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ABSTRACT
Common envelope events are important interactions between two binary stars that lead to
the formation of close binary systems. We present here a systematic three-dimensional study
in which we model common envelope events with low-mass giant donors. The results allow
us to revise the energy formalism that is usually used to determine common envelope event
outcomes. We show that the energy budget for this type of system should include the recombi-
nation energy, and that it also must take into account that a significant fraction of the released
orbital energy is taken away by the ejecta. We provide three ways in which our results can be
used by binary population synthesis studies: a relation that links the observed post-common
envelope binary with the initial binary parameters, a fitting formula for the αceλ parameter of
the standard energy formalism, and a revised energy formalism that takes into account both
the recombination energy and the energy that is taken away by the ejecta.
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1 IN T RO D U C T I O N

It is believed that the common envelope event (CEE) is the most
important phase in the evolution of a wide range of different types
of close binary systems. It most likely plays a crucial role in the
formation of X-ray binaries, Type Ia supernova progenitors, double
degenerate stars, and more (for a review, see Ivanova et al. 2013a).
CEE is a short-lived physical process when two stars orbit inside
a single, shared envelope. The outcome of a CEE is either a new
binary with a reduced orbit or a merger of the two stars.

One of the standard ways to predict an outcome of a CEE is
by using the energy formalism. This method equates the binding
energy of the envelope of the donor with the orbital energy before
and after the event (see for example van den Heuvel 1976; Webbink
1984):

Ebind = �Eorb , (1)

where Ebind is the binding energy of the envelope of the donor and
�Eorb is the change in the orbital energy. Recognizing that not
all the available orbital energy can be used to eject the envelope
of the donor, Livio & Soker (1988) proposed a common envelope
efficiency parameter, αCE, defined as the fraction of released orbital
energy that has been effectively used to eject the envelope of the
donor. This αCE parameter is now widely used in binary population
synthesis studies (see e.g. Han et al. 2002). A better understanding
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of the energy budget of a CEE, better than a simple parametrization,
could help us to better predict the population of close binaries.

The systems where the parameters of the CEE can be best con-
strained are double-white-dwarf (DWD) binaries. It is widely be-
lieved that the last episode of mass transfer leading to DWD for-
mation was an unstable mass transfer, a CEE, where the donor was
a red giant (RG) star (e.g. Tutukov & Yungelson 1981, 1988; Iben
& Tutukov 1984; Webbink 1984). For RGs, a well-defined relation
between their core masses and radii exists. From the observations of
DWD systems, we know that one of the white dwarfs (WDs) is usu-
ally younger, and therefore is the remnant of the pre-CE RG donor.
However, the mass of the donor cannot be uniquely determined, as
long as αCE is uncertain.

In this paper, we perform three-dimensional numerical simula-
tions of CEEs between low-mass RG stars and WD companions.
This work is the extension of our preliminary study devoted to
the formation of the DWD WD 1101+364 via a CEE (Nandez,
Ivanova & Lombardi 2015). Here, we consider a wide parame-
ter space based on the mass of the RG donor, the RG core mass,
and the companion mass. Our DWD binaries have a mass ratio q =
M1/M2 between 0.8 and 1.125, where M1 is the mass of the younger
WD (formed during a CEE) and M2 is the mass of the older WD.
The main goal of this paper is to understand the energy budget
at the end of the CEE. We pay particular attention to the usage
of the recombination energy, and to the energy that is taken away
by the ejecta. Those energies are not usually taken into account by
the standard energy formalism, and should explain the deviation of
αCE from 1.
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Table 1. Complete parameter space with initial conditions. The model names are composed of following: two digits representing the RG mass are followed
by ‘G’, three digits representing the RG core mass followed by ‘C’, three digits representing the old WD mass followed by ‘D’; ‘S’ stands for synchronized
case, otherwise the simulation is non-synchronized case. Md,1, and Mc,1 are the total and core mass of the RG, whilst Ma,2 is the mass of the old WD, in M�.
Rrlof is the radius of the donor Roche lobe, in R�. aorb,ini is the initial orbital separation in R�, Porb,ini is the initial orbital period in days. Epot,ini, Eint,ini,
Ebind,ini, Erec,ini, Eorb,ini, and Etot,ini are the potential energy of the RG, the internal energy of the RG without recombination, the binding energy of the RG
envelope without recombination energy, the total recombination energy of the RG envelope, initial orbital energy, and initial total energy, defined as the sum
of the binding, recombination, and initial orbital energies, respectively, in the units of 1046 erg. λ ≡ −GMd,1(Md,1 − Mc,1)/(Ebind,iniRrlof) is a dimensionless
star structure parameter (de Kool 1990).

Model Md,1 Mc,1 Ma,2 Rrlof aorb,ini Porb,ini Epot,ini Eint,ini Ebind,ini Erec,ini Eorb,ini Etot,ini λ

1.2G0.32C0.32D 1.195 0.318 0.32 29.484 59.47 43.11 −24.542 12.214 −12.328 2.725 −1.218 −10.825 1.093
1.2G0.32C0.36D 1.195 0.318 0.36 29.484 60.74 44.00 −24.542 12.214 −12.328 2.725 −1.345 −10.945 1.093
1.2G0.32C0.40D 1.195 0.318 0.40 29.484 61.93 44.65 −24.542 12.214 −12.328 2.725 −1.462 −11.066 1.093
1.4G0.32C0.32D 1.397 0.319 0.32 27.735 54.47 35.52 −33.772 16.825 −16.947 3.369 −1.556 −15.134 1.217
1.4G0.32C0.36D 1.397 0.319 0.36 27.735 55.59 36.24 −33.772 16.825 −16.947 3.369 −1.715 −15.293 1.217
1.4G0.32C0.40D 1.397 0.319 0.40 27.735 56.64 36.82 −33.772 16.825 −16.947 3.369 −1.870 −15.456 1.217
1.6G0.32C0.32D 1.598 0.323 0.32 25.805 49.57 29.21 −45.768 22.931 −22.837 4.009 −1.955 −20.783 1.312
1.6G0.32C0.36D 1.598 0.323 0.36 25.805 50.54 29.76 −45.768 22.931 −22.837 4.009 −2.157 −20.985 1.312
1.6G0.32C0.36D-S 1.598 0.323 0.36 31.250 48.61 27.97 −44.769 22.412 −22.357 3.997 −2.241 −20.602 1.106
1.6G0.32C0.40D 1.598 0.323 0.40 25.805 51.48 30.29 −45.768 22.931 −22.837 4.009 −2.353 −21.181 1.312
1.8G0.32C0.32D 1.799 0.318 0.32 16.336 30.77 13.59 −88.123 43.955 −44.167 4.676 −3.544 −43.036 1.401
1.8G0.32C0.36D 1.799 0.318 0.36 16.336 31.37 13.86 −88.123 43.955 −44.167 4.676 −3.912 −43.404 1.401
1.8G0.32C0.40D 1.799 0.318 0.40 16.336 31.93 14.10 −88.123 43.955 −44.167 4.676 −4.271 −43.762 1.401
1.2G0.36C0.32D 1.177 0.362 0.32 60.088 121.63 127.06 −13.403 6.649 −6.754 2.479 −0.587 −4.861 0.896
1.2G0.36C0.36D 1.177 0.362 0.36 60.088 124.24 129.46 −13.403 6.649 −6.754 2.479 −0.646 −4.921 0.896
1.2G0.36C0.40D 1.177 0.362 0.40 60.088 126.68 131.59 −13.403 6.649 −6.754 2.479 −0.704 −4.979 0.896
1.4G0.36C0.32D 1.383 0.364 0.32 56.700 111.58 104.66 −18.200 9.103 −9.097 3.135 −0.752 −6.713 1.037
1.4G0.36C0.36D 1.383 0.364 0.36 56.700 113.88 106.68 −18.200 9.103 −9.097 3.135 −0.829 −6.790 1.037
1.4G0.36C0.40D 1.383 0.364 0.40 56.700 116.04 108.49 −18.200 9.103 −9.097 3.135 −0.906 −6.865 1.037
1.6G0.36C0.32D 1.592 0.363 0.32 50.061 96.21 79.10 −25.439 12.700 −12.739 3.830 −1.003 −9.914 1.163
1.6G0.36C0.36D 1.592 0.363 0.36 50.061 98.13 80.64 −25.439 12.700 −12.739 3.830 −1.107 −10.017 1.163
1.6G0.36C0.40D 1.592 0.363 0.40 50.061 99.93 82.03 −25.439 12.700 −12.739 3.830 −1.208 −10.118 1.163
1.8G0.36C0.32D 1.796 0.360 0.32 41.147 77.51 54.32 −37.269 18.684 −18.585 4.521 −1.405 −15.469 1.279
1.8G0.36C0.36D 1.796 0.360 0.36 41.147 79.01 55.38 −37.269 18.684 −18.585 4.521 −1.551 −15.614 1.279
1.8G0.36C0.40D 1.796 0.360 0.40 41.147 80.42 56.35 −37.269 18.684 −18.585 4.521 −1.693 −15.756 1.279
.

