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1 Introduction
These notes are meant for the introductory honors electric-

ity and magnetism course offered at the University of Rochester
(PHY142). It offers the same (or similar) summary at the end of
every chapter as the on in O&M. It might be useful to the student
to have those summaries condensed into one document. I have
included some tips and tricks in order to highlight what is impor-
tant to take away from the class, and E&M at the introductory
level in general. This document assumes the reader is fluent in
vector calculus and other necessary maths.

Other textbooks used are D.J. Griffith’s Introduction to Elec-
trodynamics. This book is typically used by the higher level E&M
courses, covering E&M I & II (P217/218). Another source that
might be useful is Purcell’s Electricity and Magnetism, which is
at a similar level. The book typically used in a graduate course is
Classical Electrodynamics by Jackson. Lots of Green’s functions.

It is obvious based on the title of textbooks on the subject,
that there is an order to learning E&M. First one starts off
with electrostatics and magnetostatics. Perhaps covering some
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of its applications, especially when it comes to circuits. Then
one moves on from “statics,” where there are no moving charges,
to those that are moving, or “dynamics.” The student learns
Maxwell’s equations and learns that there are four of them and
that they can be written in differential and integral form. This
typically marks the end of the undergraduate “freshman” level of
the subject - or this course.

- M.B. Adams (09/04/2013)

2 Electrostatics
Electrostatics first starts off by discussing Coulomb’s law, the fundamen-

tal equation of electrostatics, which describes the force between two charges.
It is important to note the similarity in mathematical expression between
the Coulomb force and gravitational force. The electric field is generated by
these charges (as well as a magnetic field). There are a variety of ways of
determining the electric field due to a charge, or charge distribution. We can
also talk about the energy of these charges playing in the field.

From this a few important equations come about:



F12 = 1
4πε0

q1q2
r221

r̂ Coulomb’s Law

F = qE General Equation for Electric Force

∇ · E = ρ
ε0
,
∮
E⊥dA = Qencl

ε0
Gauss’ Law (Maxwell Eq. 1)

∇× E = 0 Proof we’re dealing with statics! (Maxwell’s Eq. 2)

E = −∇V Getting E using V

V = −
∫
E · dl Getting V using E

2.1 Electric Force and Electric Charge

• Electric charges may be positive, negative, or zero; like charges repel,
unlike charges attract. The SI unit of charge is 1 coulomb = 1C
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• “Fundamental Charge,” or charge of a proton is e = 1.6×10−19C,
the charge of an electron is the same, but negative, −e = 1.6 ×
10−19C.

• Coulomb’s Law states that the direction of the Coulomb force is
along the line joining the particles. It is stated as F = 1

4πε0

Q1Q2

r12
r̂.

The Permittivity constant (electric constant) is known to be ε0 =
8.85×10−12 C2

Nm2 . Sometimes you’ll see Coulomb’s law written with the
Coulomb constant, k = 1

4πε0
= 8.99× 109Nm2

C2 .

• Superposition Principle is another name for the net force, or vector
sum of individual forces.
i.e. Fnet =

∑N
i=1Fi = F1 + F2 + F3 + ...+ FN .

• Charge Conservation, or that in any reaction or process, the net
electric charge remains constant.

• Charge Quantization, or any charge should be thought of as an
integer multiple of the fundamental charge.

• An ion is an atom with net charge - missing or extra atoms.

• Electrolyte is a liquid with many dissolved ions.

• Plasma is a gas with many ionized atoms and free electrons.

• A conductor permits the motion of charge, whereas an insulator does
not.

2.2 The Electric Field

• Let’s revisit the superposition principle. Electric forces and electric
fields produced by different charges or by different charge distributions
combine over vector addition.

• We can define the electric field to be, E = F
q
. We can figure out the

SI unit of an electric field based on this equation, 1N
1C

.

• The electric field of a point charge q is |E| = 1
4πε0

q
r2
. The electric

field is a vector quantity, so the direction in this case would be radially
outward for a positive charge, and radially inward for a negative charge.
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In either case if we were to write the electric field using the unit vector
notation, we’d say E = 1

4πε0

q
r2
r̂.

• Electric field of a continuous charge distribution: Given we
can describe the total field E = Exx̂ + Eyŷ + Ezẑ. This is obtained
by summing contributions to each compotent, i.e. Ex =

∫
dEx where

dEx = cos θdE = 1
4πε0

cos θ dq
r2
. Where θ is the angle between the electric

field contribution and the x-axis.

dE =
1

4πε0

dq

r2
=⇒ E =

∫
dE =

1

4πε0

∫
dq

r2

• Charge distributions are things we’re going to have to become more
use to. They can come in a linear or surface form.

1. Linear: dq = λdL, where λ is in coulomb’s per meter.

2. Surface: dq = σdA, where σ is in coulomb’s per square meter.

• The electric field of an infinite, uniformly charged thin rod is
E = 1

2πε0
λ
r
, where the direction is perpendicular to the road (outward

for +λ, inward for −λ.

