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ABSTRACT

The common envelope (CE) phase is an important stage in binary stellar evolution. It is needed to explain many
close binary stellar systems, such as cataclysmic variables, SN Ia progenitors, or X-ray binaries. To form the
resulting close binary, the initial orbit has to shrink, thereby transferring energy to the primary giant’s envelope that
is hence ejected. The details of this interaction, however, are still not understood. Here, we present new
hydrodynamic simulations of the dynamical spiral-in forming a CE system. We apply the moving-mesh code AREPO

to follow the interaction of a M1  compact star with a M2  red giant possessing a M0.4  core. The nearly
Lagrangian scheme combines advantages of smoothed particle hydrodynamics and traditional grid-based
hydrodynamic codes and allows us to capture also small flow features at high spatial resolution. Our simulations
reproduce the initial transfer of energy and angular momentum from the binary core to the envelope by spiral
shocks seen in previous studies, but after about 20 orbits a new phenomenon is observed. Large-scale flow
instabilities are triggered by shear flows between adjacent shock layers. These indicate the onset of turbulent
convection in the CE, thus altering the transport of energy on longer timescales. At the end of our simulation, only
8% of the envelope mass is ejected. The failure to unbind the envelope completely may be caused by processes on
thermal timescales or unresolved microphysics.
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1. INTRODUCTION

Many relevant astrophysical processes involve a compact
star in a close binary system, e.g., cataclysmic variables, SN Ia
progenitors, X-ray binaries, or neutron star mergers. In the
evolution of these systems, a giant in a wide orbit ejects its
envelope while the orbit shrinks due to interaction with the
binary companion in a common envelope (CE) event. Unstable
mass transfer initiates a CE phase, followed by a rapid spiral-in
and possibly further evolution on thermal timescales (for a
recent review, see Ivanova et al. 2013). The first ideas were
developed by Paczynski (1976), but the problem is still far
from being understood today. Hence, binary population
synthesis codes model CE phases using parametrized prescrip-
tions where the uncertainty of the outcome is dominated by the
parametrization of these phases (compare, e.g., the study by
Meng et al. 2011 for SN Ia progenitors). As the CE phase does
not possess intrinsic symmetries, hydrodynamical simulations
in three dimensions are required to model the physical
processes. Some processes may take place on a thermal
timescale where hydrodynamic simulations are not feasible
today and should be complemented by one-dimensional
simulations including more physics, e.g., energy transport
(see the discussion in Ivanova et al. 2013).

Recent hydrodynamic simulations include the adaptive mesh
refinement (AMR) simulations by Ricker & Taam (2008, 2012)
and the smoothed particle hydrodynamics (SPH) and unigrid
simulations by Passy et al. (2012). In these calculations, the
dynamical spiral-in lasts between 10 and 100 days, during
which spiral shocks redistribute angular momentum in the
envelope. At the end, only a small fraction of the envelope
becomes unbound and the final separation seems to be larger
than in observed post-CE systems (compare Figure 17 of Passy

et al. 2012). The failure to eject the envelope in current
simulations may possibly be overcome by including recombi-
nation energy (see SPH simulations by Nandez et al. 2015).
To improve the understanding of hydrodynamical processes

during the spiral-in phase of a CE event, we have run a high-
resolution simulation using the moving-mesh code AREPO

(Springel 2010). This code solves the Euler equations on a
moving computational grid with adaptive resolution, thus
combining the advantages of traditional SPH and AMR codes,
e.g., conservation of angular momentum and total energy and
resolution of low-mass flows and small-scale flow features.
Here, we show that the AREPO code, developed originally
for cosmological simulations (e.g., Marinacci et al. 2014;
Vogelsberger et al. 2014), allows us to resolve the hydro-
dynamical structure of the CE phase in unprecedented detail. In
our simulation, shear flows lead to large-scale Kelvin–
Helmholtz instabilities that dominate the flow structure. These
instabilities have not been observed previously in simulations
and may mark the onset of convection, thus changing the
transport of energy in the envelope on a thermal timescale.

