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ABSTRACT

The hydrodynamic evolution of the common-envelope (CE) phase of a low-mass binary composed of a 1.05 M�
red giant and a 0.6 M� companion has been followed for five orbits of the system using a high-resolution method
in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giant’s
extended atmosphere causes about 25% of the CE to be ejected from the system, with mass continuing to be lost
at the end of the simulation at a rate ∼2 M� yr−1. In the process the resulting loss of angular momentum and
energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit
rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution,
and the commonly used Bondi–Hoyle–Lyttleton prescription for estimating the accretion rate onto the companion
significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital
plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating
about the red giant companion. On larger scales, 90% of the outflow is contained within 30◦ of the orbital plane,
and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released
by the inspiral of the cores, only about 25% goes toward ejection of the envelope.
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1. INTRODUCTION

The common-envelope (CE) phase of binary star evolution,
a brief phase during which two stars spiral together within
a differentially rotating envelope leading to the loss of mass
and orbital angular momentum from the system, was first pro-
posed as an important stage in the evolution of close binaries
during the 1970s (Paczynski 1976). Because close binary sys-
tems are central to the interpretation and understanding of many
astronomical phenomena, including Type Ia supernovae, cata-
clysmic variables, X-ray binaries, and possibly short-duration
gamma-ray bursts, developing a physical understanding of the
CE phase has become important for predicting the formation
rates and characteristics of these systems (Taam & Sandquist
2000). Mapping the portions of binary parameter space that
lead to different CE outcomes is a particularly important goal.

A definitive understanding of the CE phase requires com-
putationally intensive hydrodynamical simulations of which a
number of recent studies have been carried out (e.g., Ricker &
Taam 2008; Taam & Ricker 2010; Passy et al. 2012). However,
the final state of the post-CE systems has yet to be determined
from such calculations and, hence, modeling of its outcomes
in binary population synthesis studies has relied upon simple
analytical prescriptions based on energetic considerations (Iben
& Tutukov 1985) where an efficiency for the conversion of or-
bital energy of the binary to the kinetic energy of the outflow is
assumed. Alternatively, a prescription based on angular momen-
tum considerations has been proposed (Nelemans et al. 2000;
Nelemans & Tout 2005), where the specific angular momentum
of the ejected matter is taken as a parameter. Recent studies have
focused on improvements to the former analytical prescription
by developing a more accurate description of the conditions re-
quired for ejection: that is, the binding energy of the envelope
and the response of the stellar interior to mass loss (Xu & Li

2010; Ge et al. 2010; Deloye & Taam 2010; Loveridge et al.
2011). However, the efficiency of the ejection process remains
to be determined.

Toward the goal of understanding the physical mechanisms
that are important in governing the ejection of material dur-
ing the CE phase and ultimately the efficiency of the process,
we have carried out a high-resolution adaptive mesh refinement
(AMR) simulation of the evolution of a binary initially con-
sisting of a 1.05 M� red giant containing a 0.36 M� degenerate
core with a 0.6 M� companion. The use of AMR in this study
represents a major improvement over previous work based on
stationary nested grids (Sandquist et al. 1998). This method en-
sures that the deep interior of the CE is always well resolved as
matter moves about the center of mass of the system. Hence, the
method permits one to study systems with binary components
of nearly equal masses, which could not be adequately modeled
with the stationary nested grid technique. In these systems, the
CE phase is initiated by Roche lobe overflow of the red giant
star rather than by a tidal (Darwinian) instability of the orbit.
The results from the first 41 days of our simulation were de-
scribed in Ricker & Taam (2008, hereafter Paper I), wherein we
showed that the assumption of Bondi–Hoyle–Lyttleton (BHL;
Hoyle & Lyttleton 1939; Bondi & Hoyle 1944; Bondi 1952)
accretion onto the companion dramatically overestimates the
true accretion rate since the conditions for BHL accretion
(uniform supersonic motion with the gravitational wake trail-
ing the motion of the accretor) are not satisfied.

