58
L 2 0.3 5/3 0.01 10.2 1.53(−1) 1.44
M 2 0.55 5/3 0.01 10.2 9.79(−2) 1.45
N 2 1 5/3 0.01 10.2 2.02(−2) 1.19
O 2 1.75 5/3 0.01 10.2 1.44(−2) 1.58
P 2 3 5/3 0.01 10.2 1.09(−2) 3.93

Q 2 0.3 5/3 0.05 6.4 2.64(−1) 1.56
R 2 0.3 5/3 0.05 25.6 2.69(−1) 1.57
S 2 0.3 5/3 0.05 51.2 2.69(−1) 1.57

T 1.1 0.3 5/3 0.05 12.8 1.90(−1) 4.71(−1)
U 1.1 1 5/3 0.05 12.8 5.19(−2) 8.98(−1)

V 3 5 5/3 0.01 10.2 6.37(−3) 17.6
X 3 5 1.1 0.01 10.2 1.03(−1) 18.0
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simulations with increasing density gradient r. We adopt a Mach
number of  =¥ 2 for these simulations, and a gas ratio of
specific heats, g = 5 3, that is representative of an ideal gas flow
in which cooling is ineffective—like that embedded deep within
a stellar interior. In one series, simulations A–H, we adopt a sink
boundary condition size of =R R0.05s a. In simulations I–P, we
reduce the sink size to =R R0.01s a. These =R R0.05s a

simulations are run from t = 0 to = ¥t R v80 a . The =Rs

R0.01 a are started from checkpoints of the =R R0.05s a

simulations with the same upstream conditions at = ¥t R v20 a

and run for ¥R v10 a . We perform a resolution study, simulations
Q–S, which all have  =¥ 2, =R R0.05s a to demonstrate the
robustness of our derived accretion parameters. We perform some
simulations with lower and higher Mach number,  =¥ 1.1
(T,U) and  =¥ 3 (V,X) to test the sensitivity of flow
morphology to upstream Mach number. In simulation X, we

Figure 5. Comparison of flow morphologies realized with different upstream density gradients. The upper series of panels shows simulations with =R R0.05s a
(simulations A, D, F, and H). The lower series has =R R0.01s a (simulations I, L, N, and P). Density is plotted in terms of r¥, the density at y = 0, while axis labels
are in units of Ra. The upstream Mach number is  =¥ 2 in all simulations, and snapshots are shown at a time ¥R v30 a . As gradients are introduced, increasing
asymmetry develops in the imposed plane of rotation (x–y). Bow shock structures migrate from symmetric to tilted to finally wrapping nearly completely around the
accretor into the wake for  =r 3. Dense material (at positive y coordinates) is focused around the accretor and wraps past the accretor in the wake to impinge
on lower-density material. In the perpendicular plane (x–z), dense material is increasingly concentrated in the wake as the gradient steepens. Dense features in the
wake are complimented by low-density pockets of turbulent material upstream. This and following figures visualizing FLASH simulation fields are made using the
yt toolkit (Turk et al. 2010).
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adopt g = 1.1 to represent a flow, which is can cool more
effectively than the adiabatic conditions.

4. RESULTS

The introduction of an upstream density gradient breaks the
symmetry that defines classical HLA. In the following subsec-
tions we explore the effects of this symmetry-breaking on the

morphology, accretion rates, sink-size effects, rotation, and drag
realized our hydrodynamic simulations.

4.1. Flow Morphology

The introduction of upstream density gradients introduce
dramatic changes to the morphology of the flow around objects
embedded within a CE. Figure 5 displays these changing flow
morphologies for upstream gradients of  =r 0, 0.3, 1, 3, and

Figure 6. Flow Mach number for the same frames shown in Figure 5 (simulations A, D, F, and H). Steepening gradients (and smaller sink sizes) lead to increasingly
turbulent flows. Boundary layers are of shock heated, and therefore low-¥, material divide regions of flow moving in different directions. Angular momentum is
redistributed in these shocks with some plumes of material falling inward extending inward to the accretor, while other material is swept outside of Ra. In the zero-
gradient case, some spurious features representative of the cartesian discretization arise. These artificial features are swept away by continuous fluid motion as soon as
any gradient is introduced. Note the axis scale is a factor of two closer here than in Figure 5.
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sink sizes of =R R0.05s a and =R R0.01s a. We show two
slices through the simulation domain, one in the x–y plane, the
same plane as the imposed ŷ density gradient, and one in the x–
z plane, perpendicular to the imposed gradient.

In the zero gradient, HLA-case, the x–y and x–z slices are
nearly identical. A high degree of symmetry is preserved in this
case of homogeneous upstream conditions. Flow lines converge
toward a stagnation region in the wake of the accretor and some
material reverses to fall into the sink from this accretion column
(e.g., Edgar 2004). Most of the accretion, therefore, occurs in
the downstream hemisphere of the accretor (Blondin &
Raymer 2012).

The symmetry of the  =r 0 case is broken by the
introduction of an upstream gradient. Although the sink itself
is small with respect to the density scale height, rR Hs , the
bow shock sweeps through a large density contrast, affecting
the flow even at small scales near the accretor. With 0.3 density
scale heights per accretion radius, ( =r 0.3, the second panel
in Figure 5) the flow morphology is distorted and it presents a
tilted bow shock structure to the upstream flow. As the density
gradient steepens further, the bow shock continues to rotate to
face the flux of densest material. As a result, the bow-shock is
nearly reverse-facing by the time the gradient steepens to
 =r 3, the right-hand panel of Figure 5. Further, the single
shock interface of the symmetric case is replaced by multiple
nested shocks at different rotation angles with respect to the
accretor. In the  =r 1, 3 cases with =R 0.05s , a one-sided
trailing shock facing the high density material extends inward
to the surface of the accretor. When the sink size is reduced to

=R R0.01s a, a low density cavity forms surrounding the
accretor and the tail shock does not remain attached.

In these steep gradient cases, material of high and low density
are both focused toward the wake of the accretor from positive
and negative y coordinates, respectively. The momenta of these
fluid parcels do not cancel, however, as occurs in the case of
homologous upstream conditions. Thus, the density gradient also
introduces a net angular momentum swept up by the bow shock,
and material in the post shock region carries net rotation around
the accretor. This effect is observed in the flow lines overplotted
on Figure 5. A downstream accretion column cannot exist in this
scenario, because flow in the wake region is moving tangentially
with respect to the accretor.

In the absence of velocity cancelation, flow lines show that
much of the dense material is never focused into the accretor.
This result was anticipated by Dodd & McCrea (1952) who, in
analytically calculating the capture cross section of the accretor
given a linear upstream density gradient, note that captured
material need not go on to accrete. Instead, they state that only
the material whose angular momentum can be redistributed
could be expected to fall into an accretor. Traces of this process
are seen in Figure 6. In particular, only material whose
tangential velocity is partially canceled in the nested shock
structures can fall into the sink.