We describe the initial conditions, the parameter space and the
numerical methods in Section 2. Section 3 contains the definitions
for the energies. In Section 4, we give an overview of the final
states of the simulations in terms of the mass of the ejecta, en-
ergy evolution during a spiral-in, orbital parameters at the end
of a CEE, and discuss how the outcomes of the CEE can be
parametrized. Finally, Section 5 gives a brief discussion on how
our results can be used in population synthesis studies, as well as
comparison with the observed binaries that are known to have a
post-CE WD.

2 PARAMETER SPAC E

We study the progenitor systems that have likely formed the ob-
served DWDs, in terms of the observed WD masses and the orbital
separations. We adopt that immediately before a CEE, the DWD
progenitor binaries consisted of a low-mass RG with a core mass
close to the observed new (second-formed) WD and of an older
(first-formed) WD. We consider 24 binaries in the parameter space
defined by the RG donor mass, the mass of the newly formed WD
(RG core), and the mass of the old WD. For the RG donor mass,
Md,1, we take 1.2, 1.4, 1.6, and 1.8 M�. Each low-mass RG is con-
sidered at two evolutionary points on its RG branch, namely when
their degenerate He core masses Mc,1 are 0.32 and 0.36 M� cores
(we expect that the mass of the new WD will be very similar to the
He core mass of the RG donors). For the mass of the old WD, Ma,2,
we take 0.32, 0.36, and 0.40 M�, for each case of the RG donor.

Table 1 shows the summary of the considered parameter space, and
the initial conditions for each binary.

To create the initial RG donor stars, we use the TWIN/EV stel-
lar code (Eggleton 1971, 1972, recent updates are described in
Glebbeek, Pols & Hurley 2008). This allows us to obtain a realistic
initial one-dimensional (1D) stellar profile for each RG donor. Stars
are evolved until their degenerate He cores have grown close to 0.32
and 0.36 M�. To model a CEE between an RG and a WD, we use
STARSMASHER (Gaburov, Lombardi & Portegies Zwart 2010; Lom-
bardi et al. 2011), a smoothed particle hydrodynamics (SPH) code.
Technical details on using this code to model CEEs can be found in
Nandez, Ivanova & Lombardi (2014). We reiterate the point made
in Nandez et al. (2015), that when a 1D star is transferred to a 3D
code via the relaxation process in STARSMASHER, the core of the RG,
Mc,1, must be increased slightly by about 0.01 M� so that the re-
sulting profile of the 3D star for pressure, density, internal energy,
and other quantities would match that of a 1D star. The RG enve-
lope is modelled using 105 particles, and the RG core is modelled
as a point mass, as is the WD (note that a point mass only inter-
acts gravitationally with normal SPH particles). The envelope mass
in our three-dimensional star is Menv,1 = Md,1 − Mc,1. We found
that for most RGs with cores close to 0.4 M�, the profiles could
not be matched well with 1D stars after the relaxation, and hence
RGs with core masses >0.4 M� were excluded from the consid-
ered parameter space. Improving the match of the profiles in those
more evolved donors is computationally unfeasible now, as this re-
quires such a change in the number of SPH particles and in their
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smoothing length, that the GPU time would be increased by at least
64 times.1

The photospheric radius of the star in SPH, RSPH, is defined as
RSPH = Rout + 2hout, where Rout is the position of the outermost
particle and hout is the smoothing length of that particle (for a
detailed discussion on how to define the photospheric radius of
a three-dimensional star, see Nandez et al. 2014). Defining the
photospheric radius this way ensures that all envelope particles are
enclosed within RSPH for the non-synchronized cases.

The initial orbital separation, aorb,ini, for the non-synchronized
cases is found from the assumption that RSPH is equal to the Roche
lobe (RL) radius, Rrl, and using the approximation for the RL ra-
dius by Eggleton (1983). The initial orbital period, Porb,ini, is found
assuming a Keplerian orbit.

For the synchronized case, the initial orbital period and separation
are found at the moment when the outermost particles overfill the
donor’s RL during the scan process (see section 2.3 of Lombardi
et al. 2011, also Nandez et al. 2015). During the scan process, the
envelope’s angular momentum is steadily boosted. This leads to the
expansion of the radius of the donor as compared to the non-rotating
case. As a result, the orbital separation in a synchronized and a non-
synchronized case may not match; however, the difference in these
quantities is not large. The photospheric radius is RSPH = Rout for
the synchronized case.

We use the tabulated equation of state (TEOS) incorporated from
MESA (see section 4.2 of Paxton et al. 2011) and implemented as de-
scribed in Nandez et al. (2015). This TEOS includes recombination
energy for H, He, C, N, O, Ne, and Mg. The dominant contribu-
tion to the recombination energy comes from H, which account for
about 59 per cent of the total energy, followed by He with about
38 per cent, and 3 per cent for the rest of the elements, in all our
simulations.

3 D E F I N I T I O N S

In this section, we declare definitions for the most important quan-
tities. Definitions are adopted from Nandez et al. (2015), unless
stated otherwise.

Energy formalism. The energy formalism compares the donor’s
envelope binding energy Ebind with the orbital energy before the
CEE, Eorb,ini, and after the CEE, Eorb,fin (Webbink 1984; Livio &
Soker 1988):

Ebind = αbind(Eorb,fin − Eorb,ini) ≡ αbind�Eorb . (2)

Here αbind is the fraction of the orbital energy effectively used to
expel the CE. This parameter is equivalent to the commonly used
αCE, and is usually assumed to be 0 ≤ αbind ≤ 1.