In this paper we examine the intermediate time evolution
of the simulation whose early stages were described in Paper I.
Here, we focus specific attention on the determination of the drag
forces and the mechanisms for angular momentum transport in
the system. To gain a deeper understanding of the influence of
the interaction on the core of the red giant and the companion, we
also study the character of the mass flow in the vicinity of each
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component and the accretion onto each component. In addition,
we examine the angular and radial distribution of the matter
ejected from the CE, which may provide observational evidence
that a system has passed through this stage, independent of
the outcome. In Section 2, we briefly discuss the numerical
methods and initial conditions used in our setup. The results are
presented in Section 3, and we conclude with a discussion of
their implications in the last section.

2. NUMERICAL METHODS

We use a one-dimensional stellar structure and evolution
code initially due to Eggleton (1971, 1972) to create a model
red giant star with total mass 1.05 M�, of which 0.69 M�
is contained in the extended gaseous envelope. This one-
dimensional model specifies density, pressure, and composition
as functions of radius. We linearly interpolate this model onto
a three-dimensional Eulerian mesh for use in the FLASH 2.4
AMR simulation code (Fryxell et al. 2000). FLASH uses an oct-
tree refinement scheme; we select blocks for refinement using
the standard second-derivative criterion applied to gas pressure
and temperature, except in blocks for which the maximum
gas density is less than 10−6 g cm−3. The Euler equations
of hydrodynamics are solved using the piecewise-parabolic
method (Colella & Woodward 1984) with modifications for
nonideal equations of state based on Colella & Glaz (1985). The
stellar equation of state that is used is based on tabulated values
of the Helmholtz free energy and its derivatives for a three-
isotope composition including hydrogen, helium, and carbon
(Timmes & Arnett 1999). The Poisson equation is solved using
an adaptive multigrid method. Outflow boundaries are used for
the hydrodynamics, while a variant of James’ (1977) method is
used to impose isolated boundary conditions on the gravitational
field.

The one-dimensional model is characterized by a radius of
2.2 × 1012 cm, outside of which we augment it with a uniform
ambient medium at the pressure of the outermost layer of the star
and a density of 10−9 g cm−3 in order to avoid artificial outflow
associated with inadequate resolution of the outermost layers.
Within a box of size 4 × 1013 cm, we apply enough levels
of refinement (9, with 83 zones per mesh block) to achieve a
smallest zone spacing of 2 × 1010 cm. The innermost 0.36 M�
(6 × 1010 cm) of the gas in the red giant star is replaced by a
spherical cloud of 200,000 particles which moves as a solid body
and interacts with the gas only gravitationally. The resulting
three-dimensional model is allowed to relax for one dynamical
time (13 days). During this time, a damping factor is applied to
the gas velocities at the end of each time step, beginning with
0.9 and gradually reducing the amount of damping by increasing
the factor toward unity. By the end of the relaxation stage the
typical velocities are less than 2 km s−1.

Once we have relaxed the three-dimensional red giant model
on the FLASH mesh, we introduce a 0.6 M� companion, also
represented by a spherical cloud of 200,000 particles moving
as a solid body with radius 6 × 1010 cm, in a circular orbit at
an orbital separation of 4.3 × 1012 cm. The red giant is also
set into orbital motion and is given a uniform spin, with spin
angular velocity equal to 95% of the synchronous value. This
corresponds to an initial surface velocity for the red giant of
about 35 km s−1, which is within the observed range for red
giants in short-period binaries (Massarotti et al. 2008).

The three-dimensional CE calculation was carried out over a
period of time on successive Teragrid platforms beginning with
the Tungsten cluster at the National Center for Supercomputing

Figure 1. Orbital trajectories of the red giant core (solid curve) and its companion
(dashed curve) in the equatorial plane during the inspiral phase of the CE binary
system.

Applications and ending with the Ranger cluster at the Texas
Advanced Computing Center. Using the Teragrid service unit
conversion calculator, we estimate the cost of the run up to
56.7 days of simulation time to be the equivalent of 512 cores
for 792,000 core hours on Ranger.

The description of the early evolution of the CE phase
was briefly presented in Paper I. Here, we report on the
further evolution of the system during which envelope stripping
accelerates and the orbit shrinks rapidly. By 41 days the orbital
separation has been reduced by a factor of seven, primarily
because of the gravitational drag. In the next section we discuss
the intermediate time evolution beginning at this point.