Figure 6 examines the flow Mach numbers for the same set of
simulation snapshots as Figure 5. An extended subsonic region
trails in the wake in the symmetric HLA case, while a sonic
surface inside the bow shock marks the reacceleration of stalled
material toward the accretor (Foglizzo & Ruffert 1997, 1999;
Foglizzo et al. 2005; Blondin & Raymer 2012). In our  =r 0
panel of Figure 6, some numerical artifacts can be seen
originating from grid interfaces at the bow shock. These flaws
highlight the difficulty of simulating a quasi-steady flow with a

cartesian grid mesh. With symmetry broken as the upstream
gradient is introduced, these artifacts disappear as the flow is no
longer so near to steady state.
With the introduction of a density gradient and the

corresponding lack of cancelation of tangential motion, material
in the post-bow shock region carries some rotational support.
This rotation leads to the development of regions surrounding the
accretor that retain supersonic velocities. In contrast to the  =r 0
simulation, where the leading face of the accretor remains in
sonic contact with the bow shock, for  >r 0, the sonic surface
largely detaches from the accretor. The cavity of subsonic
material in which sound waves can propagate becomes
increasingly restricted in the steeper gradient simulations. The
flow asymmetry and instability observed in the steep density
gradient cases cannot therefore be due to acoustic perturbations
cycling from the bow shock to the accretor, as is thought to
drive instability for sufficiently high Mach number flows with
homologous upstream conditions and g = 5 3 (Foglizzo
et al. 2005). Instead, the observed instability appears to be a
vortical instability seeded in flow near the embedded object that
carries too much angular momentum to accrete, and instead
impinges on the surrounding material. This is related to the
instability observed in isothermal flows with nearly homologous
upstream boundary conditions, which also tend to develop
significant rotation (Foglizzo et al. 2005). Shear layers and
density inversions with respect to the accretor’s gravity can be
seen to develop within these flow structures and these effects also
seed instability and vorticity in the post bow shock region. In
general, as the gradient steepens and the sink size decreases, more
unstable and turbulent flow is exhibited surrounding the accretor.
It is worthwhile here to examine some of the ways that these

flows may be compared to previous numerical work with
inhomogenous upstream density. Flow that breaks axisymmetry
and develops significant rotation is observed in simulations
with both velocity and density gradients by Ruffert (1997) and
Ruffert (1999). Our simulation in the second panel of Figure 5
( =r 0.3) may be compared morphologically with model “NS”
of Ruffert (1999), which is the steepest-gradient model explored
and has =rR H 0.2a (see their Table 1 for parameters, and
Figure 2 for a plot of the density distribution and flow vectors).
These models exhibit very similar morphology, and in particular,
similar flow patterns in the post shock region. As a point
of comparison, it is worth noting that in our setup higher
densities are at positive y values, while they are at negative
y values in Ruffert (1999). By contrast, 2D cylindrical
simulations with upstream density gradients by Fryxell & Taam
(1988) and Armitage & Livio (2000) show qualitatively
different behavior. Even with mild density gradients these 2D
flows develop small, rotationally supported disks (Armitage &
Livio 2000) trailed by an attached wake that is unstable in the
transverse sense and sheds vortices from the accretion region
(Fryxell & Taam 1988). We explore this difference further in
Section 4.4.

4.2. Effects of Sink Size

A comparison of the upper and lower panels of Figures 5 and 6
highlights some differences in the large-scale flow that result
from the size of the accretor. This effect is explored further in
Figure 7 for the  =r 0.3 case of simulations D and L. While
rotating flow is relatively laminar in the =R R0.05s a simulation,
vortices dominate the region in the =R R0.01s a. At the root of
this difference is that, with the introduction of a density gradient
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in the upstream flow, there is an angular momentum barrier as
well as an energetic barrier to accretion.

We can estimate the radius at which material with impact
parameter <Ra will circularize if it completely inelastically
redistributes its momentum. Under these assumptions, the
specific angular momentum (in the ẑ direction) specified by the
density distribution at infinity is = < <¥l L R M R˙ ( ) ˙ ( )z z, a a ,
where

ò r< = ¥
<

( )M R v y dA˙ ( ) . (8)
R

a
a

Here the area element can be re-written = -dA R y dy2 a
2 2

with limits = y Ra. This expression reduces to ṀHL when

 =r 0. Similarly,

ò r< = -¥
-

( )L R v y y R y dy˙ 2 ( ) . (9)z
R

R

a
2

a
2 2

a

a

Given Equation (7) for r y( ), we can solve analytically for ¥lz,

and find
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where In are the modified Bessel functions of the first kind,

ò q q= qI z
π
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cos ( ) , (11)n

π
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for integer n (Abramowitz & Stegun 1972). The radius at which
material with this angular momentum will be rotationally
supported is = ¥R l GMzcirc ,

2 . In our adopted units, =R 1a and
=¥v 1, =GM 1 2, we thus have




=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

r

r
R

I

I
2

( )

( )
. (12)circ

2

1

2

This quantity represents the radius at which the fluid with impact
parameter less than the accretion radius will circularize if it
has the opportunity to perfectly cancel momenta with oppos-
ing flow.
If <R Rcirc s, material can enter the accretor directly,

sweeping through at most one orbit. Visually, this is what we
observe in the =R R0.05s a case of Figure 7. Material that is
drained from the accretion region acts as an effective cooling
source on the flow in that accretion removes material from the
vicinity on of the accretor so that it does not proceed to impinge
on newly inflowing material. Instability arises and vorticity
appears to grow in our simulations when >R Rcirc s. In this case,
there is an angular momentum barrier to accretion, and material is
trapped in orbit around the accretor. This scenario becomes
inherently unstable when coupled to the continuous infall of fresh
material from the upstream region. The new material collides
with the old as it tries to penetrate to the accretor. Shearing layers
and density inversions that result near the accretor lead to
instabilities that amplify such that turbulence dominates the post-
shock region. Numerically, Equation (12) suggests a circulariza-
tion radius of  = =rR ( 0.3) 0.011circ for the example in
Figure 7. This is mildly outside =R 0.01s and substantially
inside =R 0.05s indicating the significance of the transition
observed in Figure 7. We should, therefore, not expect
convergence of the flow behavior with respect to sink size in
flows where angular momentum plays a role in shaping flow
morphology. This is particularly true in cases with ~R Rcirc s.