2. NUMERICAL METHODS AND SETUP

We simulate the dynamical spiral-in of the CE phase with the
finite volume hydrodynamics code AREPO (Springel 2010).
AREPO solves the Euler equations on a moving, unstructured
Voronoi mesh using an HLLC-type approximate Riemann
solver. Self-gravity is included with a tree-based algorithm. We
employ an improved gradient estimate and time integration
scheme (Pakmor et al. 2016) yielding second order conver-
gence also for general mesh motions. Individual and adaptive
time stepping is used, which boosts the computational
efficiency due to the multi-scale nature of the system: not all
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cells are evolved on the shortest time step, but only the cells
requiring the smallest time steps. Periodic boundary conditions
were chosen for the hydrodynamics solver with the box size
large enough (3.3 1014´ cm), such that no mass flows over the
boundary for a sufficiently long time. The simulation was
stopped when the first outflow reaches the boundary.

The binary system was set up by placing a red giant (RG)
model on the grid with the core replaced by a gravitation-only
particle and then adding another gravitation-only particle to
model a non-resolved, compact companion star, e.g., a main
sequence star or a white dwarf. Thus, the simulation consists of
cells representing the gas of the envelope and the background
(“gas cells”) and gravitation-only particles representing the RG
core and the companion (“core cells”).

For preparing the single-star initial conditions, we followed
S. T. Ohlmann et al. (2016, in preparation). The RG model was
created using the stellar evolution code MESA (Paxton
et al. 2011, 2013) with a zero-age main sequence mass of
M2 . To limit the range in timescales, we replaced the core of
the RG by a particle interacting only gravitationally. We
mapped the resulting model to a grid with mass-adaptive radial
shells using a HEALPix distribution (Górski et al. 2005) on
each shell. The gravitational force of the particle was smoothed
at a length of h 7.3 1010= ´ cm ( R1.0~ ) according to the
spline function given in Springel (2010). This enables us to
reach a stable configuration around the particle since the
pressure gradients can be resolved sufficiently to counteract the
gravitational force of the particle. We treat the gas as an ideal
gas with an adiabatic index of 5/3 which is different from the
MESA equation of state. However, since we are interested in
the envelope where the departure from ideal gas behavior is
small, this approach still allows for a reasonable representation
of the star calculated with MESA in AREPO. The mechanical
structure of the star is well reproduced in the envelope
(differences in density, pressure, and sound speed are less than
5%). Only in the internal energy we observe larger deviations,
because we neglect the ionization state of the gas as a first
approximation. The RG atmosphere was then relaxed by
employing an additional damping term to reduce spurious
velocities for several dynamical timescales (for details, see
S. T. Ohlmann et al. 2016, in preparation). This resulted in a
stable profile with a core mass of M0.38  and an envelope mass
of M1.60  (total: M1.98 ). The Mach numbers in the envelope
reach up to 0.1 after the relaxation procedure, similar to what
would be expected from the initial MESA model, although we
are not able to properly resolve the convection in the envelope.
The density and pressure profiles are stable for several
dynamical timescales after relaxation without applying any
damping. The total number of cells was about 1.8 106´ with a
mean cell mass of M8.7 10 7´ -

 at the beginning and
2.7 106´ with M5.8 10 7´ -

 at the end of the simulation
due to mesh refinement. The refinement criterion was set to a
target cell mass of M8.4 10 7´ -

. Additionally, in a sphere of
five softening lengths of the gravitation-only particle, the
maximum cell radius was bound to a tenth of the softening
length. The smallest cells near the RG core have a radius of
about 4.6 10 cm9´ ( R0.07 ) at the beginning and about
8 10 cm8´ ( R0.01 ) at the end of the simulation. This allows
us to study small-scale flow features in detail. In the direct
vicinity of the RG core, the hydrodynamical flow is only
resolved outside of a sphere of radius of the softening length.
Nevertheless, we find that a resolution of about 10 cells per

softening length is required to ensure energy conservation
during the in-spiral. The spatial resolution in recent hydro-
dynamics simulations of CE phases was lower: the AMR
simulations of Ricker & Taam (2008, 2012) have R0.3  cells
for a R32  RG, the SPH simulations of Passy et al. (2012) have