The potential energy of the donor’s envelope in SPH is

Epot,ini = 1

2

∑
i

miφi, (3)

where mi and φi are the mass and specific gravitational energy, re-
spectively, for each SPH particle i in the initial RG profile, including
the core. Note that this quantity is computed before the star is placed
in the binary configuration. In our SPH method, φi is calculated as
in Hernquist & Katz (1989).

1 The average time that is spent on obtaining one model presented in this
paper is about 1 GPU core year. The global GPU resource available at Com-
pute/Calcul Canada for all scientists in Canada, in several GPU-equipped
clusters, is about 200 GPU core years.

The internal energy of the donor’s envelope in SPH is

Eint,ini =
∑

i

mi

(
3

2

kTi

μimH
+ aT 4

i

ρi

)
, (4)

where Ti, ρ i, and μi are the temperature, density, and mean molec-
ular mass, respectively, for each particle i in the initial RG profile.
The constants k, a, and mH are the Boltzmann constant, radiation
constant, and hydrogen atom mass.

The binding energy of the RG, without the recombination energy,
is

Ebind = Epot,ini + Eint,ini. (5)

This binding energy was historically parametrized using the param-
eter λ (de Kool 1990; Ivanova et al. 2013a),

Ebind = −GMd,1(Md,1 − Mc,1)

λR
. (6)

This equation, combined with the energy formalism equation (2),
provides the most used equation to find CEE outcomes in binary
population synthesis studies, where αbindλ are used together as one
single parameter:

�Eorb = −GMd,1(Md,1 − Mc,1)

αbindλR
. (7)

The orbital energy of the binary system in SPH takes the following
form:

Eorb = 1

2
μ|V 12|2 + 1

2

∑
i

miφi − 1

2

∑
j

mjφ
RL1
j

−1

2

∑
k

mkφ
RL2
k , (8)

where μ = M1M2/(M1 + M2) is the reduced mass, and V 12 =
V 1 − V 2 is the relative velocity of the two stars. The first, second,
third, and fourth terms give the orbital kinetic energy, the total
gravitational energy of the binary (with the sum being over all
particles i in the binary), the self-gravitational energy of the donor
(the sum being over all particles j in star 1), and of the WD (the
sum being over all particles k in star 2, initially just the one particle
representing the WD), respectively.

Recombination energy. The recombination energy is included in
the total value of the specific internal energy provided by TEOS,
and can be found as

Erec,ini =
∑

i

mi

(
ui − 3

2

kTi

μimH
− aT 4

i

ρi

)
≡ αrec�Eorb, (9)

where ui is the SPH specific internal energy for each particle. αrec is
the ratio between the recombination energy and the released orbital
energy. Since the recombination energy acts as an additional (to
the orbital energy) source of energy, αrec < 0. This energy is not
part of the usually considered binding energy, as it is not available
immediately, and its release must be triggered (Ivanova, Justham &
Podsiadlowski 2015). The amount of stored recombination energy
is proportional to the mass of the envelope Erec,ini = η(Md,1 − Mc,1).
In a fully ionized gas that consists of only helium (0.3 mass fraction)
and hydrogen (0.7 mass fraction), η � 1.5 × 1013 erg g−1. Our gas
chemical composition is a bit different, and also our TEOS takes
ionization of heavier elements into account as well. For our donors,
we find η � 1.6 × 1013 erg g−1. The version of STARSMASHER we use
evolves, for each SPH particle, the specific internal energy ui and
density ρ i (see equations A18 and A7 of Gaburov et al. 2010). The
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pressure is then found from the internal energy, density, and the
adopted equation of state.

Total energy. The total initial energy, Etot,ini, is

Etot,ini = Eorb,ini + Ebind + Erec. (10)

This quantity is conserved during the evolution of all our models.
Bound and unbound material. For each particle, its total energy is

defined as Etot,i ≡ 0.5miv
2
i + miφi + miui , where the first, second,

and third terms are the kinetic, potential, and internal energies,
respectively. We classify our particle as in Nandez et al. (2015):

(i) the ejecta, munb – the particles that have positive energy,
(ii) the circumbinary material, mcir – the matter that is bound to

the binary, but is located outside of both RLs, and
(iii) the binary material, mbin – the particles that are inside either

of the two RLs.

The total energy of the unbound material at infinity is found when
the unbound mass is in a steady state after the CEE. It is computed
as

E∞
tot,unb =

∑
i

Eunb
tot,i ≡ −α∞

unb�Eorb . (11)

Note that Eunb
tot,i includes the recombination energy of the unbound

material. α∞
unb is the ratio of the energy taken away by the unbound

material to the released orbital energy.
Final energies. The total energy at the end of the simulation is

distributed in the ‘binding’ energy of the gas bound to the binary,
Ebind,fin, the final orbital energy of the binary, Eorb,fin, and the total
energy of the unbound material at infinity, E∞

tot,unb:

Etot,fin = Eorb,fin + Ebind,fin + E∞
tot,unb, (12)

where E∞
tot,unb is composed of E∞

kin,unb, E∞
int,unb, and E∞

pot,unb – the
kinetic, internal, and potential energies of the unbound material,
respectively.

Generally, Ebind,fin has a fairly small absolute value at the end
of the simulation, and so can be safely disregarded. In addition,
the particles around the WD may be accreted during a CEE, and
hence their presence there may not have any physical meaning. The
extended energy formalism, following to Nandez et al. (2015), can
then be written as follows:

αbind + αrec + α∞
unb ≈ 1. (13)

If αrec = α∞
unb = 0, then equation (13) reduces to the standard energy

formalism.
For additional analysis of the energies at the end of a CEE, we

introduce three more quantities:

(i) αpot ≡ E∞
pot,unb/Epot,ini – the ratio of the potential energy taken

away by the ejecta to the initial potential energy of the RG envelope,
(ii) αth ≡ E∞

int,unb/(Eint,ini + Erec) – the ratio of the internal energy
(including recombination) taken away by the ejecta to the sum of
the initial internal energy and the recombination energy of the RG
envelope,

(iii) α∞
kin ≡ −E∞

kin,unb/�Eorb – the ratio of the kinetic energy
taken away by the ejecta to the released orbital energy.

We point out that α∞
kin is a part of α∞

unb; however, αpot and αth are
not a part of α∞

unb as they describe fractions of their corresponding
initial energies.

All our simulations conserved quite well the total angular mo-
mentum and the total energy. We have checked and found that the
error in the energy conservation in all our simulations is less than

0.1 per cent of the initial total energy, while the error in the angu-
lar momentum conservations in all our non-synchronized cases is
less than 0.001 per cent of the initial total angular momentum value,
and the error in the angular momentum conservation in the only
synchronized case is 0.4 per cent.

4 R ESULTS

4.1 Overview

Masses. At the end of each simulation, we form a binary consisting
of M1 and M2 (see Table 2). We note that M1 and M2 in Table 2 differ
from the values given for Mc,1 and Ma,2 in Table 1, respectively, as
a few SPH gas particles remain within the RLs of the DWD binary.
Ultimately, the ejected material Munb is at least 99.4 per cent of the
initial RG envelope, and there is no circumbinary matter around the
newly formed DWD binary.