4.3. Accretion of Mass and Angular Momentum

In our simulations we track the accumulation of mass and
angular momentum into the central sink boundary. Each time
step the accumulated quantities above the floor state are
integrated over the sink volume before the pressure and density
are re-written. The rate implied is calculated each time step by

= DX X dt˙ , where X is an arbitrary quantity, DX is the
integrated new material, and dt is the time step.
In Figure 8, we show the time-dependent accretion of mass

(upper panel) and angular momentum (lower panel) for the

Figure 7. Comparison of the z-component of the vorticity in the inner regions
of simulations for which =R R0.05s a and =R R0.01s a (simulations S, top,
and L, bottom). Both have otherwise identical parameters, with a gradient of
 =r 0.3, and identical maximum linear resolution d » - R10min

3
a. Imposing

the sink boundary in the flow at smaller radii allows material to penetrate
deeper into the accretor’s gravitational potential without being subsumed.
While the flow for =R R0.05s a is mostly laminar, strong local vorticity
develops surrounding the accretor when =R R0.01s a. The extent of turbulent
flow extends well beyond the accretor size in either simulation and becomes an
important feature of the large-scale flow.
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series of simulations (A–H), for which =R R0.05s a. We run
these simulations for ¥R v80 a , but accretion rates relax to their
steady-states within the first domain-crossing time » ¥R v10 a
as found, for example by Ruffert (1994a). As has been
demonstrated in previous numerical simulations, in the zero-
gradient case ṀHL provides a good order-of-magnitude
estimate of the accretion rate (e.g., Ruffert 1994a; Ruffert &
Arnett 1994; Naiman et al. 2011; Blondin & Raymer 2012). As
the upstream density gradient steepens, the steady state
accretion rate drops precipitously. Interestingly, the early time
accretion rate in all cases is similar to that of the zero gradient
case. The accretion rate tracks that of the homogeneous case
and breaks off only when the bow shock has swept wide
enough to trace out substantial upstream inhomogeneity and
angular momentum. In cases where transient flows exist in

which the bow shock is less than fully developed, the effective
density gradient is thus reduced in proportion to the bow
shock’s extent. As the upstream density gradient steepens, the
accretion rate also becomes increasingly variable. The
variability seen is chaotic and there is no single apparent
periodicity or driving timescale in a Fourier decomposition of
M t˙ ( ) (e.g., Edgar 2005).
The lower panel of Figure 8 compares the accretion rate of

angular momentum between simulations with differing density
gradients. Here we normalize our results to a characteristic
angular momentum accretion rate, ¥M R v˙ HL a . The zero-gradient

Figure 8. Accretion of mass (top) and angular momentum (bottom) as a
function of time in simulations with a sink size =R R0.05s a (simulations
A–H). Accretion rates are normalized to ṀHL (for mass, Equation (3)) and to

¥M R v˙ HL a (for angular momentum). The upper panel shows that the
introduction of an upstream gradient not only dramatically decreases the
accreted mass but also leads to increased chaotic time-variability compared to
the median value. The variability observed can be attributed to turbulence in
the flow seeded by the upstream gradient. The accretion rate of angular
momentum is lowest in the  =r 0 simulation, and provides a measure of the
high degree to which our simulations preserve symmetry intrinsic to the setup.
The  = -r 0.1 0.55 cases are able to accrete substantially more angular
momentum than the stronger-gradient cases because Ṁ is not so highly
impeded. Rotation is always found in the sense imposed by the upstream
gradients.

Figure 9. Specific angular momentum of accreted material as compared to the
angular momentum of material in Keplerian rotation at the sink radius in
simulations A–H (top) I–P (bottom). Here =l GMRkep s , in the dimension-
less units of the simulations, =GM 1 2 and this becomes =l R 2kep s . A
transition can be seen in both panels as the density gradient steepens. The
angular momentum content of accreted material at firs increases, but then
maximizes at a mean value of »∣ ∣l l 0.5kep . In the steeper-gradient cases
( >r 0.55) the width of the distribution also broadens. However, accreted
material always displays substantially sub-Keplerian rotation. The transition
noted in Figure 7 can be seen above by comparing the  =r 0.3 case in the
upper and lower panels. In the upper panel, where =R R0.05s a, the accreted
angular momentum forms a narrow distribution, similar to that exhibited in the
milder-gradient cases. In the lower panel, in which =R R0.01s a, the
distribution is broader, nearly joining the family of curves from the steep-
gradient cases. As mentioned in the caption of Figure 7, this transition takes
place material circularizes inside (for =R R0.05s a) or outside (for

=R R0.01s a) the sink radius.
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case preserves symmetry to better than 1 part in 104, and provides
a gauge for the fidelity of the other cases. As the gradient appears
( <r 1), the accreted angular momentum at first increases
because of rotation imparted to the post bow shock flow. For
steeper gradients, the accreted angular momentum actually
decreases again because Ṁ decreases in the steepest-gradient
cases. For these combinations, the limiting of Ṁ appears to
outweigh the increasing angular momentum content of the
upstream flow.

To disentangle the accretion rate of mass and angular
momentum, we turn our attention to the specific angular
momentum of accreted material. In Figure 9, we plot histograms
of the specific angular momentum content of accreted material.

The specific angular momentum, = + +l L L L M˙ ˙ ˙ ˙
x y z
2 2 2 , is

normalized to the angular momentum of material in Keplerian
orbit at the sink radius, =l GMRkep s . With = =¥R v 1a as
used in the simulations, =GM 1 2 and this becomes

=l R 2kep s . Even in the gradient cases, we find that the

angular momentum accretion rate is much less than Keplerian.
The specific angular momentum content of accreted material is
also highly variable, as visualized by the broad histograms in
Figure 9. Interestingly, ∣ ∣l is similar in  = -r 0.55 3 simula-
tions, despite the increased flux of angular momentum from the
upstream conditions. The milder gradient simulations peak at
somewhat lower typical angular momentum content

» -∣ ∣l l 0.1 0.4kep than the steeper-gradient simulations that
peak at »∣ ∣l l 0.5kep . This transition in behavior occurs when
the circularization radius is outside the sink, R Rcirc s, as
opposed to when the net angular momentum allows circulariza-
tion inside the sink. The lack of a tail extending to »∣ ∣l l 1kep
indicates that none of the simulations ever reach a state of
accretion from a nearly Keplerian flow. It is worth contrasting
this, briefly, to recent 2D planar simulations in which, after an
initial growth phase, the specific angular momentum of accreted
material is nearly always within a few percent of the Keplerian
value (Blondin & Pope 2009; Blondin 2013). This difference in
accretion modality, therefore, appears to lie in the geometry of the
simulations.
Figure 10 summarizes the accretion of mass and angular

momentum in our simulations. We have plotted the accreted
mass and angular momentum for simulations with =R R0.05s a
and =R R0.01s a. We plot the flux of either mass or angular
momentum through an upstream cross section with impact
parameter <b Ra, Equations (8) and (9). The mass and
angular momentum available in the flow both increase with
gradient. With  =r 0.3, the flux of mass with <b Ra is

M1.01 ˙ HL, with  =r 1 it is M1.13 ˙ HL, while with  =r 3 it
increases to M2.64 ˙ HL. The mass that reaches the sink and
accretes decreases dramatically as the density gradient
steepens. This limiting of accretion, despite the increased
availability of material, must be attributed to the change in flow
structure and angular momentum barrier to accretion described
in the previous subsections.
The comparison between the =R R0.05s a and =R R0.01s a

series results depends strongly on the upstream gradient
imposed. The mass accretion rates decrease by a factor of a
few with the small sink as compared to the large for the
strongest-gradient cases, yet only by ∼10% for zero-gradient.
This difference points explicitly to the role of angular
momentum in limiting the amount of material that is able to
actually accrete. Figure 9 supports this conclusion; the angular
momentum content of accreted material nicely follows the
normalization with respect to lkep, which depends explicitly on
the sink radius.

