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1. Introduction

In general interferometric detectors of g.w. operate with so called “mirrors in

free fall”; in practice the mirror is free to move along the relevant axis in the

x-y plane. These mirrors define the optical cavity. However one can consider other

configurations where the mirrors are fixed or subject to strong restoring forces in the

laboratory frame. Bar detectors closely approximate this latter configuration.

One can calculate the optical shift imposed by the g.w. on the carrier in any

convenient frame of reference. Of course the observable (the phase shift) must be

independent of the frame used in the calculation. Two frames in particular are highly

relevant. The first is the frame in which the g.w. is expressed in the TT (transverse

traceless) gauge. This is the “free-fall” frame where the distance between geodesics

remains fixed. The other frame is that of the “local observer”, namely the laboratory

frame.

The transfer functions between the g.w. amplitude h(t) and the observable phase

shift are often derived by using Laplace transforms. We will work in both the time

domain and Laplace domain and, of course, obtain the same results in both cases.

2. Free mirrors

Throughout we will assume that the g.w. is incident along the negative z-axis and

that the arms of the interferometer are along the directions of polarization of the

wave. We will calculate only for one arm. The g.w. amplitude is written in the form

h(t, z) = h0 �e{ei(Ωt+z/c)} (1)

In general we will also set z = 0, and write h(t). The length of the arm is L and we

introduce
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T = L/c (2)

In the TT gauge, the metric gµν is given by

gµν = ηµν − hµν hµν(t) =




0 0 0 0
0 h+(t) h×(t) 0
0 h×(t) −h+(t) 0
0 0 0 0


 (3)

with ηµν = (1,−1,−1,−1). Recall that free objects follow geodesics, thus in the TT

frame the coordinates of free mirrors do not change.

Usually the time for the round trip of the carrier is calculated by appealing to the

fact that light propagates on a null geodesic

ds2 = 0 = gµν dxµdxν = c2dt2 − [1 + h(t)]dx2 (4)

In writing Eq.(4) we assumed that dy = dz = 0, hx(t) = 0 and set h(t) = h+(t). By

calculating to first order in h we obtain

dx =
[
1 − 1

2
h(t)

]
cdt (5)

To obtain the total distance traversed by the light we integrate dx from 0 to L

and −dx from L back to 0. For h(t) we use Eq.(1) with z = 0 so that

∆X
(
t =

2L

c

)
= c

∫ L/c

0

(
1 − h0

2
eiΩt

)
dt + c

∫ 2L/c

L/c

(
1 − h0

2
eiΩt

)
dt (6)

In our approximation using L/c and 2L/c for the limits in the integration is perfectly

consistent. Thus

∆X(t) = 2L − h(t)L
sin ΩT

ΩT
e−iΩT (7)

Here we shifted back in time from ∆X(2L/c) to ∆x(t) by multiplying by

exp[i(Ωt − 2ΩT )].

We are interested only in the time dependent part of the phase shift,

∆φ(t) = k∆x(t) with k the wavevector of the carrier, k = ωc/c. Thus

∆φ(t) = ωcT h(t)
sin ΩT

ΩT
e−iΩT (8)

2



This is the desired result. We will rederive it, in the local observer’s frame in the

following section.

3. The local observer’s frame

The results that we give follow the derivation of Pegoraro et al [1] even though

similar results have been reported by Rakhmanov [2] who cites Grishchuk [3,4].

We introduce a general coordinate transformation that depends on a parameter λ

such that

x0(λ2) = x0(λ1) +
1

2c
(λ2 − λ1)x

i ·
hij xj

xi(λ2) = xi(λ1) − (λ2 − λ1)h
i
jx

i (9)

x3(λ2) = x3(λ1) +
1

2c
(λ2 − λ1)x

i ·
hij xj

with i, j = 1, 2. and
·
h = ∂h/∂t. Under this transformation the metric tensor takes

the form

hµν(λ) = (2λ−1)




0 0 0 0
0 h11 h12 0
0 h21 h22 0
0 0 0 0


− λ

c2

[
xi(λ)

··
hij xj(λ)

] 

−1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1


 (10)

The parameter λ is related to the mechanical properties of the detector through

λ =
1

2

ω2
m

(ω2
m − Ω2)

(11)