3. RESULTS

3.1. Orbital Evolution

The evolution of the CE binary system described in the
previous section has now been continued through 56.7 days
of simulation time, or about five orbits. Figures 1 and 2
illustrate the orbital trajectories and orbital separation of the
stars, respectively. The gravitational interaction between the
two stars has resulted in a decrease in the orbital period from its
initial value of 1.5 months to less than five days. By comparing
the time between periastron and subsequent apastron to
the time from apastron to subsequent periastron, it can be
seen that the orbit continues to evolve. However, the orbital
evolution timescale has become significantly longer than it
was during the early inspiral between 27 and 41 days. In fact,
the timescale of orbital decay has increased from ∼5 days to
∼35 days. The orbit is also gradually becoming more circular
with time; its eccentricity at 56.7 days is ∼0.08. We note that
the periastron separation of ∼6 × 1011 cm is much larger than
the fine-mesh zone spacing Δx ≈ 1.86 × 1010 cm or the stellar
core size, indicating that the orbit is tending to stabilize at a
spatially well-resolved separation.

In order to determine the contribution of the gravita-
tional drag and hydrodynamic drag acting on the red giant
core and the companion star during the orbital decay phase,
we illustrate their variation as a function of time in Figure 3. The
hydrodynamic drag force is computed using the control-surface
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Figure 2. Orbital separation of the red giant and its companion as a function
of time.

method described in Paper I (with a control surface radius of
3 × 1011 cm), and the gravitational drag force is defined to be
the gravitational force on the particle clouds due to the gaseous
envelope.

As for the early stages of CE evolution, the gravitational drag
for both stellar cores continues to exceed the hydrodynamic drag
force by more than an order of magnitude. The ratio of these two
forces tends to increase with time during the late stages of the
evolution, primarily because of the increase in the gravitational
drag as the cores spiral together. The gravitational drag on the
red giant core is initially about a factor of five less than that
on the companion star because of its central location within
the envelope, but as gas expands to greater radii and the two
cores spiral together, the two cores tend to experience the same
gravitational drag force.

The hydrodynamic drag force, on the other hand, continues
to differ for the two cores because of the different flow patterns
in their vicinities, as can be seen for the xy- and xz-planes in
Figure 4. The flow in the vicinity of the red giant core in the
orbital plane has been spun up to be nearly uniform; the gas
there orbits the companion with the same velocity as the core.
This occurs because of the core’s smaller mass relative to the
companion: the center of mass of the system now lies closer to
the companion, and consequently, the gas near the red giant core
receives gravitational torques large enough to keep it orbiting
with the core. Because of this approximately uniform flow field,
the spherical surface integral of ρvrelvrel · n is small, and little
momentum is transferred to the gas (here ρ is the gas density,
vrel is the velocity of the gas relative to the red giant core, and
n is the normal to the surface). The companion, on the other
hand, is surrounded by a rotating mass of gas, for which the
corresponding surface integral is somewhat larger.

The continued domination of the gravitational drag over
the hydrodynamical drag suggests that the mass accretion rate
should continue to be much smaller than the BHL prediction.
We explore this point in the next section.

3.2. Core Accretion

As discussed in Paper I, the amount of mass accreted onto the
companion and red giant core can be estimated by computing the

Figure 3. Hydrodynamic and gravitational drag forces acting on the companion
star and red giant during the inspiral phase of the CE binary system. Force
values have been boxcar smoothed over five time steps.

mass flux through a spherical control surface and integrating this
flux over time. Since we do not attempt to model the accretion
process itself, as this would require a much higher resolution
than we are able to achieve, the radius of the control surface
is taken as a free parameter. The choice of this radius should
be larger than the spatial resolution to ensure convergence and
to avoid Cartesian grid effects, but it should also be smaller
than the spatial scale length of the gas density field to avoid
including gas in large-scale flows that are not taking part in the
accretion process. Furthermore, the choice in radius is adopted
to ensure that the gravity of the accretor is the dominant factor
affecting the gasdynamics. The mass flux is determined for a
given stellar core and control surface radius Racc by choosing
N = 32(Racc/Δx)2 uniformly distributed points on a sphere
of this radius centered on the core’s location. The gas density
and velocity fields (relative to the core’s velocity) are linearly
interpolated from the AMR grid onto these points, and the flux
is determined via

Ṁ =
∫

ρvrel · ndA ≈ 2π2R2
acc

N

N∑
i=1

ρivrel,i · ni sin θi, (1)

where the integral is taken over the control surface, θi is the polar
angle of the ith sample point, and vrel is the relative velocity of
the core and the gas. Note that for the control surface radii
chosen here the interpolation points all lie within a uniformly
refined region of the grid.