Final time. We stop our simulations no less than 800 orbits af-
ter the end of the plunge-in, and typically we stop the simulations
after more than 2000 orbits. The plunge-in is the fastest phase
of the spiral-in, during which the instantaneous separation (dis-
tance) between the RG core and the WD changes substantially
on the time-scale comparable to its inferred orbital period. At the
moment we stop, the orbital separation is changing by less than
|δaorb/aorb| < 0.002, where δaorb is found over one binary orbital
period. Some simulations were calculated for much longer, e.g. the
case 1.8G0.32C0.36D is calculated for more than 10 000 orbits
after the end of the plunge-in, and the change of the orbital separa-
tion over the binary orbital period, at the end of the simulation, is
|δaorb/aorb| ≈ 0.0002. The final parameters provided in Table 2 are
expected to be time-converged values.

Energies. Fig. 1 shows how the energies change during the spiral-
in phase for the case 1.2G0.32C0.32D. After the spiral-in phase is
complete and there is no circumbinary matter left, the circumbinary
total energy vanishes, while the ejecta energy and binary total en-
ergy (which is the orbital energy plus the ‘binding’ energy of the
remaining particles) converge to their final values. Table 2 provides
the final distributions of energies for all our simulations. Some os-
tensible deviations can be observed in Table 2. For example, the
model 1.8G0.32C0.32D has more energetic ejecta than other mod-
els. We note that the overall energy budget, and the energy that was
extracted from the formed binary, is much higher in this model than
in any other model.

4.2 Role of the recombination energy

In brief, we found that the circumbinary recombination energy has
a maximum during the plunge-in phase. At this moment, almost the
entire envelope is no longer within the RL of the binary and becomes
circumbinary material (see an example in Fig. 2). The ejection of the
circumbinary envelope then takes place on its dynamical time-scale,
which, e.g. for the case 1.2G0.32C0.32D, is about 100 d.

Let us consider in detail why the dominant energy source that
drives the final ejection of the puffed-up envelope is the recombina-
tion energy but not the binary orbital energy. For that, we will trace
the evolution of specific energies during the crucial time at about
the plunge-in, when the puffed-up circumbinary envelope formed
initially.

The binary orbital energy can be expected to boost the envelope’s
ejection by being transferred into kinetic energy of the envelope.
However, the acceleration of material by the binary’s motion, which
also can be called a dynamical tide, will only affect the mass that is
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Table 2. Energies and masses. Munb, M1, and M2 are the unbound, stripped RG core, and old WD, in M�. E∞
kin,unb = ∑

i munb
i v2

i /2, E∞
int,unb = ∑

i munb
i ui ,

E∞
pot,unb = ∑

i munb
i φi , and E∞

tot,unb are kinetic, internal, potential, and total energies, respectively, for the unbound material. Eorb,fin is the orbital energy after
the CEE. Ebind,fin is the total energy of the particles that remained bound to the binary. Etot,fin is the total energy of all the particles, and �Eorb is the released
orbital energy. All energies are in 1046 erg.

Model Munb M1 M2 E∞
kin,unb E∞

int,unb E∞
pot,unb E∞

tot,unb Eorb,fin Ebind,fin Etot,fin �Eorb

1.2G0.32C0.32D 0.870 0.324 0.320 4.827 0.757 −0.044 5.539 −15.653 −0.712 −10.826 −14.308
1.2G0.32C0.36D 0.872 0.323 0.360 4.604 0.629 −0.041 5.192 −15.504 −0.639 −10.951 −14.159
1.2G0.32C0.40D 0.872 0.323 0.400 7.094 1.182 −0.069 8.206 −18.847 −0.430 −11.071 −17.385
1.4G0.32C0.32D 1.074 0.323 0.320 3.733 1.490 −0.218 5.006 −19.638 −0.510 −15.142 −18.082
1.4G0.32C0.36D 1.079 0.319 0.360 6.790 0.907 −0.094 7.603 −22.911 −0.005 −15.313 −21.196
1.4G0.32C0.40D 1.074 0.323 0.400 5.797 1.688 −0.248 7.237 −22.329 −0.364 −15.456 −20.459
1.6G0.32C0.32D 1.271 0.323 0.324 4.212 2.030 −0.475 5.767 −26.153 −0.406 −20.792 −24.198
1.6G0.32C0.36D 1.274 0.323 0.362 6.074 1.044 −0.155 6.964 −27.814 −0.145 −20.995 −25.657
1.6G0.32C0.36D-S 1.274 0.323 0.362 6.205 0.686 −0.093 6.798 −27.292 −0.145 −20.639 −25.051
1.6G0.32C0.40D 1.274 0.323 0.401 7.115 1.316 −0.205 8.226 −29.273 −0.140 −21.187 −26.920
1.8G0.32C0.32D 1.481 0.318 0.320 8.753 3.532 −1.277 11.008 −53.454 −0.621 −43.067 −49.910
1.8G0.32C0.36D 1.478 0.318 0.362 8.333 1.675 −0.371 9.637 −52.873 −0.171 −43.407 −48.961
1.8G0.32C0.40D 1.479 0.318 0.402 7.990 2.755 −0.934 9.811 −53.115 −0.729 −43.768 −48.609
1.2G0.36C0.32D 0.808 0.370 0.320 2.652 0.693 −0.042 3.303 −7.641 −0.526 −4.864 −7.054
1.2G0.36C0.36D 0.808 0.368 0.360 1.896 0.985 −0.089 2.792 −7.200 −0.514 −4.922 −6.554
1.2G0.36C0.40D 0.808 0.369 0.400 3.811 0.449 −0.021 4.239 −8.781 −0.437 −4.979 −8.077
1.4G0.36C0.32D 1.013 0.370 0.320 2.863 0.886 −0.074 3.675 −9.963 −0.428 −6.716 −9.211
1.4G0.36C0.36D 1.013 0.370 0.360 2.498 1.282 −0.141 3.639 −9.994 −0.437 −6.792 −9.165
1.4G0.36C0.40D 1.013 0.371 0.400 2.842 1.155 −0.109 3.888 −10.249 −0.508 −6.869 −9.343
1.6G0.36C0.32D 1.229 0.363 0.320 4.111 0.904 −0.067 4.948 −14.851 −0.013 −9.916 −13.848
1.6G0.36C0.36D 1.222 0.363 0.360 4.009 1.766 −0.238 5.537 −15.512 −0.047 −10.022 −14.405
1.6G0.36C0.40D 1.224 0.368 0.400 3.773 1.687 −0.226 5.234 −14.993 −0.366 −10.125 −13.785
1.8G0.36C0.32D 1.436 0.360 0.320 3.990 2.392 −0.425 5.957 −21.233 −0.195 −15.471 −19.828
1.8G0.36C0.36D 1.436 0.360 0.360 4.407 3.700 −1.371 6.735 −21.727 −0.623 −15.615 −20.176
1.8G0.36C0.40D 1.433 0.360 0.403 4.852 2.258 −0.448 6.661 −22.047 −0.380 −15.766 −20.354

Figure 1. The evolution of the total energy (grey solid line), the orbital
energy Eorb (green solid line), the energy in the circumbinary matter (black
solid line), and the energy in the ejecta (blue solid line) for the case
1.2G0.32C0.32D.

located approximately within three binary orbital separations of the
binary’s centre of mass (see e.g. Portegies Zwart & Meinen 1993).
Note that we do not consider here any secular tidal effects, but only
an acceleration that is produced during a period of time that is less
than a hundred orbital periods of the binary after the plunge-in, i.e.
comparable to when the envelope is ejected in our simulations. We

Figure 2. The evolution of the total recombination energy (grey solid line),
the recombination energy in SPH particles bound to the binary (green solid
line), the recombination energy in SPH particles in the circumbinary material
(black solid line), and the recombination energy in the ejecta (blue solid line),
shown for the case 1.2G0.32C0.32D.

can test whether the mass located far away from the binary is, or is
not, accelerated by the binary in our case.