4.4. Disk Formation?

With the accretion of angular momentum apparent in
simulations with an upstream gradient, a natural question that
arises is whether the rotation imposed in the flow leads to the
formation of persistent accretion disks. Disk formation is, for
example, apparent in accretion flows that develop from wind-
capture in widely spaced binaries (see e.g., Zarinelli et al. 1995;
Blondin 2013; Huarte-Espinosa et al. 2013, for numerical
simulations). When disk structures form, viscosity from
magnetorotational instability (Balbus & Hawley 1991) can
transfer angular momentum to funnel disk material toward the
central body. In these cases, the flow is primarily optically thin,
and can cool effectively through line emission and the
blackbody continuum. The effective polytropic index of the

Figure 10. Accretion of mass and angular momentum summary with respect to
gradient, r in simulations A–H and I–P. The points show the median, while the
error bars show the 5% and 95% percentile bounds of the time series data for
different simulations, calculated for times > ¥t R v20 a when the simulations
are in steady-state. The dashed lines show the flux of either mass or angular
momentum through a surface with impact parameter at infinity, <b Ra. Although
the available mass and angular momentum increase as an exponential density
gradient is introduced, accretion is dramatically inhibited by the asymmetric flow
geometry that develops. The smaller-sink simulations exhibit lower mass and
angular momentum accretion rates with larger variability.
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equation of state is assumed to be close to one, g ~ 1, and as a
result the flow is nearly isothermal. With effective cooling,
rotationally supported structures are quickly assembled. When
cooling is not effective, as is the case when embedded deep
within a shared stellar envelope, the adiabatic index of the gas
remains close to g = 5 3. In this case, the adiabatic build-up of
pressure is significant as gas moves to smaller radii. Without a
means to dissipate this internal energy, the flow remains in
large part pressure supported.

Figure 11 explores the rotational motion of material close to
the accretor in simulations with an imposed gradient. The lower
panels of this figure look at tangential motion in the orbital
plane, while the upper panel plots motion into and out of the
perpendicular plane. In the  =r 0.3 simulation, rotational
motion is sub-Keplerian nearly everywhere. In the larger
gradient simulations there are pockets of material rotating with
the Keplerian velocity. However, these pockets are interspersed
with shocked material with little rotational support. Rather than
exhibiting steady circular flow patterns, streamlines are highly
elliptical in the orbital plane, being first flung upstream then
wrapping around to encounter incoming material. These flow
patterns define a cavity of material bounded by shocks in which
angular momentum is redistributed. As visualized by flow
streamlines, some material encountering these boundary layers
is deviated back toward the accretor, but much of the rest is
advected away and shed in the wake. That persistent orbits do

not exist indicates that material does not have the opportunity
to be viscously accreted before it is advected away from the
sink region.
The lack of a dense built-up disk feature is contrary to what

has been observed in 2D cylindrical coordinates with a g = 5 3
equation of state. Fryxell & Taam (1988) and Armitage & Livio
(2000) find rotationally supported flows with the introduction of
upstream density gradients in their 2D simulations. Blondin &
Pope (2009) and Blondin (2013) look specifically at disk
formation in 2D simulations of HLA. They find that even without
any imposed gradients the flow is unstable to the development of
quasi-Keplerian disks. As mentioned earlier, accreted material in
these simulations typically carries specific angular momentum
close to the Keplerian value ( »∣ ∣l l 1kep ), which may be
contrasted to Figure 9, in which we find »∣ ∣l l 0.5kep to be
much more representative. In both of these sets of 2D simulations
spiral shocks appear to mediate the transport of angular
momentum that allows material in the disk to accrete
(Blondin 2000, 2013).
Pressure certainly plays a role in distinguishing 2D and 3D

simulations. Because of the difference in radial dependence of
the volume element, material is compressed to differing
degrees in two dimensions and three dimensions. The standoff
shock seen in 2D simulations is entirely rotationally developed,
being a consequence of the flip-flop instability saturating and
wrapping around the accretor into the upstream flow (Blondin

Figure 11. Rotation imposed by an upstream density gradient in simulations L, N, and P. In the upper panel, shown perpendicular to the plane of rotation, color shows
inward (red) or outward (blue) motions compared to the local Keplerian velocity. The extent of the rotating material becomes smaller as the gradient increases and
inflowing high-density material impinges on the orbiting material. The lower panels look at the same frames and the magnitude of tangential motion in the orbital
plane. These show that the rotational flow that develops is not strictly disk-like. Rotating material in the orbital plane is interspersed with cavities of material with
pressure, rather than rotational, support. Plumes of material with little rotational support extend to the sink surface, feeding accretion.
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& Pope 2009). By contrast, a bow shock forms promptly in 3D
simulations with g = 5 3 solely due to compression of
convergent flow. This offers some explanation of why 2D
adiabatic and 3D isothermal simulations show similar proper-
ties. The 2D volume element =dV dr πr22D , while in three
dimensions, =dV dr πr43D

2. If we examine the adiabatic
increase in pressure of accreting gas in three cases in which
simulations have been performed, rµ µg g-P V . With g = 1
in three dimensions, P∝ r−3, and disk formation is apparent. In
two dimensions with g = 5 3 disks are again apparent, and
µ -P r 10 3. While in three dimensions with g = 5 3 purely

Keplerian disks do not appear, and P ∝ r−5.
We illustrate this point with a comparison between simulations

V and X in Figure 12, which share  =¥ 3,  =r 5, and
=R R0.01s a but differ in compressibility of the equation of state.

Simulation V has g = 5 3 while simulation X has g = 1.1.
While the g = 5 3 case forms the same cavity seen in the other
steep gradient simulations, the g = 1.1 case forms a persistent
thin disk. This disk is much denser than the surrounding material,
and it sets up in steady rotation around the accretor. Notably, the
scale height of the disk is thicker in the upstream direction as it is
impinged on by incoming material. The g = 1.1 equation of state
indicates that some cooling occurs in the gas, and thus is not
physically realized deep within a CE. Early in the CE phase,
though, near the surface layers of a star, the cooling time may be
short and g < 5 3 is possible.

4.5. Drag

The rate of momentum dissipation due to gravitational
focussing of the surrounding gas sets the drag force felt by the
embedded body. In turn, this corresponds to the rate of orbital
energy dissipation into the CE and the rate that the embedded
object inspirals to tighter orbital separations.