We have performed this calculation for both stellar cores
using control surface radii between 3.5×1010 and 2.1×1011 cm
(1.75–10.5 zones), and the results appear in Figure 5 displayed
as a variation of accreted mass as a function of evolution time.
For comparison we also show the mass accretion to be expected
if the accretion rate were determined by the BHL prescription. In
general, the BHL prediction is ∼100 times the amount of mass
accreted, as was found for the early-inspiral phase in Paper I.

Our results suggest that the larger choices for control surface
radius (1.4 and 2.1×1011 cm) overestimate the accretion radius
as they likely incorporate too much of the cores’ surroundings
to provide a reliable mass accretion estimate. In addition to the
disagreement with the results for the smaller control surface
radii, these choices yield time intervals in which the accreted
mass decreases, suggesting that the gravity of the individual
cores is not the dominant determinant of the gas dynamics
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Figure 4. Left: density distribution (g cm−3) and velocity field (km s−1) in the orbital plane at t = 56.7 days. The location of the companion star (×) and red giant
core (◦) are shown. Right: as for the plot on the left, but for the xz-plane.

(A color version of this figure is available in the online journal.)

Figure 5. Left: thick curves indicate mass accretion onto the companion star as determined for control surfaces of different radii Racc as a function of time during the
inspiral phase of the CE binary system. Thin curves show the accreted mass as determined using the BHL model from density, pressure, and velocity averages within
the same control surfaces, divided by 100. Right: same as the left panel, except for the red giant core.

in regions of these extents. The fact that the accreted mass
decreases for the red giant core but not the companion is
consistent with the fact that the companion’s mass is greater
than that of the red giant core, so that its region of influence is
larger. The smaller choices (3.5 and 7 × 1010 cm) provide better
agreement, though after the initial inspiral up to 42 days, they
differ by a factor of two for the companion. For the companion,
the average mass accretion rate taken from the beginning of
the simulation is ∼10−2 M� yr−1, while the higher gas density
in the vicinity of the red giant core yields a larger estimate,
∼6 × 10−2 M� yr−1.

The BHL accretion rate is derived under the assumption that
the gas flow is uniform, supersonic, and directed against the
accretor’s direction of travel. We can understand the differences
between our results and the BHL prediction by examining
the flow field in the orbital plane around the red giant core

and the companion (Figures 4 and 6). At late times the
flow field continues to differ from that assumed in the BHL
prescription: not only is the flow subsonic in the vicinity of
both cores, but for each the flow field is such as to yield a low
accumulation rate (uniform across the red giant core, circular
about the companion). Thus, the assumptions underlying the
BHL prediction do not hold during the evolution of this system.

Note that since the gas density is not uniform within the
accretion control surface (it varies by an order of magnitude
or so), it might be argued that a BHL rate computed using
density, pressure, and velocity values very close to the cores is
unrepresentative of the conditions in their vicinity. However, our
estimated BHL accretion rates are based on averages within the
same control surfaces as used for estimating the actual accretion
rates. As Figure 5 shows, the variation in BHL rate encountered
in using different averaging radii is much smaller than the
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Figure 6. Left: Mach number distribution in the orbital plane at t = 56.7 days. The location of the companion star (×) and red giant core (◦) are shown. The contour
indicates the transition from subsonic to supersonic flow. Right: as for the plot on the left, but for the xz-plane.

(A color version of this figure is available in the online journal.)

difference between the BHL rates and the values determined
using Equation (1). (Note that the BHL rate curves have been
divided by 100 to fit them within the figure.)