First, we separate the bound envelope into two sub-envelopes:
the inner envelope – the envelope’s mass that is within the distance
of 3aorb, mbound, tid – and the outer envelope, mbound, notid, or the mass
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Figure 3. The evolution of the specific energies and the masses for the case
1.2G0.32C0.32D. The bottom plot shows the specific energies per unit mass
in the outer envelope (see Section 4.2): kinetic energy εkin, total energy
including recombination εtot, and total energy excluding recombination εtot

− εrec. See the text in Section 4.2 for details on masses.

that is beyond 3aorb. Here aorb is the current distance between the
RG core and the WD. The outer envelope, once it is ‘decoupled’
from the binary’s tidal effect, is expected to evolve according to its
potential, kinetic, internal, and recombination energies.

Let us consider the case 1.2G0.32C0.32D (see Fig. 3). In the
evolution shown, the plunge-in takes place from days 1750 to 1770,
when the orbital separation shrinks by a factor of 10, approaching
closely its final value. At day 1770, most of the initial envelope is
either in the outer envelope or is ejected. During the plunge-in, the
definition of the orbital separation aorb by the energetic principle
cannot provide a proper result (for the energy budget and the orbital
separation ambiguity during the plunge-in, see Ivanova & Nandez
2016); hence, we can only use a geometrical distance between
the RG core and WD. During the plunge-in, the inferred orbital
separation is changing rapidly (in a sense, it can also be described
as having a very high eccentricity). Since the boundary between the
outer and inner envelopes, drawn at 3aorb, oscillates as well as the
orbital separation itself, the defined masses of the envelopes and
their energies oscillate during the plunge-in.

In Fig. 3, we can see that the specific kinetic energy of the outer
envelope is settled by the end of the plunge-in. This outer envelope
is bound by the conventional definition, in which the total energy
excluding recombination is negative. At the same time, the outer en-
velope is effectively decoupled from the binary and is not receiving
further boosts to its kinetic energy.

At the moment of the end of the plunge-in, the outer envelope
possesses most of the mass that remains bound to the binary. The
outer envelope has obtained some kinetic energy from its previous
interaction with the shrinking binary during the plunge-in. That
non-zero kinetic energy leads to the envelope expansion, on the
dynamical time-scale of the expanded envelope, where every SPH
particle in the outer envelope can have only a parabolic (bound)
trajectory with respect to the binary, if the recombination energy is
not released.

However, once the material expands and cools down enough to
start recombination, an SPH particle gains enough energy to become

unbound – it can be seen from Fig. 3 that at the end of the plunge-in,
the stored potential recombination energy is sufficient to unbind the
material of the outer envelope. The outer envelope is now flowing
away; as more of its material feels a pressure differential between
open space above and the remaining envelope below, it expands
further, cools down, and becomes unbound after recombination.
This recombination-driven ejection is gradual and non-explosive,
versus the rather explosive, or dynamical, ejection that takes place
during the plunge-in, as described in detail by Ivanova & Nandez
(2016). The radius at which the released recombination energy can
remove a particle out of the potential well is the ‘recombination’
radius, and was derived in Ivanova & Nandez (2016). We can clarify
that there is no recombination energy stored in the ejected material
at the end of the simulations.

It is important to mention that the recombination takes place at
large optical depths. Using our 3D models, we estimate that typical
optical depths have values of at least 10, and 1D studies showed
that hydrogen recombination can take place at optical depths above
100 (Ivanova et al. 2015).

4.3 Post-CE orbital parameters

We find the final orbital separation in a geometrical way as aorb,fin

= (ra + rp)/2, where rp is the periastron and ra is the apastron. We
ensure that these two quantities, rp and ra, are no longer changing
with time at the moment when we extract them from the simulations.
We find the final orbital period of the binary assuming a Keplerian
orbit, Porb,fin. Another important orbital parameter is the eccentricity,
e, which is found as e = (ra − rp)/(2aorb,fin). The final orbital
parameters are provided in Table 3.

Note that the final separation found using the orbital energy,
aEn

orb,fin = −GM1M2/(2Eorb,fin), differs from the final orbital sepa-
ration found in the geometric way, aorb,fin. This is for two reasons.

(i) There is still mass within the RLs of both point masses, as
can be seen by the non-zero value of Ebind,fin. The presence of these
particles, and their not fully stable orbits around the point masses,
makes the energy-based way to calculate aEn

orb,fin uncertain. Note that
these few particles make the stars aspherical and the equation for
aEn

orb,fin is formally not valid.
(ii) The distance between the two point masses (WD and RG

core) is less than two times their smoothing lengths, which means
that there is some extra smoothing in the gravitational potential
equation (see the appendix of Hernquist & Katz 1989). The smooth-
ing length of the point masses acts as the softening term defined
by Hernquist & Katz (1989). For details on the definition and how
to determine the smoothing length in the case modelled here, see
Lombardi et al. (2011). As an example, in the model
1.8G0.32C0.32D, the smoothing length for the RG core is hcore =
0.35 R�, and the smoothing length for the WD is hWD = 0.73 R�.

The difference in orbital separations between the geometrical
way aorb,fin and the energy way aEn

orb,fin varies from 7.19 per cent
(1.2G0.32C0.36D) to 18.11 per cent (1.8G0.32C0.32W), where the
separation derived via the geometrical way is always smaller than
the separation derived via the energy way. There is a very small
discrepancy for the initial orbital separations using the two methods,
<0.24 per cent.

The two values for the orbital separation would be closer to each
other if the potential in the SPH code were calculated without a
softening term. Note however that due to the first reason above,
which is the presence of SPH particles inside the RLs, the two
terms will never be completely the same. The discrepancy between
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Table 3. Orbital parameters. The closest and farthest orbital separations are rp and ra, respectively, while aorb,fin is the semimajor axis (all in R�). The orbital
period Porb,fin is given in days, and e is the eccentricity of the orbit. The energy fractions αbind, αrec, and α∞

unb are defined in equations (2), (9), and (11),
respectively. αpot is the fraction of potential energy taken by the ejecta with respect to the initial potential energy. αth is the ratio of the thermal energy taken
by the ejecta to the initial thermal energy (including recombination energy), and α∞

kin is the kinetic energy scaled with the released orbital energy.