We estimate the momentum dissipation realized in our
simulations along the direction of orbital motion (x̂) as follows,

ò r= ( )x rF v v dSˆ · ˆ (13)x x xd,

where F xd, is the x-component of the drag vector, r̂ is the vector
normal to the surface of a unit sphere, and the surface
of integration dS is a sphere with the gravitational radius of
the accretor, Ra (after Ricker & Taam 2008, Equation (3)).
We calculate this flux using the marching cubes surface
reconstruction algorithm in yt(Turk et al. 2010). In this way,
we measure the momentum deposition rate by the inflowing
gas across the gravitational focus cross section, πRa

2. In our
simulations, performed in the frame of the accretor, we observe
a slowing and pileup of background gas due to gravitational
interaction with the point mass. In the frame of the fluid, this
represents a continuous decrease in relative velocity of the
accretor, or a gravitational drag force (Ostriker 1999).2

Integrated along the orbital path, this drag force produces the
CE inspiral. Thus the rate of orbital energy decay due to drag
should be » ¥E F v˙ xd d, , under the assumption that it takes many
flow crossing times to dissipate the accretor’s kinetic energy,

¥E E R v˙d a .
We find that to within a factor of ∼4, the drag is similar with

changing density gradient. We plot the drag rates realized in
simulations A–P in Figure 13. We normalize our results to the
drag expected in HLA theory, r¥ ¥πR va

2 2 , for which the

corresponding energy dissipation rate is r= ¥ ¥E πR v˙HL a
2 3 . In

simulations with a mild gradient (r  1) we find slightly lower
drag than the  =r 0 case. This decrease can be attributed to a
trade-off between stronger shocking in the x–y plane, but
weaker in the x–z plane with the introduction of a density
gradient, as can be seen visually in Figure 5. As the gradient
steepens to  =r 3, the focusing of dense material in the x–y
plane dominates and the drag force again increases with respect
to the nominal value.
Our simulations are not perfectly suited to measure the drag

during a CE episode. The construction of our domain is best
suited to study the flow within the accretion radius. At larger
distances from the accretor, the approximations made here are
less valid. A primary caveat is the missing gravitational vector
of the other stellar core g. Another consideration is that our
simulation geometry is planar. Especially when ~R R*a , the
curved geometry of the CE may depart substantially from the
planar approximation. Both of these effects will likely play a
role in shaping the shock morphology at distances ~Ra from
the accretor. Since this is where much of the thermalization
occurs, we expect that some differences would arise in the full
CE geometry. Further, Ricker & Taam (2008, 2012) have
noted that at late times in relatively equal mass CE interactions,
the envelope becomes distorted well out of its hydrostatic
configuration and the drag force cannot be easily related to the

Figure 12. A comparison between  =¥ 3,  =r 5 simulations with different
equations of state. These simulations (V and X in Table 2), have g = 5 3 and
g = 1.1, respectively. Just as in the other g = 5 3 simulations disk formation is
not apparent in simulation V, despite the steep density gradient. In simulation
X (g = 1.1), the more compressible equation of state permits the formation of
thin, dense, and persistent disk.

2 This quantity can be differentiated from the aerodynamic or sometimes
called hydrodynamic drag generated by a non-gravitating sphere’s geometric
cross section. In many cases, the geometric cross section πR πRobj

2
a
2

(See Figure 4) and the drag generated through gravitational convergence of
the background flow dominates (Ostriker 1999; Passy et al. 2012b). If the
evaluating surface in Equation (13) were similar to the object’s size, we could
instead measure the aerodynamic drag of the sink through the gas as is done by
Ricker & Taam (2008, 2012).
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initial envelope properties at a given radius. We intend to devote
future simulations to study this question.

It is striking that although the accretion rate changes by
nearly two orders of magnitude as the density gradient
steepens, the drag changes very little. While this finding is
initially surprising, its interpretation can be traced to Dodd &
McCreaʼs (1952) insightful analysis of gravitational capture
from a medium containing a density gradient. While the

functional form and normalization of drag and accretion rates
differ substantially from their derived values, their analysis did
point out that drag occurs when material is focused within the
vicinity of the accretor, for example, with impact parameter
Ra. To accrete, the gas must also be liberated of its angular
momentum. With a stiff equation of state like g = 5 3, disks do
not form and most material is swept away from the vicinity of
the accretor before it has the chance to redistribute its angular
momentum.

5. DISCUSSION

We have shown that the morphology of flows surrounding
objects embedded within a CE can be characterized by a few
key parameters. Among these are the flow Mach number ¥,
and the relative sizes of the object radius, accretion radius, and
stellar envelope radius. For the cases we consider here,

< <R R R*obj a , so gravitational focusing is important, and
the whole accretion structure is embedded inside the CE.
We’ve emphasized that another key flow parameter is the
upstream density inhomogeneity, which can be characterized
by the local ratio of accretion radius to density scale height, r.
The hydrodynamical implications of these density gradients
have been explored in the previous sections.
Under the simplifying assumption that local flows inside the

CE can be described by a few key parameters, the lessons from
our dimensionless calculations can be applied to any relevant
CE system. In this section, we highlight some considerations in
extending the results of our calculations to better understand
flow properties across the range of typical encounters described
in Section 2.2.2.

5.1. Cooling, Accretion, and Feedback from Embedded Objects

Accretion flows toward an embedded object can only be
integrated into the object if there is an effective cooling channel
or if the embedded object is a BH. In the case of objects with a
surface, accretion liberates gravitational potential energy and
generates feedback—which, if sufficiently large, can impinge
on the flow field. In the very optically thick environment of the
CE photons cannot easily propagate, and feedback from
accretion will be primarily mechanical rather than photoioniza-
tion-driven (for example, as modeled in HLA flows by Park &
Ricotti 2013). We have adopted a completely absorbing central
boundary condition with radius in Rs in our simulations. This is
useful, of course, in evaluating accretion rates for cases that can
accrete, but may not be appropriate in all scenarios. To
parameterize the effect that a hard, reflecting, central boundary
would have on these flow morphologies we compare the drag
luminosity, » ¥E F v˙ xd d, , to the accretion luminosity,

=E GMM R˙ ˙a s. Whether the drag luminosity or accretion
luminosity is energetically dominant thus depends on both the
compactness of the accretor, R ,s and the accretion rate, Ṁ .
Figure 14 illustrates how the ratio between accreted energy

and drag-generated heat change with density gradient and sink
boundary size. For regimes in which >E E˙ ˙ 1a d , we would
expect that replacing the absorbing central boundary with a
hard boundary would make a significant energetic contribution
to the post-shock region. The central sink boundary acts as a
cooling term in absorbing Ėa from the central regions. If this
energy were not deleted, we might expect it to contribute to
overturning the flow or modifying either the bow shock
configuration or stability. On the other hand, when, <E E˙ ˙ 1a d

Figure 13. Drag force along the direction of motion, Equation (13) in
simulations A–H and I–P. Drag is most in the steepest-gradient simulated,
 =r 3. In the mild-gradient simulations,  = -r 0.1 1, there is less drag than
in the no-gradient,  =r 0 case. The reasons for this can be seen visually in
Figure 5, where a trade-off can be seen in the degree of thermalization realized
in the orbital plane (x–y) and in the perpendicular plane (x–z) as a gradient is
introduced. The drag realized is consistent to within an order of magnitude for
each of the models, despite the accretion rate found in the simulations varying
by a factor of 100.