• The electric field of an infinite, uniformly charged flat sheet is
E = σ

2ε0
, where the direction is perpendicular to the sheet (outward for

+σ, inward for −σ.

• What if we want to know the electric field of a pair of oppositely
charged, parallel flat sheets?

E =

{
σ
ε0

(between the sheets)
0 (outside of the sheets)

• Properties of electric field lines:

1. Lines are tangent to the electric field vector at any point.

2. Density of lines is proportional to the magnitude of the field.

3. Field lines do not cross.
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4. Field lines start on positive charges and end on negative charges.

5. The number of field lines emerging from (terminating on) a posi-
tive (negative) charge is proportional to the charge.

• Motion in uniform E:

a =
F

m
=
qE

m

v = v0 + at

r− r0 + v0t+
1

2
at2

• The electric dipole moment is defined as p = `Q, where the direction
of the dipole moment vector p is from − to +.

• The torque felt by a dipole is defined to be τ = p×E = −pE sin θ.

• A dipole also feels a potential energy, U = −pE cos θ = −p · E.

2.3 Gauss’ Law

• The electric flux through an open surface is defined by ΦE =
E · A = E⊥A = EA cos θ for a flat surface, with uniform E. Is we’re
working with an arbitrary surface and varying E, we integrate,

ΦE =

∫
E · dA =

∫
E⊥dA.

• The electric flux through a closed surface for a positive–outward
E is ∮

E · dA =

∮
E⊥dA.

5



• Gauss’ Law states that the electric flux through a closed surface area
is equal to the charge enclosed by the volume of the object over the
permittivity constant. ∮

E⊥dA =
Qenclosed

ε0

where

∮
E⊥dA =


E(4πr2) (spherical)
E(2πrL) (cylindrical)
2EA (planar, both ends in the field)
EA (planar, one end in the field)

.

Make sure to consider the symmetry of the object you’re trying to
determine the electric field for. There are only a few coordinate systems
we know of, so it will probably involve one of those.

• For line, surface or volume charge, one must know of their uniform
charge distribution. They are q = λL, q = σA, and q = ρV respec-
tively.

• It is important to note that the electric field within a conducting ma-
terial is zero. Any charge resides on the surface(s). The electric field
at the surface is perpendicular and of magnitude E = σ

ε0
.

2.4 Electrostatic Potential and Energy

• The electrostatic potential, or potential energy per unit charge
is defined as, V = U

q
. The SI unit of potential is 1 volt = 1 V = 1

J/C. An alternate unit of energy is the electron volt, 1 eV = 1.60×10−19

J.

– When working with electron volts, remember that you’re actually
multiplying the charge of the electron, e, by the voltage. One can
forget this sometimes while doing problems.
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• If an electric field is uniform, it is clear that the electrostatic poten-
tial in a uniform electric field E0 is linear, V = −E0y, where y is
the distance along the field direction.

• Now that we’re talking about energy - we need to talk about how it is
conserved! Conservation of energy tells us that the total energy is
defined as,

K + U =
1

2
mv2 + qV = [constant].

– As an aside, what you’ll learn in P235 is that the above equation is
called the Hamiltonian, H, of a charge, q, moving with a velocity,
v, in a potential, V . The Hamiltonian is generally defined to be
H = T + U . By the way, in P235 they denote kinetic energy by
T .

– p.s. The Lagrangian, L, which you might have been told about
by some pretentious upperclassman (apparently that is me in this
case) is generally defined to be L = T − U .

• The potential energy of two point charges is defined as

U =
1

4πε0

qq′

r

• The potential energy of a point charge is defined as

U =
1

4πε0

q′

r

• The above equations make sense because we can preform a calculation
of the potential energy from the electric field! If V0 is the potential at
a point P0 then at a point P ,

V = −
∫ P

P0

E · ds + V0
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or more generally, for a continuous charge distribution,

V =
1

4πε0

∫
dQ

r
.

• A note about potential and conductors: For static charge distri-
butions, the potential throughout a conductor is constant. Within an
empty cavity in a conductor, the electric field is exactly zero.

• Calculation of the electric field from the potential is simply
E = −∇V , or the negative gradient of the potential.

• An equipotential surface is an imaginary surface on which the elec-
trostatic potential is constant. The electric field is everywhere perpen-
dicular to an equipotential surface.

• The potential energy of a system of point charges is

U =
1

4πε0

[
q1q2
r12

+
q2q3
r23

+
q1q3
r13

+ ...+ [all pairs]
]
.

• The potential energy of a conductor is defined to be U = 1
2
QV . If

one is dealing with a system of conductors, simply sum over all QiVi.

• The energy density in an electric field is defined as u = 1
2
ε0E

2.

3 Applications of Electrostatics

3.1 Capacitors and Dielectrics

• The SI unit of capacitance is 1 F = 1 farad = 1 coulomb/volt.
The capacitance of a single conductor is C = Q

V
, for a pair of

conductors it is C = Q
δV

.

• The capacitance for specific geometries involve surface area.

– For instance, the capacitance of an isolated sphere is C =
4πε0R.