Model rp ra aorb,fin Porb,fin e αbind αrec α∞
unb αpot αth α∞

kin αbindλ

1.2G0.32C0.32D 1.342 1.415 1.379 0.234 0.026 0.856 −0.189 0.384 0.003 0.064 0.323 0.936
1.2G0.32C0.36D 1.520 1.532 1.526 0.264 0.004 0.871 −0.192 0.367 0.002 0.042 0.325 0.952
1.2G0.32C0.40D 1.415 1.422 1.419 0.230 0.002 0.709 −0.157 0.472 0.003 0.079 0.408 0.775
1.4G0.32C0.32D 1.093 1.153 1.123 0.172 0.027 0.937 −0.186 0.277 0.006 0.074 0.206 1.140
1.4G0.32C0.36D 1.070 1.089 1.080 0.158 0.009 0.800 −0.159 0.359 0.003 0.045 0.320 0.974
1.4G0.32C0.40D 1.197 1.243 1.220 0.184 0.019 0.828 −0.165 0.354 0.007 0.084 0.283 1.008
1.6G0.32C0.32D 0.848 0.882 0.865 0.116 0.020 0.944 −0.166 0.238 0.010 0.075 0.174 1.239
1.6G0.32C0.36D 0.880 0.948 0.914 0.122 0.037 0.893 −0.157 0.273 0.003 0.040 0.237 1.172
1.6G0.32C0.36D-S 0.912 0.947 0.930 0.126 0.019 0.895 −0.160 0.277 0.002 0.026 0.248 1.000
1.6G0.32C0.40D 0.936 0.979 0.958 0.128 0.022 0.848 −0.149 0.306 0.005 0.049 0.264 1.113
1.8G0.32C0.32D 0.409 0.448 0.429 0.041 0.046 0.895 −0.095 0.226 0.022 0.091 0.174 1.254
1.8G0.32C0.36D 0.464 0.493 0.479 0.047 0.030 0.902 −0.096 0.197 0.004 0.034 0.170 1.264
1.8G0.32C0.40D 0.517 0.534 0.526 0.052 0.017 0.909 −0.096 0.202 0.018 0.071 0.163 1.274
1.2G0.36C0.32D 3.174 3.316 3.245 0.816 0.022 0.957 −0.351 0.468 0.003 0.076 0.376 0.857
1.2G0.36C0.36D 3.625 3.834 3.730 0.978 0.028 1.031 −0.378 0.426 0.007 0.108 0.289 0.924
1.2G0.36C0.40D 3.346 3.596 3.471 0.855 0.036 0.836 −0.307 0.525 0.002 0.049 0.472 0.749
1.4G0.36C0.32D 2.516 2.559 2.538 0.564 0.009 0.988 −0.340 0.399 0.004 0.072 0.311 1.027
1.4G0.36C0.36D 2.736 2.866 2.801 0.636 0.023 0.993 −0.342 0.397 0.008 0.105 0.273 1.032
1.4G0.36C0.40D 2.911 3.080 2.996 0.685 0.028 0.974 −0.336 0.416 0.006 0.094 0.304 1.012
1.6G0.36C0.32D 1.627 1.773 1.700 0.311 0.043 0.920 −0.277 0.357 0.003 0.055 0.297 1.070
1.6G0.36C0.36D 1.777 1.870 1.824 0.336 0.026 0.884 −0.266 0.384 0.009 0.107 0.278 1.028
1.6G0.36C0.40D 2.039 2.143 2.091 0.400 0.025 0.924 −0.278 0.380 0.009 0.102 0.274 1.075
1.8G0.36C0.32D 1.129 1.234 1.182 0.181 0.045 0.937 −0.228 0.300 0.011 0.103 0.201 1.200
1.8G0.36C0.36D 1.209 1.333 1.271 0.196 0.049 0.921 −0.224 0.334 0.037 0.160 0.218 1.178
1.8G0.36C0.40D 1.379 1.458 1.419 0.224 0.029 0.913 −0.222 0.327 0.012 0.097 0.238 1.168

the two values due to the softening term is expected to decrease
if the smoothing length is decreased, and that can be done if the
number of the particles is increased, although it is not intuitive to
state whether the separation found by the geometrical way would
increase or decrease. Only one test was made for the CEE study of
the formation of the specific binary; a simulation with 200k particles
resulted in a 7 per cent smaller final orbital separation than the same
case modelled with 100k particles (Nandez et al. 2015). To clarify,
the smoothing length was smaller in the case of 200k by 20 per cent
compared to the case of 100k, but the relative difference between the
final separations derived in the two ways was smaller. The models
presented in this study might be affected similarly, but it is likely
that the relative change in the final results will be small even if the
resolution will be doubled.

Even though the smoothing lengths of the point masses are par-
tially responsible for the discrepancy between the orbital separations
found by the two methods, the smoothing length values cannot ex-
plain the unbinding of the puffed-up envelope. For instance, let us
consider the model mentioned above with the maximum discrep-
ancy of 18 per cent, 1.8G0.32C0.32W. The smoothing lengths for
the RG core and WD are hcore = 0.35 R� and hWD = 0.73 R�.
The softening in this case starts to work when the distance between
the RG core and the WD is 2.16 R�. At that moment, most of the
mass is located at an average distance of 14 R�, except for a few
strongly bound particles which remain bound within about 3 R�
from the centre of mass. The final separation therefore can be de-
pendent on the mass resolution of the particles that were initially
strongly bound and were in the close neighbourhood of the RG
core (where the smoothing length becomes important). However,
as was discussed previously in Section 4.2, the binary is decoupled
with the puffed-up outer envelope, which is too far from the bi-
nary to be able to effectively transfer away its orbital energy, and

the envelope ejection only depends on the stored kinetic and re-
combination energy, and does not affect the final parameters of the
binary.

Table 3 shows that the bigger the initial mass of the RG, the
tighter is the final orbit, for each fixed companion mass. For each
initial RG mass and different companion mass, usually, the smaller
the mass of the companion, the tighter the final orbital separation.
However, there are two exceptions.

(i) In the case of the 1.2 M� RG with a 0.32 M� core, the largest
final orbital period is for the 0.36 M� WD companion, instead of
the 0.40 M� WD. This could be because the 1.2G0.32C0.36D case
deposited the least of the kinetic energy in the ejecta, as compared
to the other two cases during the spiral-in phase (see Table 2).

(ii) In the case of the 1.4 M� RG with a 0.32 M� core, the
tighter final orbit is for the 0.36 M� WD companion instead of
the 0.32 M� WD. This could be because the 1.4G0.32C0.36D case
deposited more kinetic energy in the ejecta than the other two cases.
The final binary in this case also has less remaining bound mass
than in the other two cases (see Table 2).

We could not identify any other initial condition that could dis-
criminate why the final orbital separation in the two discussed cases
did not follow the trend. During a spiral-in, we find that in those two
cases the velocity at which the companion plunges into the envelope
was higher than in other cases, which is consistent with the ejecta
taking away more angular momentum. However, what causes this
deviation in the ejecta’s angular momentum is not fully clear.

Fig. 4 shows the final orbital periods for all the simulations, as
a function of the initial RG mass. It can be seen that qualitatively
there are two populations, mainly defined by the mass of the RG
core, and with a smaller dependence on the mass of the companion.
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Figure 4. The final orbital periods, plotted against the initial RG mass. The
open circles correspond to simulations with Mcore,1 = 0.32 M�, while the
open triangles correspond to Mcore,1 = 0.36 M�. The small, medium, and
big symbols are for companions with 0.32, 0.36, and 0.40 M�, respectively.

Figure 5. Final orbital periods. This plot contains all non-synchronized sim-
ulations. The open circles correspond to simulations with M1 ≈ 0.32 M�,
while the open triangles correspond to M1 ≈ 0.36 M�. The small, medium,
and big symbols are for companions with 0.32, 0.36, and 0.40 M�, respec-
tively. The black solid line corresponds to the best fit for all the simulations
(see equation 14). The orbital periods are in days and the masses are in M�.