Figure 14. The ratio of accretion luminosity to drag luminosity as a function of
density gradient in simulations A–H and I–P. The accretion and drag
luminosity are approximated as =E GMM R˙ ˙ s and = ¥E F v˙ xd d, , respectively.
For shallow density gradients, r  1, feedback of accretion energy into the
flow would be energetically important were one to exchange the absorbing
central boundary condition for a reflecting one. For steeper gradients, r  1,
Ṁ is sufficiently small that accretion luminosity should represent only a
perturbation to the energetics of the post-bow shock region.
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the accretion energy is small compared to the drag-generated
energy in the post shock region. In this regime, the nature of the
central boundary should not drastically affect the flow
morphology. Figure 14 shows a transition between these
regimes as the density gradient steepens. Steeper density
gradients imply lower accretion rates into the central boundary.
Because only a small fraction of material reaches the accretor,
the accretion energy becomes a small contribution to the total
energy budget.

Authors who have modeled the effects of a hard central
boundary condition in flow have found that feedback from
the central object impinges to create a broader, more unstable bow
shock (Fryxell et al. 1987; Zarinelli et al. 1995). It may contribute
to a higher rate of vortex-shedding, and thus hydrodynamic drag
(Zarinelli et al. 1995), and almost certainly gives rise to a higher
level of pressure support if there is angular momentum (Armitage
& Livio 2000). Much of this work has been performed under the
assumption of 3D axisymmetry (Fryxell et al. 1987)) or in 2D
planar geometry (Zarinelli et al. 1995; Armitage & Livio 2000),
leaving open for future investigation the details of how non-
axisymmetric 3D flows respond to feedback from a hard central
boundary condition and how this affects critical properties like the
drag coefficient.

Extending the lessons learned in these simulations to the
reality of a CE episode as it plays out in nature is admittedly
somewhat more complicated. The first fact to acknowledge is
that, for objects with a surface, accretion is only possible when
an adequate cooling channel exists. Comparing to the examples
of Section 2.2.2, the microphysics of accretion flows onto NSs
is such that neutrinos can carry away the accretion energy
without interacting significantly with the surrounding gas
(Houck & Chevalier 1991; Chevalier 1993, 1996; Fryer
et al. 1996). Other stellar objects like main sequence stars
and WDs are not sufficiently compact to promote neutrino
emission, and yet the surrounding flow is extremely optically
thick preventing the escape of heat through photon diffusion.
These objects, therefore, are most appropriately modeled by a
hard-surface boundary condition, while NSs and BHs are more
appropriately modeled with an absorbing boundary.

Embedded objects like main sequence stars have radii of
order »R R0.01obj a (see Table 1), their inability to accrete,
therefore, should affect flows with density gradients more
shallow than r  1. Embedded WDs, by contrast, have much

smaller radii, » -R R10obj
4

a. Material that reaches these small
scales will pile up rather than accreting and may contribute a
substantial heating effect on the surrounding material. We
cannot expect, though, to directly extrapolate our simulation Ṁ
for =R R0.01s a to = -R R10s

4
a because the flow’s angular

momentum as it passes the =R R0.01s a indicates that only a
fraction will reach the WD surface at - R10 4

a.

5.2. Mass Accumulation during CE Inspiral

NSs and BHs can gain mass by accretion during a CE
episode. While the drag force, and resulting orbital energy
dissipation rate Ėd sets the rate of inspiral, Ṁ sets the rate of
mass growth. We can therefore compare the inspiral timescale,
E Ėd, to the mass growth timescale M Ṁ . Several authors
have noted that in HLA theory, the similarity in the function
form of ṀHL and ĖHL imply a direct correlation between the
energy required to liberate the CE and the mass accreted during

the inspiral (Chevalier 1993; Brown 1995; Bethe &
Brown 1998). We can write = ¥E M v˙ ˙HL HL

2 . Within this
framework, an integrated energy injection into the CE implies
an accumulated mass. In the case of an NS inspiralling through
a massive companion’s envelope, the implied accumulated
mass would be enough to force the an accretion induced
collapse to a BH.
Recent work by Ricker & Taam (2012) has indicated that

accretion rates from the CE might be substantially lower than
the HLA value, ṀHL. Our local simulations are complimentary
to Ricker & Taamʼs (2012) global models as we are able to
allocate high resolution at scales smaller than Ra and use an
absorbing sink boundary condition. We confirm that in the
presence of a density gradient the accretion rate may be
severely limited. We show that the accretion rate drops off
drastically with increasingly steep density gradients, reaching
values ~ - M10 ˙2

HL for  =r 3. Despite this, the drag force only
changes mildly in response to the density gradient. Our results
therefore indicate that the mass growth timescale may become
substantially longer than expected in HLA theory and that
embedded objects may grow significantly less than previously
expected during CE evolution. We use the local calculations of
accretion and drag rates presented in this paper to expand on
the NS case study further in a companion paper (MacLeod &
Ramirez-Ruiz 2015).
Accretion of material carrying angular momentum will

impart net spin to the accreting object. If the object has radius
equal to Rs used in our simulations, then L̇z (Figure 10) can be
appropriately applied. However, if <R Robj s, as is the case for
NSs and BHs, the a more realistic approximation of L̇ may be
to multiply Ṁ by the Keplerian specific angular momentum at

Figure 15. Characteristic scales that describe the disturbance of the CE by the
embedded body. bCE describes the rapidity of inspiral as compared to orbital
period. Local effects should be very strong for low bCE. The ratio of R R*a
indicates the fraction of stellar material focused to interact with the embedded
body each orbit, and perhaps an indication of the shock heating. Points are
evaluated at a = 0.2, 0.5, and 0.8R* (circles, squares, and diamonds,
respectively) for the same binary combinations plotted in Figures 3 and 4. Our
localized assumptions for CE flow properties are most valid in the upper left of
this diagram, which arises when the embedded body’s mass is small compared
the giant star’s mass. Among the stellar cases, an NS embedded in a supergiant
companion is particularly well described by local approximation. In other
cases, our local assumptions are best justified early in the CE episode where the
embedded object interacts with low-density material near the stellar limb.
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the object’s surface: GMRobj . As mentioned earlier, the

extrapolation of Ṁ to smaller radii is not trivial. However, the
fact that we find M M˙ ˙ HL implies that both DM M and
DL L are reduced proportionately with M M˙ ˙ HL.