Here we have modelled the detector end walls (i.e. the mirrors) as a simple harmonic

oscillator of resonant frequency ωm and damping γm(Qm = ωm/γm). As before Ω is

the g.w. frequency. From Eq.(10) we see that λ = 0 corresponds to the TT frame

and is obtained when Ω � ωm. The case λ = 1/2 corresponds to the local frame

and is obtained when Ω � ωm. In the special case that Ω = ωm, namely when the

mechanical properties of the detector are resonant with the g.w.we must account for

the damping and
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λ = Qm = ωm/γm (12)

In the local frame free mirrors move under the influence of the gravitational wave

as can be seen from Eq.(9). Set λ1 = 0, λ2 = 1/2, to find

x′i = xi − 1

2
hi

jx
j

where the prime refers to the coordinates in the local frame. The unprimed coordi-

nates are in the TT frame and remain constant for free mirrors. This is the usual

explanation for the observable phase shift, but it is strictly true only in the limit

ΩT → 0. This is because there is an additional contribution to the phase shift. In

the local frame, as can be seen from Eq.(10), h00 is space and time dependent and

this is equivalent to a gravitational potential. As a result the frequency of the carrier

is shifted and this contributes to the phase shift as well [2].

The equivalent potential for λ = 1/2, h+ �= 0, h× = 0 is

Φ =
1

2
h00c

2 =
1

4
(x2 − y2)

··
h (t, z) (13)

and therefore the frequency shift [5]

dk

k
= −Φ

c2
(14)

Integration over the round trip in a single arm along the x-direction gives a phase

shift

η(t) =
k

4c2

∫ L

0

[
··
h

(
t − 2T +

x

c

)
+

··
h

(
t − x

c

)]
x2dx (15)

Using h(t) as in Eq.(1) the integral is

η(t) = h0 kL eiΩ(t−T )

[
sin(ΩT )

ΩT
− 1

]
(16)

We must also calculate the phase shift arising from the motion of the free mirrors

in the local frame. This is simply

∆x(t) = 2L
1

2
h(t − T )

or a phase shift
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ξ(t) = h0 kL eiΩ(t−T ) (17)

Adding Eqs.(17 and 16) we regain Eq.(8) as we must. Note that in the local frame

the i, j elements of the metric tensor are exactly gii = gjj = −1 and gij = 0 for i �= j.

4. Fixed mirrors

This case is most easily analyzed in the local frame where if the mirrors are fixed,

their coordinates do not change. The distance between two particles with coordinates

xi and xi + ∆xi, is

∆�2 = ∆xi[ηij + (2λ − 1)hij]∆xj (18)

where we used the metric of Eq.(10) and of course ∆x3 = 0. Thus, when λ = 1/2

(local frame) and ∆xi remains fixed, so does ∆�2. The mirrors do not move.

Therefore the only contribution to the phase shift is from the potential induced

by the g.w. as given by Eq.(16). In the limit Ωt � 1 we obtain

∆φ(t) = −h(t)kL
(ΩT )2

6
e−iΩT fixed mirrors

ΩT � 1
(19)

This result should be compared with the shift of free mirrors, Eq.(8), in the same

limit

∆φ(t) = h(t)kLe−iΩT free mirrors
ΩT � 1

(20)

We see that in this limit the phase shift induced on fixed mirrors is of order (ΩT )2

(i.e. much smaller) than for free mirrors.

In contrast for ΩT >∼ π the response of fixed mirrors tends to

∆φ(t) ∼ −h(t)kLe−iΩT fixed mirrors
ΩT >∼ π

(21)

This dominates over the response of free mirrors which tends to zero in the limit

ΩT � 1.

5. Laplace domain

The same results can be obtained in the Laplace domain as shown in [2,5]. We

will designate the Laplace transform of a function by an overbar
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L[f(t)] = f(s) =
∫ ∞

0
e−stf(t)dt (22)

Later we will identify s = iΩ with Ω the g.w. frequency. With this identification,

Eq.(22) is a Fourier transform over positive frequencies and the Laplace transform

represents the frequency response of the detector.

We start in the TT frame where a round trip in an arm of length L yields a phase

shift

φ(t) =
ωc2L

c
− ωc

2

∫ t

t−2L/c
h(t′)dt′ (23)

Taking Laplace transforms of both sides we find the time dependent part

∆φ(s) =
ωc

2

{
L

[∫ t

0
h(t′)dt′

]
− L

[∫ t−2T

0
h(t′)dt′

] }
=

(24)

=
ωc

2

[
h(s)

s
− e−2sT h(s)

s

]
=

ωc

2

1 − e−2sT

s
h(s)

(25)

By setting s = iΩ we recover Eq.(8).