3.3. Outflow

The angular momentum transported from the orbital motion
to the CE via spiral shocks creates an anisotropic outflow. Re-
gardless of the outcome of the CE phase (merger or stabilization
as a close binary), after the complete ejection of the envelope
the core should contract to the pre-white dwarf stage, evolving
to higher effective temperatures in the process. If the core is suf-
ficiently massive, the effective temperatures will be sufficiently
high to lead to the creation of a planetary nebula. In a seminal
study, Balick (1987) suggested that the interaction of a fast stel-
lar wind from the remnant core with an equatorially dominant
circumstellar envelope may give rise to asymmetric planetary
nebulae with an elliptical or “butterfly” morphology. Although
the specific model that we have adopted here contains a low-
mass helium degenerate core and will not produce a planetary
nebula, the morphology of the outflowing matter from our sim-
ulation is generic to outflows resulting from the CE phase (see
Taam & Sandquist 2000). To provide a quantitative description
of the outflow for potential application to the interacting winds
hypothesis, it is important to characterize the radial and angular
density distribution and the kinematics of the outflow resulting
from the CE phase.

Figure 7 shows the enclosed gas mass as a function of radius
about the center of the grid for different ranges of polar angle at
t = 56.7 days. It can be seen that the outflow density distribution
is equatorially dominant at all radii; however, at small radii
(below 1012 cm) the flow is roughly spheroidal. Outside of this
region almost 90% of the outflowing material is confined to an
angle of 30◦ on either side of the equatorial plane.

Figure 8 illustrates the angle-averaged gas density in the
orbital plane as a function of radius for several different times
between 31.8 and 56.7 days. One can clearly see the expansion of
the envelope material with time. Behind the expanding envelope

Figure 7. Enclosed mass vs. radius for gas lying in different polar angle bins,
as measured using the point (1.5 × 1012 cm, 0, 0) as origin and the Cartesian
z-axis as the polar z-axis, at t = 56.7 days.

front and outside the spheroidal inner region the gas density
adopts a roughly r−5/3 profile. This density slope is intermediate
between the expectations for constant-velocity isotropic and
planar winds, which given the equatorial dominance suggests
that the outflow velocity must increase with radius. The mass
loss leads to the ejection of 0.18 M� of the CE as seen in
Figure 9, where the amount of unbound mass is illustrated as a
function of time. The rate of mass loss after about 45 days is
nearly constant and at the end of the simulation is ∼2 M� yr−1.

From Figure 4, which displays the distribution of gas in
the orbital (xy) plane and xz-plane at t = 56.7 days, it can
be seen that within a radius of about 1012 cm, there is no evidence
of shock structure, and the gas Mach number is less than one
(see Figure 6). This suggests that the angular momentum is
removed from the central regions by tidal torques rather than
spiral shocks as seen in simulations with larger mass ratios (see
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Figure 8. Angle-averaged gas density profile in the orbital plane, using the point (1.5 × 1012 cm, 0, 0) as origin and the Cartesian z-axis as the polar z-axis, at different
times.

Figure 9. Unbound gas mass as a function of time.

Sandquist et al. 1998). At larger radii, however, trailing spiral
features are in fact seen (Figure 10). By examining the variation
of gas quantities along a line segment emanating near the center
of mass, we can establish and quantify the nature of these
features. Figure 11 shows the variation of gas density, pressure,
and radial and tangential velocity components along a line in
the orbital plane originating at the point (−1.5 × 1012 cm, 0, 0)
and describing a −30◦ angle with the y-axis. This figure clearly
shows that the spiral features correspond to jumps in density,
pressure, and radial velocity, and thus are shocks. At least four
features of decreasing strength can be identified as the radius
increases. Each feature corresponds to an orbit of the binary
following the initial inspiral.

The energetic efficiency of mass outflow, defined as the
ratio of the energy required to unbind the ejected part of the
envelope to the energy released by the inspiralling cores, is
of interest in population synthesis models that incorporate the

Figure 10. Gas density in the orbital plane on large scales at t = 56.7 days. Gas
quantities sampled along the black line are plotted in Figure 11.