– The capacitance of parallel plates is C = ε0A
d
.
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• Turns out parallel plate capacitors are things that get put on wires!
Woo! We can talk about capacitors in circuit systems.

– Capacitors in parallel have the same potential difference across
each. So the parallel combination of capacitors is additive,
or,

C = C1 + C2 + C3 + ...

– Capacitors in series have the same charge on each. The series
combination of capacitors is defined as,

1

C
=

1

C1

+
1

C2

+
1

C3

+ ...

• The capacitance per unit length of cylindrical capacitor is

C

`
=

2πε0
ln(b/a)

.

• The electric field in a dielectric between parallel plates is

E =
1

κ
Efree.

where κ is the dielectric constant. It is larger than 1. The relation
E = Efree/κ also applies in any dielectric with the same symmetry as
the distribution of free charges.

• Capacitance with dielectric is simply C = κC0.

• The energy stored in capacitor can be written a variety of ways, as
you can see:

U =
1

2
QδV =

1

2

Q2

C
=

1

2
C(δV )2.

• The energy density of a dielectric is u = 1
2
κε0E

2.
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3.2 Direct Current (DC) Circuits

• The electric field in uniform wire of length ` is E = δV
`
.

• The electric current, or flow of charge per unit time is defined
as I = dQ

dt
. The SI unit of electric current is 1 ampere = 1 A = 1

C/s.

• The drift velocity (average velocity) in terms of the average
collision time, τ is defined as vd = −eEτ

me
.

• The current of free electrons in a conductor is defined as I =
−nevdA, where n is the number density of free electrons, vd is the drift
velocity as stated above, and A is the cross-sectional area.

• The resistivity in terms of the average collision time τ is ρ =
me

ne2τ
.

• The resistance in terms of resistivity is R = ρ `
A
. The SI unit of

resistance is 1 ohm = 1 Ω = 1 V/A.

• The handy dandy Ohm’s Law is defined as V = IR.

• The current density is defined as j = I
A
.

• This implies that we can write Ohm’s law in terms of the current
density, j = E

ρ
.

• The change of resistance with temperature is δR = αR0δT , where
α is the temperature coefficient of resistivity. You can find this in a
table somewhere; google it.

• Resistors are things one can also put on a wire! Woo, circuits!

– For resistors connected in series, the same current flows through
each, and the net potential difference is the sum of the individual
potential differences. So the series combination of resistors is
additive, i.e. R = R1 +R2 +R3 + ....

– For resistors connected in parallel, the total current is the sum of
the individual parallel currents, and the potential difference across
each is the same. So the parallel combination of resistors is
1
R

= 1
R1

+ 1
R2

+ 1
R3

+ ...
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4 Magnetostatics

4.1 Magnetic Force and Field

• The magnetic force exerted on moving charge by current in
long wire where the − sign means F is attractive for v parallel to I
and + means F is parallel to I for v radially outward. For v tangent
to circles around a wire, F = 0. So we can say that,

F =

{
µ0
2π

qvI
r

0

• The permeability constant is defined as µ0 = 4π×10−7Ns2
C2 ≈ 1.26×

10−6Ns2
C2 .

• The force exerted by a magnetic field on a moving charge is
defined as F = qv × B. Of course, we can describe the magnitude of
this vector force, as it is a cross product, it yields a sine: F = qvB sin θ.

• Turns out that the law of superposition can help lead us to a more
profound form of this definition for magnetic force. What if there are
coupled magnetic and electric fields? Well we have what is called the
Lorentz Force,

F = q (E + v ×B) .

The superposition principle also apply to magnetic fields and forces
as well. The magnetic forces and magnetic fields produced by different
currents combine via vector addition.

• The Biot-Savart Law is defined as,

dB =
µ0

4π

Ids× r

r3

We can integrate both sides using the generalized magnitudes,
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B =

∫
dB =

∫
µ0

4π

Ids sin θ

r2

Now let’s try to define what I just wrote for you. The above equation
illustrates the contribution to the magnetic field where r is the vector
from the current element Ids to some point P .

• Wow, Biot-Savart is really ugly. If only there was something easier to
use. Well, there is, if your object has really nice symmetry. If it does,
you’ll want to use Ampére’s Law, which states,

∮
B · dl = µ0Iencl..

Like how we did for Gauss’s law and the electric field, we can make
things easier for us. We can get rid of the dot product as when we have
nice symmetry the B and the dl are parallel. Thus,

∮
B||d; =

{
B(2π4) (current flowing along a line)
B(Bl) (current flowing around a cylinder) .

• The magnetic field of current in a long wire (i.e. infinite), which
can be defined by the help of the right hand rule or if you’re feeling
more mathy, Ampére’s law. It is B = µ0I

2πr
.

• Speaking of magnetic field, we should probably talk a bit about it’s
units as it is something we can empirically identify. The SI unit of
the magnetic field is the Tesla (after the lovely Nikola Tesla, of
course), so 1 tesla = 1 T = 1 N

C m/s .
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