R0.1  smoothing lengths, and the grid simulations of Passy
et al. (2012) R1.7  and R3.4  cells for a R83  RG.
The companion was placed on the surface of the RG at the

same y and z coordinates as the RG core and at a distance of
R49  in the x direction. The mass of the secondary was chosen

to be M0.99 , half of the primary mass. The velocities were
initialized to a rigid rotation around the center of mass with the
Keplerian rotation period of 23 days. Moreover, the envelope
was assumed to be in 95% co-rotation, similar to the
simulations of Ricker & Taam (2008, 2012). More realistic
initial conditions would start at the point of Roche lobe
overflow to take into account the transfer of energy and angular
momentum from the orbit to the envelope. Moreover, the
hydrostatic equilibrium in the outer layers is less distorted
compared to placing the companion at the surface. However,
since the timescales of orbital decay are very long when the
first mass transfer starts, it is at the moment computationally
infeasible for us to start the simulation at the Roche lobe
distance.
The RG atmosphere and the companion were placed in a

large box with a side length of 3.3 1014´ cm and a low
background density5 of 10−16 g cm−3. To resolve the gravita-
tional interaction between the cores, the softening lengths of
the cores are required to be at most a fifth of the distance
between the cores. The simulation was stopped after about
120 days, when the first low-density tidal arm reached the
boundary. Since the box was chosen very large, no mass is lost
during the simulation. Angular momentum was conserved to
high accuracy during the run with an error below 1%.

3. RESULTS AND DISCUSSION

The simulation starts with tidal deformation of the envelope
and mass accretion on the secondary. When the accretion
stream hits itself, shocks emerge and the orbit shrinks rapidly
by a factor of five during the first revolution (Figure 1). This
fast spiral-in slows down after a few orbits and the separation

Figure 1. Distance of RG core and companion (blue) and major semi-axis (red)
in solar radii over time in days. The inset shows the positions of the RG core
(red) and companion (blue) in the x–y plane up to 80 days.

5 The density to which we resolve the initial RG model is 0.002 g cm−3.
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of the RG core and the companion decreases much slower at
the end of the simulation. At this point, the system evolved for
over 80 orbits and the separation is about R4.3 , a factor of 10
smaller than in the beginning. The initially circular orbit
becomes eccentric (e 0.5» ), circularizes somewhat in the
course of the spiral-in, and the eccentricity settles at a value of
0.18. Thus, the orbit is rather eccentric compared to the
simulation by Ricker & Taam (2012) with e= 0.08 which may
be due to different initial conditions. At the end of the
simulation, the timescale of orbital decay ( a ȧ- , a: semimajor
axis) grows to ∼1.5years.

The energy budget during the simulation is shown in
Figure 2 for the gas cells, the RG core and its companion, and
the sum of both. In our simulation, the core cells interact only
gravitationally, hence, they do not possess internal energy; thus
the total internal energy is given by the gas of the RG envelope
only. Although large amounts of potential and kinetic energy
are converted into one another (up to 1.5 1047´ erg in one
orbit, i.e., 65% of the total energy), the total energy is
conserved to better than 3% during the whole run. This means
that our resolution is sufficient to accurately represent the
regions where gravity is coupled strongly to the hydrodynamics
and where the conversion between potential and kinetic
energies takes place.6

During the simulation, energy is transferred from the binary
system of the RG core and the companion to the envelope: its

binding energy is raised from 1.2 1047- ´ erg in the beginning
to 7.7 1045- ´ erg in the end of the simulation. This energy is
mainly taken from the potential energy of the binary system of
the RG core and the companion due to the shrinking orbit. The
internal energy of the envelope decreases by 1.3 1047´ erg
because of its expansion. Although the total energy of the
envelope is negative at the end of the simulation, M0.1  of the
envelope gets unbound, about 8% of its mass. Most of this
material is expelled during the first 40 days. After this, the mass
loss rate settles to about M0.015  yr−1. If this mass loss rate is
sustained, the envelope may be ejected in roughly 100years.
Similar to the simulations by Passy et al. (2012) and Ricker &
Taam (2008, 2012), only a small fraction of the envelope is
unbound during the fast spiral-in, although more mass is lost in
their simulations at a higher rate.
Since systems similar to the final system of our simulation

are observed (e.g., J0755+4800 from Gianninas et al. 2014; a
M0.4~  + M1~  system in a R3~  orbit), but in a shorter

orbit and with the envelope ejected, additional mechanisms
must contribute to the evolution that we do not capture in our
simulation. This can either be processes acting on longer
timescales (up to the thermal timescale) or additional micro-
physical effects, such as recombination (compare the
SPH simulations by Nandez et al. 2015).
The dynamics of the spiral-in is illustrated in Figure 3 as a

series of density slices in the x–y plane. During the first orbit,
the companion plunges into the envelope and an accretion
stream onto it builds up. After 10 days (Figure 3, top left), an
accretion shock is visible that results in a tidal arm moving
outwards. Most of the material that is unbound at the end of the

Figure 2. Energy budget during inspiral. Shown are the total (blue), potential (red), kinetic (yellow), and internal energy (green) for the gas of the envelope (dotted),
the RG core and the companion (dashed), and summed values (full lines). The summed value of the internal energy is the same as for the gas since the RG core and the
companion are gravitation-only particles. The conservation of the total energy is better than 3% during the simulation.