(A color version of this figure is available in the online journal.)

effects of CE evolution. We can estimate the required unbinding
energy by producing radial enclosed mass and energy (kinetic +
thermal + potential) profiles for the initial relaxed system
with the companion and red giant spin added (but before any
binary evolution has occurred). We determine the change in
the total bound gas mass from the beginning to the end of the
simulation, giving the amount of mass that is unbound by the
stars’ interaction. Assuming that this unbound mass is stripped
from the outer layers of the red giant, we use the mass and
energy profiles to find the unbinding energy by subtracting the
enclosed energy at the radius corresponding to the final bound
gas mass from the enclosed energy at the radius at which the
binned energy becomes positive.
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Figure 11. Gas density, pressure, radial velocity, and tangential velocity profiles
along the line indicated in Figure 10 at t = 56.7 days. Vertical dotted lines
indicate locations of spiral shocks.

We find that in the initial conditions only 0.66 M� of the
envelope is bound; the remaining 0.03 M� of the envelope is
already unbound due to the spin and orbital motion of the red
giant. We include this remaining amount in our estimate of the
unbound mass, but not in the calculation of the efficiency (we
can perform the latter by considering only the bound material).
At t = 56.7 days, 0.51 M� of the envelope remains bound. The
initial enclosed energies corresponding to enclosed masses of
0.66 and 0.51 M� are −1.3 × 1047 erg and −1.1 × 1047 erg,
respectively, so the energy needed to unbind the remaining
0.15 M� that is lost is ∼2 × 1046 erg.

At the end of the simulation the 0.51 M� of the envelope that
remains bound has an energy of −4.6 × 1046 erg, so its energy
has actually increased by 6.4 × 1046 erg. However, because of
the inspiral of the stellar cores the total energy of the bound
material (gas + cores) decreases. Using the mesh potential as
measured at each core’s center, and subtracting the self-potential
of each core, we find that the cores’ potential energy decreases
by 9.8 × 1046 erg, roughly consistent with what we expect
from the decrease in orbital radius (the difference is due to
the gravitational field of the gas). The cores’ kinetic energy
increases by 2.2 × 1046 erg. Thus, the total energy released
by the inspiralling cores is ∼8 × 1046 erg. Of this amount,
75% goes into raising the energy of the part of the envelope that
remains bound, and only 25% goes into unbinding the additional
0.15 M�.

4. DISCUSSION AND CONCLUSIONS

We have used a large AMR simulation to study the CE
evolution of a binary system initially consisting of a 1.05 M� red
giant with a 0.36 M� degenerate core and a 0.6 M� companion.
The use of AMR allows us to simulate stellar pairs with mass

ratios close to unity at high resolution. We have followed the
system through 57 days of evolution, during which time it has
evolved through five orbital revolutions. The orbital separation
decreases by a factor of 7 to 8.6 R�, and the eccentricity steadily
decreases with time to a value of 0.08. The CE interaction has
led to the unbinding of 0.18 M�, or 26%, of the red giant’s initial
gaseous envelope at this point in time. We note that this fraction
of unbound mass is larger than in the work by Sandquist et al.
(2000; typically less than 15%), but is consistent with the trend
in which this unbound mass fraction increases with a larger mass
ratio (companion to the red giant) of the system.

Based on the release of orbital energy, the efficiency of the
mass ejection process is ∼25%. Given that the mass-loss rate
from the system is ∼2 M� yr−1, the remaining mass is expected
to be removed within two additional months (comparable to
the timescale of the orbital decay) provided that the mass-
loss rate remains approximately constant. This is a reasonable
assumption because the binding energy of the portion of the
envelope that remains bound is increasing linearly with time at
the end of the simulation. Additional orbital decay will result
in the ejection of the remaining envelope. It is possible that
ejection of the envelope will be incomplete as some matter may
fall back, and the effect of any material surrounding the system
in the form of a circumbinary disk (Kashi & Soker 2011) may
lead to further orbital decay. It is likely that this system will
survive the CE phase with an orbital period of less than three
days.

As in our previous study concerning the early stages of the
evolution of this model system, the gravitational drag acting on
the two stellar cores due to the nonsymmetrical gas distribution
dominates over the hydrodynamical drag. The flow pattern in
the vicinity of the cores in the orbital plane at 57 days is nearly
uniform for the red giant core and circular for the companion,
and in both cases it is subsonic. Such a description of the flow
renders the assumptions underlying simple estimates of the drag
based on a BHL prescription suspect and should be noted when
considering evolutionary calculations of lower dimensionality.