In each of these two populations, the final orbital period appears to
depend almost linearly on the initial RG mass.

Fig. 5 shows the final orbital periods as a function of the initial
orbital period, the initial RG mass, the mass of the RG core, and the
mass of the companion. This appeared to produce the relationship
that can be expressed as follows:

Porb,fin = 10−2.46±0.05

(
Porb,ini × M2

Md,1M1

)1.18±0.04

. (14)

Figure 6. Values for αbindλ with respect to the initial RG mass. The open
circles correspond to simulations with Mc,1 = 0.32 M�, while the open tri-
angles correspond to Mc,1 = 0.36 M�. The small, medium, and big symbols
are for companions with 0.32, 0.36, and 0.40 M�, respectively.

Here ± indicates the standard error for each coefficient. The units
for the quantities are M� for all the masses, and days for periods.

4.4 αbindλ formalism

In population synthesis models, a crucial parameter is αbindλ, which
can be found from the results of our simulations as follows (see also
equation 7):

αbindλ = −GMd,1(Md,1 − Mc,1)

Rrlof�Eorb
.

Note that this quantity does not imply a separate consideration of
the recombination energy as it is simply a fit to the standard energy
formalism. Fig. 6 shows the behaviour of αbindλ in our models. Our
best fit for αbindλ with the assumed multilinear regression model is

αbindλ = 0.92 + 0.55
Md,1

M�
− 0.79

M2

M�
− 1.19

Mc,1

M�
. (15)

This equation accurately represents all our models, and the
maximum deviation between this equation and any data point
of 0.13 (1.2G0.32C0.4D), and a minimum deviation of 0.002
(1.8G0.36C0.40D).

4.5 Energy carried away by the ejecta

The total energy carried by the ejecta is not negligible, and is com-
parable, within an order of magnitude, to the initial binding energy
of the RG star. Fig. 7 shows the ratio of the energy taken away by
the unbound material to the released orbital energy, α∞

unb. It can be
seen that α∞

unb decreases with the mass of the RG. A multilinear
regression that uses all the points from the simulations (assuming
that all the variables presented have linear trends with respect to
each other) gives the following dependence:

α∞
unb = −E∞

tot,unb

�Eorb
= −0.16 − 0.30

Md,1

M�
+ 0.49

M2

M�
+ 2.27

Mc,1

M�
.

(16)
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Figure 7. Values for α∞
unb with respect to the initial RG mass. The open

circles correspond to simulations with Mcore,1 = 0.32 M�, while the open
triangles correspond to Mcore,1 = 0.36 M�. The small, medium, and big
symbols are for companions with 0.32, 0.36, and 0.40 M�, respectively.

Figure 8. Values for α∞
kin with respect to the initial RG mass. The open

circles correspond to simulations with Mc,1 = 0.32 M�, while the open tri-
angles correspond to Mc,1 = 0.36 M�. The small, medium, and big symbols
are for companions with 0.32, 0.36, and 0.40 M�, respectively.

We note that this equation fits all our models. The maximum de-
viation between this equation and any point is found to be 0.07
(1.2G0.32C0.40D), and the minimum is 0.005 (1.4G0.36C0.32D).

Table 3 shows α∞
kin, which is defined as the ratio of the kinetic

energy taken away by the ejecta to the released orbital energy. Fig. 8
shows a monotonic decrease of α∞

kin with the initial mass of the RG,
very similarly to α∞

unb. The multilinear fitting equation takes the

Figure 9. Values for E∞
kin,unb/Munb with respect to the initial RG mass.

The open circles correspond to simulations with Mc,1 = 0.32 M�, while the
open triangles correspond to Mc,1 = 0.36 M�. The small, medium, and big
symbols are for companions with 0.32, 0.36, and 0.40 M�, respectively.

following form:

α∞
kin = −E∞

kin,unb

�Eorb
= 0.20 − 0.26

Md,1

M�
+ 0.44

M2

M�
+ 0.92

Mc,1

M�
,

(17)

where this equation fits all the points presented in Table 3. The
maximum deviation between this equation and any listed value in
Table 3 is 0.07 (1.4G0.32C0.32D), while the minimum deviation is
0.0002 (1.2G0.32C0.32D).

The potential energy of the ejecta, compared to the initial po-
tential energy, is not really significant, as in all cases αpot � 0.04.
The thermal energy the ejecta still has at infinity, as compared to
the initial thermal energy plus the recombination energy, is several
times larger, albeit also limited to αth � 0.16. The thermal energy
of the ejecta is comparable to the kinetic energy of the ejecta; there-
fore, the internal energy still plays a role in supporting the ongoing
expansion of the material even after all the material is unbound.

Fig. 9 shows how the specific kinetic energy of the ejecta changes
with the initial mass of the RG. We can see that overall this energy
decreases as the RG mass increases, but no clear trend is observed.

Fig. 10 shows how the sum of the potential and thermal specific
energies of the ejecta changes with the mass of the RG. We cannot
really see a trend, except that for RGs with the initial mass of
1.8 M�, this quantity is higher than for the rest. Note that this
quantity is always smaller than the specific kinetic energy of the
ejecta.

5 D I SCUSSI ON

To study the formation of a DWD binary via a CEE, we have simu-
lated 25 three-dimensional hydrodynamical interactions between a
low-mass RG and a WD companion. We considered for the initial
masses of the low-mass RG star 1.2, 1.4, 1.6, or 1.8 M�, with a He
core of 0.32 or 0.36 M�, and WD companions with masses 0.32,
0.36, or 0.40 M�. We find that in all the cases, a DWD binary is
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Figure 10. Values for (E∞
int,unb + E∞

pot,unb)/Munb with respect to the initial
RG mass. The open circles correspond to simulations with Mc,1 = 0.32 M�,
while the open triangles correspond to Mc,1 = 0.36 M�. The small, medium,
and big symbols are for companions with 0.32, 0.36, and 0.40 M�, respec-
tively.

formed, most of the envelope is ejected, and only a few SPH parti-
cles remain bound to the binary in some cases (the bound mass is
less than 0.06 per cent of the initial envelope mass). The envelope
is ejected on the dynamical time-scale of the expanded envelope.

Our results show that the standard energy formalism should be
modified to take into account (i) the energy that is taken away
by the ejecta, as it is a substantial fraction of the released orbital
energy, and (ii) the recombination energy, which plays a crucial
role in ejection of the formed circumbinary envelope. The role of
the recombination energy for the CEE with a low-mass RG donor
is not that it is necessary for the overall energy budget, as none
of the considered systems were expected to merge by the standard
energy formalism, but because the recombination occurs exactly at
the time when the shrunk binary is no longer capable of transferring
its orbital energy to the expanded envelope.

For future population synthesis studies, we provide three ways in
which our results can be used.

First of all, we provide a fitting formula (equation 14) that re-
lates the final orbital period, the initial orbital period, the compan-
ion mass, the initial RG mass, and the RG core. The RG radius
and its core mass are coupled for each donor mass (these can be
found using single stellar evolution tracks). The initial RG mass,
its radius, and the initial orbital period are also related (e.g. by us-
ing the RL radius approximation from Eggleton 1983). Therefore,
our fitting formula provides the relation between the observed pa-
rameters – the post-CE orbital period and the observed masses of
both WDs – and the RG mass and radius before the CE. And vice
versa, a population study could use this fitting formula to obtain the
post-CE orbital period from known binary parameters at the start
of a CE.

