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Example: The simple pendulum

e Suppose we release a mass m from rest a distance h,
above its lowest possible point.

€« What is the maximum speed of the mass and where
does this happen?

€ To what height h, does it rise on the other side?




Example: The simple pendulum

e Kinetic+potential energy is conserved since gravity is a
conservative force (E =K + U is constant)

e Choose y = 0 at the bottom of the swing,
and U =0 aty = 0 (arbitrary choice)

E =1,mv? + mgy
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Example: The simple pendulum

e E =1/,mv?+ mgy.
€ Initially, y = h, and v = 0, so E = mgh,.

€ Since E = mgh, initially, E = mgh, always since energy is
conserved.




Example: The simple pendulum

e 1/, mv? will be maximum at the bottom of the swing.
e Soaty=0 L[> Y¥,mv2=mgh, ©C>v2=2gh,

[ V = q/Zghl }
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Example: The simple pendulum

e Since E = mgh, =1/,mv? + mgy it is clear that the maximum
height on the other side will be aty = h, =h, and v = 0.

e The ball returns to its original height.




Example: The simple pendulum

e The ball will oscillate back and forth. The limits on its
height and speed are a consequence of the sharing of
energy between K and U.

E =1,mv? + mgy = K + U = constant.




Generalized Work/Energy Theorem:

[ WNC = AK + AU = AEechanical

e The change in kinetic+potential energy of a system is equal
to the work done on it by non-conservative forces.
E mechanicas =K+U of system not conserved!

€If all the forces are conservative, we know that K+U
energy is conserved: AK + AU = AE echanica = 0 Which
says that Wyc = 0.

€If some non-conservative force (like friction) does work,
K+U energy will not be conserved and Wy = AE.




Problem: Block Sliding with Friction

e A block slides down a frictionless ramp. Suppose the
horizontal (bottom) portion of the track is rough, such that
the coefficient of kinetic friction between the block and the
track is

€« How far, x, does the block go along the bottom portion
of the track before stopping?
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Problem: Block Sliding with Friction...

Using Wy = AK + AU

As before, AU = -mqgd

W\ = work done by friction = -y, mgx.

AK = 0 since the block starts out and ends up at rest.
Wy = AU >  -wmgx=-mgd
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