The commonly used BHL prescription for estimating the
mass accretion rate onto the companion overestimates the actual
accretion rate by nearly two orders of magnitude. As discussed in
Paper I, this can have important implications for the likelihood of
the possibility for accretion-induced collapse of an inspiralling
neutron star in a stellar envelope to a black hole. We note,
however, that for the less evolved red giant star that we have
modeled in the present investigation, the rate that we infer
from our calculations can still exceed the rate for hypercritical
accretion (∼10−3 M� yr−1; Chevalier 1993) suggesting that the
outcome of the accretion evolution of an inspiralling neutron star
is dependent on the evolutionary state of its giant companion.

An alternative prescription for the CE drag and resulting in-
spiral has been proposed by Meyer & Meyer-Hofmeister (1979;
MM), who consider a model for the CE evolution of a 5 M� red
giant and a 1 M� main-sequence star. In this model, the system is
treated as an inner rigidly rotating binary system frictionally in-
teracting with an outer envelope undergoing differential rotation.
The angular momentum transfer and energy dissipation in the
envelope derives from turbulent convection. Gravitational drag
is neglected in the envelope. Because gravitational drag appears
to be the dominant dissipation mechanism in our calculation, we
would argue that at least during the rapid inspiral phase the MM
model greatly underestimates the drag and hence overestimates
the inspiral timescale (see their Figure 5). Moreover, the radially
averaged specific entropy profile of our system at t = 56.7 days
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is convectively stable, so if convective turbulence should have
developed but did not because of our resolution, its integral scale
and hence effective mixing length should be smaller than our
minimum zone spacing (2×1010 cm). The mixing length in MM
is of order the pressure scale height, which in our calculation is
∼7 × 1010 cm at its smallest. Hence, the turbulent viscosity is
correspondingly overestimated in their model. In our Figure 4,
it is clear that the velocity field in the central regions is laminar
on these scales. Instead, in our calculation angular momentum
is removed from the envelope interior regions by spiral shocks.

It is conceivable that physics not included in our simula-
tion could help to invert the entropy gradient and thus drive
turbulence on small scales, changing the nature of the angular
momentum transport. Our equation of state includes radiation
pressure, but the gas is treated as being fully ionized, so en-
ergy derived from recombination is not included. If significant
amounts of recombination were to occur within the inner re-
gions, it could both raise the entropy there and contribute to the
ejection of more envelope material. However, a rough estimate
of the optical depth due to electron scattering (which dominates
at the temperatures present in the inner regions) shows that gas
and radiation remain tightly coupled at least up to a radius of
5 × 1012 cm. Thus, recombination should be important only in
the very outer regions of the envelope and not in the inner region
where the gravitational binding is greater. In more evolved red
giants, where more of the mass is located at larger radii, recom-
bination may play a greater role in unbinding mass, though in
such cases one would need to consider the efficiency with which
recombination photons couple to the surrounding gas.

The existence of distinct shells of outflowing material corre-
sponding to the different orbits suggests a means for detecting
systems that are undergoing or have recently undergone the CE
phase. Once the outflow expands sufficiently to become opti-
cally thin, any spectral lines emitted by the gas will display
Doppler-broadened profiles containing discontinuous jumps or
features corresponding to the velocity jumps seen in Figure 11.
The highest-velocity components result from the tangential mo-
tion at radii corresponding to several times the orbital separation.
As the outflow expands further, a more radial flow at larger dis-
tances is expected. Such components would be dependent on
the orbital phase of the system and evolve secularly with time.
These jumps should be detectable by spectroscopic observations
with resolving powers (λ/Δλ) of a few thousand or better, easily
within the capabilities of current technology. The primary diffi-
culty with such observations would be the short time available
before the outflow density drops below the detection thresh-
old. Discovery of post-CE systems using this technique would
therefore require a spectroscopic monitoring program following

a large number of stars, or spectroscopic follow-up of optical
transients detected in a large-area photometric survey with a
high cadence (such as LSST).
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