Let us consider how this fitting formula can be used to interpret
observed post-CE binaries. For example, take the WD 1101+364,
which has observed parameters best matching the set of models
we have calculated: Porb,fin = 0.145 d, M1 = 0.31 M�, and M2

= 0.36 M� (Marsh 1995). To find the radius of the donor at the

Figure 11. Final orbital periods of sdB stars (from Kupfer et al. 2015) and
their pre-CE conditions, as inferred from equation (14). The solid black
line is the relation provided by equation (14). The crossing horizontal lines
show the positions for different initial donor masses, using observed older
WD masses. Solid symbols are for RG donors [zero-age main sequence
(ZAMS) masses from 1.0 to 1.8 M� with an increment of 0.1 M�, with
the lowest mass on the right]. The RG donors are selected when their cores
are 0.47 M�. Open symbols are for AGB donors (ZAMS masses 1.8, 1.9,
and 2.0 M�, the smallest on the right). The AGB donors are selected when
their cores are 0.53 M�.

time when it had a core of the same mass as a younger WD in the
observed sample, we used parametrized evolutionary tracks from
Hurley, Pols & Tout (2000). For WD 1101+364, the fitting formula
predicts a pre-CE donor mass of 1.5 M� and a pre-CE orbital
period of 33 d. We note that more detailed studies devoted to the
simulations specifically of WD 1101+364 gave a similar pre-CE
donor mass, 1.5 M� (Nandez et al. 2015). We note that since the
pre-CE radius is a strong function of the core mass, uncertainty
in the mass of a younger WD leads to a large uncertainty on the
pre-CE donor. For example, if the mass is only a bit smaller, M1 =
0.29 M�, and the companion’s mass is M2 = 0.33 M� (defined by
the observed mass ratio of 0.87), then the donor would rather have
an initial mass of 1.3M� and a pre-CE orbital period of 26 d.

The second observable type of post-CE binaries for which we can
test the fitting equation are hot subdwarf B stars (sdBs). These stars
are hot core helium-burning stars with masses around 0.5 M�. We
note that the post-CE remnants of this mass are beyond the set of our
current simulations (modelling a CEE with a more evolved donor
requires substantially more GPU time than is available at existing
Compute/Calcul Canada facilities, and therefore is not feasible yet),
but we will try to look at the post-CE binaries to see if we can place
any constraint on their past. We use 12 sdB binaries for which
Kupfer et al. (2015) have found orbital periods, and inferred the
minimum companion masses in these systems from the assumption
of a canonical mass of 0.47 M� for the sdB stars. In Fig. 11, we
show the predictions of our fitting formula. In addition to checking
RG donors, we also took into account asymptotic giant branch
(AGB) donors. A prediction for a post-CE outcome for an AGB
donor cannot be fully trusted, as the fitting formula may not work
well for them; both λ in the donor’s envelope and the fraction of
the recombination energy in the total binding energy of the initial

MNRAS 460, 3992–4002 (2016)



4002 J. L. A. Nandez and N. Ivanova

Table 4. sdB binary predictions. MZAMS, Md,1, Mc,1, and M2 are the ZAMS mass of the donor from our parameter space, inferred initial
donor mass right before the CEE, mass of the donor’s core (which is assumed to become an sdB star after the CEE), and the companion
mass (assumed to be the minimum companion mass from Kupfer et al. 2015), respectively. All the masses are in M�. Rd,1 is the inferred
radius of the donor star right before the CEE in R�. Porb,ini and Porb,ini are the inferred initial orbital period and the observed orbital
period, respectively, in days. Stage is the evolutionary stage of the donor right before the CEE, AGB star, or RG star.

Object MZAMS Md,1 Mc,1 Rd,1 M2 Porb,ini Porb,fin Stage

J08300+47515 1.80 1.75 0.53 110 0.14 212.03 0.15 AGB
J08233+11364 1.90 1.87 0.53 64 0.44 106.94 0.21 AGB
J10215+30101 1.90 1.87 0.53 64 0.30 100.42 0.30 AGB
J09510+03475 1.80 1.75 0.53 110 0.23 229.56 0.43 AGB
J15222−01301 1.80 1.75 0.53 110 0.27 235.69 0.67 AGB
J15082−49405 1.80 1.75 0.53 110 0.39 250.38 0.97 AGB
J11324−06365 1.30 1.20 0.47 157 0.14 461.31 1.06 RG
J01185−00254 1.40 1.32 0.47 153 0.22 449.81 1.30 RG
J13463+28172 1.70 1.67 0.47 139 0.49 378.87 1.96 RG
J18324−63091 1.30 1.20 0.47 157 0.50 565.64 5.40 RG
J09523+62581 1.30 1.20 0.47 157 0.58 577.70 6.98 RG
J03213+05384 1.00 0.78 0.47 176 0.31 824.86 7.43 RG

envelope are not the same as in the case of a low-mass RG. However,
it is important that at least half of the considered sdB binary systems
can be better explained by an RG donor.

Table 4 summarizes the possible progenitors for each sdB binary.
We note that we list the values for the closest point in Fig. 11, not the
exact intersection between the model and the line with constant final
orbital period; the donor mass for each case will not change much
from the listed value in the table, only the radius of the donor and its
initial orbital period will change. We can see from Table 4 or Fig. 11
that the evolutionary stage of the donor star can be associated with
the final orbital period. For Porb,fin � 1 d, the donor star is likely
a (relatively more massive) AGB star, while for Porb,fin � 1 d, the
donor star is more likely to be a (relatively less massive) RG.

For a second way to use our results – as in the population synthesis
studies that use αbindλ formalism to find the outcome of a CEE
– we supply the parametrization that directly provides the αbindλ

value, as a function of the initial donor mass, its core mass, and
the companion mass. We note that in no case αbindλ > 1.3, and our
maximum αbind < 1.03 (we recall that αbind more than 1 implies that
an energy additional to the orbital energy was used, in our case it is
the recombination energy). Some past population synthesis studies
have considered αbindλ = 2 (see e.g. Toonen, Nelemans & Portegies
Zwart 2012) for all CEEs leading to DWD binary formation, but
the results of our simulations do not confirm that such a very high
value is plausible, at least in the case of CEEs with low-mass RG
donors.

And, finally, we give the preferred way to use our results, which
is the most trusted method when one wants to extrapolate our result
outside of the parameter space we considered. We advise population
synthesis studies to use the energy conservation equation that ac-
counts for all energy sinks and sources. In the energy conservation
equation, all initially available recombination energy can be used
as an energy source. (Note that this statement is not yet fully jus-
tified to extend our results for low-mass giants to the case of more
massive or more evolved donors, and shall require further studies.)
The ejected material can take away 20–40 per cent of the released
orbital energy, both as thermal energy and as kinetic energy, and
this is an energy loss. It is this energy that powers those luminous
red novae which are produced by a CEE (Ivanova et al. 2013b).
For these energy losses, we provided a fitting formula. Then the
CEE outcomes can be found using the revised energy formalism as
follows:

(Eorb,ini − Eorb,fin)(1 − α∞
unb) + Ebind + η(Md,1 − Mc,1) = 0 . (18)
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