5.3. Loss of CE Symmetry during Inspiral

In computing local simulations of CE flows, we implicitly
assume minimal disturbance of the envelope during the
dynamical inspiral. While this is an extremely useful simplify-
ing assumption, it may not be always justified in CE events as
they occur in nature. The loss of spherical symmetry of the
envelope material surrounding the embedded object can be
crudely estimated by comparing the ratio of inspiral timescale
to orbital period. Livio & Soker (1988) define this ratio as
b = E E P( ˙ )CE orb d orb. When bCE is small, local, rather than
orbit-averaged effects are important. As such, large departures
from the initial hydrostatic structure can be expected. Making
use of the Keplerian orbital energy and period, one derives the
expression of (Livio & Soker 1988, Equation (5)),

b
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where we have simplified the original author’s expression by
neglecting any dependence on the sound speed in the flow
accretion radius Ra. In the above expression the mean density is

that enclosed by the orbit, r = m a πa¯ *( ) (4 3 )3 .
Our local approximation of envelope properties as main-

taining a quasi-hydrostatic structure similar to that of the
original star is thus most justified when the embedded mass M
is small compared to m a*( ) or when the local density r r ¯,
as is the case for highly evolved stars that develop tenuous
convective envelopes. In Figure 15 we compare bCE to the ratio
of R R*a for the binary systems described in Section 2. The
ratio R R*a is representative of the fraction of stellar material
that is being shocked in a given passage of the embedded body.
The least disturbed envelopes lie at high bCE and low R R*a
(the upper left of the diagram). An embedded planet is least
disturbing of the examples shown, however, an NS embedded
in a supergiant companion also appears to lie in the phase space
best described by local approximation. Internal structure of the
CE also plays a role. Near the stellar limb (diamond-shape
points at R0.8 *) where the local density is low, the local
approximation is better justified than deeper in the stellar
interior.

These scalings provide some guidance in comparing our
local calculations to the global calculations of Ricker & Taam
(2008, 2012) and Passy et al. (2012b). In particular, Ricker &
Taam (2008, 2012) consider a 1.05 M red giant companion to
a 0.6 M star. Passy et al. (2012b) consider a 0.88 M giant
companion paired with point masses ranging from 0.1 to

M0.9 , however, slices of the fluid conditions are only shown
for the case with a 0.6 M point mass. Thus, these simulations,
with mass ratios of order unity, lie strongly in the regime
where local effects (as parameterized by bCE) should be
important and the CE should quickly lose spherical symmetry
and depart from its original structure, resulting in very rapid
initial inspiral. However, during this short phase, flow proper-
ties compare favorably between local and global approaches. In
particular, fluid is seen to trace out elliptical orbits around the
embedded star in our local calculations, this is also observed in

Figure 1 of Ricker & Taam (2008). The bow shock structures
that originate near the embedded bodies in both local and
global calculations sweep throughout the envelope to seed the
the dominant spiral shock features seen in the orbital plane of
global calculations (e.g., Ricker & Taam 2012, Figure 10).

5.4. The End of Dynamical Inspiral:
Envelope Spin-up and Heating

In CE evolution, the rapid inspiral phase precedes a gradual
stabilizing of the orbital separation as orbital evolution slows to
the thermal rather than dynamical timescale of the envelope
(Podsiadlowski 2001). The rapid inspiral phase is hydrodynamic
in nature, and is the phase principally addressed in simulations
here as well as most recently by Passy et al. (2012b) and Ricker
& Taam (2012). During the rapid inspiral, drag luminosity, Ėd,
transforms the orbital energy into envelope thermal energy. Drag
torques due to asymmetries in the flow transfer orbital angular
momentum to CE angular momentum and orbital angular
momentum is also carried away by any ejected material. Over
time, the remaining CE spins closer to corotation with the
embedded object (Iben & Livio 1993). The combination of these
effects lead to lower densities, higher local sound speeds, and a
progressive reduction in the flow Mach number. These effects, in
turn, bring a reduction in drag, gradually ending the rapid inspiral
phase. This phase of stabilization of orbital separation is observed
clearly in the global simulations of Passy et al. (2012b) and
Ricker & Taam (2012).
To explore qualitatively how flow morphologies might

respond to reducing Mach numbers, we present two simula-
tions in Figure 16. At lower Mach numbers, bow-shock
features are broader, with larger opening angles. While
Figure 16 can be compared directly to Figure 5, the panel
width is enlarged to accommodate the larger shock features and
greater upstream standoff distance. Additionally, the colorbar
shows density only up to 10 r¥—representative of the fact that
shocks are weaker and compression is not as severe in the
 =¥ 1.1 simulations as with  =¥ 2. We also find a
milder tilt angle in the bow shock structures than in the higher
Mach number simulations. As expected, the weaker shocks in
this scenario lead to somewhat lower drag rates with respect to
the nominal value of r ¥πR va

2 2 (see Table 2). Despite these
morphological differences, we find very similar median Ṁ for
these simulations and their  =¥ 2 counterparts.
These facts indicate that a dramatic change in flow

morphology, accretion rate, and inspiral rate, probably occurs
only when the the flow becomes subsonic (Ricker &
Taam 2012). A final consideration on flow properties toward
the end of the dynamical phase is a the decoupling of the
companion’s core from the envelope. In particular, when the
enclosed envelope mass becomes small as compared to the
binary mass that is formed by the embedded object and the core
of the companion, both dense cores develop differential motion
relative to the envelope. Ricker & Taam (2012) show that a
low density, high pressure, region starts to open up surrounding
the binary at this stage. Our guiding assumption of undisturbed
envelope properties is clearly not realized here. Instead, typical
relative motion is subsonic and local density gradients are mild.
In this case, the binary at the center of the extended envelope

provides a heat source for all of the enshrouding CE gas.
Modeling the subsequent thermal evolution that defines of the
remainder of the CE event is certainly important in determining
the outcome of the CE episode but is beyond the scope of this
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study. The stabilization phase may be particularly important as
the envelope may not be fully ejected at the end of the
dynamical phase (see Passy et al. 2012b, for a comparison
between separations at the end of the dynamical inspiral phase
and observed systems). Additional terms other than orbital
energy, like recombination energy, may be important to finalize
the envelope ejection after the dynamical inspiral (Ivanova
et al. 2014).

6. CONCLUSIONS

This paper has examined flow structures in the immediate
vicinity of objects during the dynamical inspiral phase of CE.
We begin by exploring the typical scales during the dynamical
inspiral using MESA calculations of stellar structure. We then use
these conditions to motivate FLASH models of accretion flows
with an upstream density gradient. We find that substantial
asymmetry develops in these flows, which carry net angular
momentum with respect to the embedded object. The main
effects may be summarized as follows:

1. Typical accretion radii, R ,a are much larger than the size
of embedded objects, and may in fact span a large
fraction of the stellar radius. As a result, material that is
focused toward the embedded object can span a large
range of density as Ra sweeps across the radial density
gradient within the giant star’s envelope. We parameter-
ize the density gradient according to  =r rR Ha . Typical
values of r are of order unity, so the density
inhomogeneity represents a substantial perturbation to
the flow. This effect is illustrated in Figure 1 and
elaborated on in Section 2.