6 This is not trivial: due to the different discretization of gravity and
hydrodynamics, problems with large conversions of potential energy into
kinetic or internal energy can lead to substantial errors in the total energy, when
the resolution is too low (see the Evrard collapse example in Springel 2010).
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simulation stems from this first interaction. During the second
orbit, the distance between the RG core and the companion has
decreased by a factor of about 5 compared to their initial
separation and the two compact components revolve in an
eccentric orbit. The shock created by the companion reaches
the inner part of the envelope while a second shock is caused
by the motion of the RG core. After about two orbits (20 days,
Figure 3, top middle), the shock created by the RG core
overtakes the first tidal arm caused by the companion. The
density field in the regions between the shocks does not show
distinct features. After almost seven orbits (40 days, Figure 3,
top right), a layered structure emerges that is created by spiral
shocks continuously driven outwards by both the RG core and
the compact companion. Shear flows between neighboring
shocks cause Kelvin–Helmholtz instabilities in the outer part of
the spiral structure. The spiral structure of the shocks tightens
and shear instabilities grow stronger at 60 days (Figure 3,
bottom left). At later times (90 days, Figure 3, bottom middle),
shear instabilities of adjacent layers overlap and form a large-
scale instability that connects several regions of the spiral
structure. New shocks are still created in the inner part by the
RG core and the companion. Near the end of the simulation
(120 days, Figure 3, bottom right), the spiral shock structure is
not visible anymore. Instead, large-scale instabilities have
emerged and dominate the flow pattern. The central part of the

domain around the compact components is still well resolved
(see inset of the bottom right panel of Figure 3). The flow
between the RG core and the companion remains smooth;
shocks begin outside the innermost region. During the
evolution, the flow shows some asymmetries caused by the
first tidal arm which is ejected in the negative x and y
directions, resulting in a relocation of the RG core and the
companion in the opposite direction.
The structure of the envelope at the end of the simulation

after 120 days is shown in Figure 4. The density slice in the x–y
plane (Figure 4, top left) shows that the layered shock structure
is only retained in the innermost region. In the outer region, it is
washed out and the flow is dominated by large-scale
instabilities. In the x–z plane (see middle left in Figure 4),
the outflow is concentrated mostly around the equatorial plane
in a toroidal structure. Shocks generated in the inner part are
washed out by the shear instability in the outer region. To
assess the convective stability of the envelope, we employ the
Solberg–Høiland criterion (e.g., Kippenhahn et al. 2013) that
predicts convective stability for

g s
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3

2· ( )
v v

-
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+
¶
¶

>

where g denotes gravitational acceleration, s entropy, cp
specific heat capacity at constant pressure, j specific angular

Figure 3. Time series of density snapshots in the x–y plane during spiral-in at six different times. The × marks the position of the companion, the + marks the position
of the RG core. All plots are centered on the center of mass of the RG core and the companion. The inset in the bottom right panel shows the central region of about

R20  with the color scale ranging from 10−6 to 10−3 gcm−3.
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momentum, and ϖ distance from rotational axis. This quantity
is shown in Figure 4 for the x–y plane (top middle) and the x–z
plane (middle center). The flow is stabilized by the increase of
specific angular momentum (second term) in a sphere of R7~ 
around the center of mass that is located to the lower left
compared to the cores in Figure 4 (top middle). Farther away
from the center of mass, the specific angular momentum is
nearly constant, and the impact of the second term in the

Solberg–Høiland criterion decreases rapidly. Apart from a
small region of stability ( R3~ ) around the RG core and the
companion, regions of stability and instability alternate over the
envelope because of the hydrodynamical flows. The situation is
similar perpendicular to the orbital plane, where unstable
regions can be found throughout the toroidal structure. The
growth timescale associated to the unstable regions is