2. We introduce this upstream density profile into simula-
tions of HLA. We find that the upstream gradient breaks
the symmetry of the flows, because momenta no longer

cancel to form an accretion column in the wake of the
accretor. With an upstream gradient, the flow carries
angular momentum about the accretor. Figure 5 illustrates
the changing flow morphology with varying r.

3. We find that drag forces are only mildly affected by the
upstream density gradient, but mass accretion rates are
sensitively dependent on r. For relatively steep gradi-

ents, accretion rates can be reduced by a factor of ~ -10 2

compared to HLA theory, as shown in Figure 10.
Because angular momentum plays a role in limiting
accretion rates, we find that the accretion rates of mass
and angular momentum depend on the size of the
accretor, Rs. We have presented simulations with

=R R0.01s a, which is a realistic scale for a main
sequence star embedded in its giant branch companion.
Drag forces, and the corresponding energy dissipation
rates, on the other hand, are only modified by a factor of a
few as shown in Figure 13.

4. Despite the presence of angular momentum in the flow,
persistent disks do not form around the embedded object
in our 3D simulations with a g = 5 3 equation of state.
This differs from results seen in two dimensions (for
example, by Armitage & Livio 2000). Figure 11 shows the
lack of disk formation in our flow morphology, while
Figure 12 shows that a more compressible equation of state,
like g = 1.1, allows the formation of a persistent disk
within the bow shock. The lack of disks on large scales in
CE flows may limit the degree to which viscous effects and
magnetorotational instability (Balbus & Hawley 1991) can
contribute to the dissipation of angular momentum and, in
turn, to accretion. This lack of accretion and disk formation
is consistent with the observation of Tocknell et al. (2014)
that jets seen in post-CE planetary nebulae might most
naturally arise from interactions immediately before or after
the dynamical phase.

5. In a companion paper (MacLeod & Ramirez-Ruiz 2015)
we apply the coefficients of drag and accretion derived
here to the case of NS inspiralling through the envelope
of its supergiant companion. As argued in Section 5.3,
this is one of the cases best described by local
approximation of the CE flow properties. Due to the
reduced efficiency of accretion relative to drag in the
presence of a density gradient, we find that NSs
undergoing typical CE episodes should accrete only a
moderate mass, of order a few percent their own mass
or less.

The local calculations of flow around an embedded object
during CE inspiral presented in this paper are not intended to
replace global calculations. Instead, in these complementary
calculations we have adopted a highly simplified description of
the complex physics of a CE interaction. Our calculations
extend a tradition of numerical calculations of HLA, and treat
the role of only one additional physical effect: density gradients
within the CE. We find that the density gradient alone
drastically modifies the flow around an embedded object as
compared to homogenous HLA. This density gradient and
ensuing loss of symmetry is likely responsible for the low mass
accumulation rate observed by Ricker & Taam (2012) in their
global calculation. Effects that may be particularly important to
consider in future work include the full geometry and
gravitational potential of the CE binary system as well as

Figure 16.  =¥ 1.1 simulations T and U. These are representative of the
flow at later times in the CE evolution after the envelope has been heated spun
closer to corotation with the inspiralling object, and may otherwise be
compared to Figure 5. These panels show the broader opening angle, smaller
degree of tilt, and weaker shocks that develop in lower-Mach number flows.
Note that the density scale here extends to 101 while in Figure 5, it extends to
102, and that the width of the panels is R3.2 a rather than R2.2 a to accommodate
the larger bow-shock structures.
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differential rotation and the disturbed background flow present
in realistic CE events.
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APPENDIX A
RESOLUTION STUDY

In Figure 17 we confirm the robustness of our results with
respect to changing spatial resolution in the  =r 0.3,

=R R0.05s a case. This comparison draws on simulations D,
Q, R, and S. Because the flow is chaotic, we should not expect
formal convergence, but instead aim to demonstrate that the
measurement of the mass (left panel) and angular momentum
(right panel) accretion rates is not impacted by our choice of

numerical resolution around the accretor. We show simulations
with four different levels of resolution. The three higher-
resolution simulations all exhibit relatively uniform behavior in
terms of mean accretion rate and amplitude of variability. This
demonstrates that numerical resolution is not significantly
impacting our conclusions in terms of the total rate of accreted
mass and angular momentum.

APPENDIX B
FITTING FORMULAE

We derive fitting formulae for the accretion of mass, angular
momentum, and for drag as a function of density gradient in
our simulations. As shown in Table 1, the =R R0.01s a case is
directly relevant to a main sequence star inside CE. Embedded
compact objects like WDs, NSs, and BHs have much smaller
radii and thus caution should be taken in the extrapolation of
these results to those scales.
To fit the mass accretion rate, we use a function of the form

 
» +

+ +r r
( )M M a

a

a a
log ˙ ˙

1
. (B1)HL 1

2

3 4
2

We find ai = (−2.140,342,14, 1.946,947,64, 1.190,075,36,
1.057,624,77) for =R R0.01s a and ai = (−1.651,717,39,
1.499,794,86, 0.102,260,72, 3.931,906,71) for =R R0.05s a

via a least-squares minimization in which weights for
individual points are inversely proportional to the variability
defined by the 5% and 95% bounds of the data. The accretion
of angular momentum is approximated by



 
»

+ +

r

r r¥

L

M R v

b

b b

˙

˙ 1
. (B2)

z

HL a

1

2 3
2

Using the same approach, we find fitting parameters of
bi = (1.868,189,16 × 10−2, −6.423,965,70, 3.401,355,78 × 101)
for =R R0.01s a and bi = (0.065,494,09, −6.872,122,61,

Figure 17. Study of the  =r 0.3, =R R0.05s a case with four different levels of spatial resolution (simulations D, Q, R, and S). The two lower level simulations were
run from t = 0, while the two higher resolution simulations were started from a checkpoint of the the d =R 12.8a min simulation at t = 20. There appears to be good
consistency between the three highest resolution levels for 10 ¥R va , the crossing time of material from the box boundary. The lowest-resolution simulation exhibits
larger variability than its higher-resolution counterparts.
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27.023,718,44) for =R R0.05s a. We fit the function

 » + +r r
¥

F

πR v
c c c , (B3)

xd,

a
2 1 2 3

2

to the drag realized in the simulations. Fitting parameters are
ci = (1.917,919,46, −1.528,146,98, 0.759,920,92) for =R R0.01s a

and ci = (1.982,551,97, −1.336,911,33, 0.629,633,26) for
=R R0.05s a.
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