100 days; thus, we conclude that large parts of the envelope

Figure 4. Late snapshot at 120 days. Shown are the density ρ in the x–y (top left) and x–zplane (middle left), the Solberg–Høiland criterion from Equation (1) using a
symmetric logarithmic color coding (blue: stable; orange: unstable) in the x–y (top middle) and x–zplane (middle center), the radial component of the velocity

v evr r·= in the x–y (top right) and x–zplane (middle right), the Mach number (bottom left), the angular component of the velocity v ev ·=f f (bottom middle), and a
vector plot of the velocity in the x–zplane (bottom right), with the color coding indicating the magnitude of the velocity in kms−1. The × marks the position of the
companion, the + marks the position of the RG core. All plots are centered on the center of mass of the RG core and the companion.
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should be convectively unstable. The radial velocity in the
orbital plane (Figure 4, top right) displays some regions with
inflows in the left hemisphere but outflows in the rest of the
envelope. The inflow is probably caused by the initial plunge-
in of the companion. The layered structure of the shocks is
visible in the inner part as jumps, but it is overlaid by the
instability farther out. In the x–z plane the radial velocity
(Figure 4, middle right) shows mostly inflows in the upper and
left hemispheres and outflows in the lower and right hemi-
spheres. This pattern is also seen in the vector plot of the
velocity in this plane (Figure 4, bottom right) that additionally
shows a complex flow structure with whirls corresponding to
the instabilities in the flow. This complex structure makes it
difficult to predict the further evolution of energy transport in
this plane. In the region of the developing instability, the flow
is mostly subsonic (Figure 4, bottom left), whereas it is
transsonic in most other parts of the envelope and supersonic
behind shocks in the outer regions. The envelope is still mostly
co-rotating, as can be seen in the angular component of the
velocity (Figure 4, bottom middle), although the velocity is
rather small in the region of the instability. Especially in the
inner part, adjacent layers can be found with differing
velocities, resulting in shear flows.

The development of large-scale flow instabilities and an
inverse entropy gradient indicate the onset of turbulent
convection in the differentially rotating envelope. This supports
the assumptions of Meyer & Meyer-Hofmeister (1979) of a co-
rotating interior and a differentially rotating envelope with
angular momentum transport mediated by convection in the
envelope.

Large-scale flow instabilities have not been observed in
hydrodynamics simulations before. Passy et al. (2012) show a
density distribution for their 2563 grid run after about five
orbits, where only spiral shocks with smooth regions in
between are visible (see their Figure 6). The density slice of the
AMR simulations by Ricker & Taam (2012) after roughly five
orbits displays features that may be caused by shear flows
between adjacent spiral shocks. Their simulation was stopped
at this instant and it is unclear if large-scale instabilities would
have emerged in the further evolution of the model. We
suspect, however, that the development of shear instabilities is
not seen due to large numerical diffusion in the
SPH simulations and due to the background velocity field in
the grid simulations. The violation of Galilean invariance in
conventional grid-based hydrodynamics codes (when altering
the background velocity at the same resolution) suppresses
Kelvin–Helmholtz instabilities on a static mesh; this is
illustrated in Figure 33 of Springel (2010). The numerical
scheme of AREPO is Galilean invariant, thus, shear instabilities
may also develop on top of background velocities.

4. CONCLUSIONS

In this Letter, we explore the hydrodynamics of the rapid
spiral-in during a CE event using the moving-mesh code AREPO.
The combination of the nearly Lagrangian mesh motion and the
Galilean-invariant scheme enables us to resolve the hydro-
dynamical structure in unprecedented detail, and complements

recent hydrodynamics simulations (Passy et al. 2012; Ricker &
Taam 2012). In particular, we observe, for the first time, the
emergence of large-scale flow instabilities. These are caused by
shear between adjacent layers of the shock spiral that is created
by the in-fall of the companion. These instabilities indicate the
onset of turbulent convection, with important consequences for
the further evolution of the system by, e.g., altering the energy
transport on thermal timescales.
In terms of global quantities, we confirm earlier simulations

(Ricker & Taam 2008, 2012; Passy et al. 2012): only a small
fraction of the envelope mass is ejected on a dynamical
timescale and the final separation is larger than observed. This
may be due to the envelope ejection proceeding on a much
longer timescale than that followed in our simulation. It is also
possible that we miss other processes driving the loss of the
envelope, such as recombination.
As a next step, we will improve the modeling of additional

microphysical effects, including recombination, and examine
different parameters (orbital parameters, masses) to link the
final system characteristics to them in a systematic way. This
opens up the exciting prospect to directly connect the
hydrodynamics simulations to binary stellar evolution.
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