We can obtain the same result in the local frame. Since the mirrors are free we

must calculate both the effect of mirror motion as well as the frequency shift. Let

mirror a be at xa = 0 and mirror b at xb = L; light leaves mirror a at t = 0 and

reaches b at t = T , returning to a at t = 2T . Thus the distance travelled by the light

is

X(t) = 2L + 2L
1

2
h(t − T ) (26)

as also derived before. Taking Laplace transforms of the time dependent part leads

to

ξ(s) = kLe−sT h(s) (27)

The Laplace transform for the effect of the gravitational potential can be found

by similar methods [2] and is
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η(s) = kL

[
1 − e−sT

2sT
− e−sT

]
h(s) (28)

Adding the two contributions from Eqs.(26,27) we regain the transfer function of

Eq.(24), which was derived in the TT frame. Setting s = iΩ in Eqs.(26,27) reproduces

Eqs.(17,16).

6. Change in the dielectric tensor

It is well known that the presence of a gravitational field affects the electric and

magnetic permeability of the vacuum and thus the velocity of propagation of electro-

magnetic waves (in vacuum). As a result for fixed frequency the wave vector of the

carrier is modified and this leads to an observable phase shift.

As shown in [1] the dielectric tensor is given by

εij = −[ηij − (2λ − 1)hij]

(29)

µij = −[ηij − (2λ − 1)hij]

In the TT frame (λ = 0) we also have ε33 = µ33 = −1. Thus the product of the

electric and magnetic permeabilities for propagation in the x-y plane [where one field

is polarized in the plane and the other field along the 3-axis] is

εµ = 1 + h(t)

Thus

c′ =
c√
εµ

=
c√

1 + h(t)
� c[1 − 1

2
h(t)] (30)

This is the same result as we obtained in Eq.(5) where c′ = dx/dt, by directly

using the metric tensor. Thus Eqs.(28) represent a completely equivalent description

of the effect of the g.w. on the stored carrier light.

In the local frame (λ = 1/2)εij = δij(i, j = 1, 2) and similarly for µij. However ε33

and µ33 are different from unity as can be inferred from Eq.(10). We can write

ε33 = µ33 = 1

[
η33 − 1

2c2
xi ··

hij xj

]
(31)
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For fixed mirrors this is the only contribution in the local frame and leads to the

phase shift given by Eq.(16).

7. Sidebands vs. phase shift

It is well known that a time-dependent phase shift of the carrier is mathematically

equivalent (in the frequency domain) to the appearance of sidebands. For instance

using the result of Eq.(8) we see that the carrier amplitude exp(iωt) is multiplied by

a term of the form

ei∆φ(t) = eix cos Ωt ; x = ωcTh0
sin ΩT

ΩT
(32)

The exponential can be expanded

eix cos Ωt = J0(x) + iJ1(x)eiΩt + iJ1(x)e−iΩt + ... (33)

where we retained only the lowest term in x. If we retard the phase of Ω by π/2 and

expand J1(x), Eq.(31) can be written in the simpler form as

eix sin Ωt = J0(x) + xeiΩt − xe−iΩt (34)

Thus from an experimental point of view one can either look for a change in the

interference pattern as a function of time or for the presence of sidebands in the

frequency spectrum of the returned carrier. Which method is used depends on the

specific source of g.w. that is sought, and on signal to noise considerations.

8. The case of a long fiber

We can treat the fiber as rigid, i.e. use the expressions for the fixed mirror case.

The fiber could be folded so that input and output are at the same spatial coordinate

making possible phase shift measurements by interfering part of the input beam with

the output. Conversely a long one-way fiber can be used if one is only interested in

searching for sidebands.

We first consider a fiber that is coiled with radius R and of total length L = 2n�

where � = πR and n is the number of turns in the coil. To directly use Eq.(16) we

treat the coil as flattened so that propagation is only along the x-direction with an

arm of length �; then n is the number of round trips in the arm. The total phase shift
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is obtained by the sum of terms given by Eq.(16) with the appropriate delay taken

into consideration,

η(t) = h0k�

[
sin(Ωτ)

Ωτ
− 1

]
n−1∑
m=0

e−2iΩτm eiΩ(t−τ)

(35)

= h(t)k
L

2
e−iΩτ

[
sin(Ωτ)

Ωτ
− 1

]
sin(Ωτn)

n sin(Ωτ)

where τ = �/c.

From physical arguments we expect Ωτ � 1, and if Ωτn <∼ π/2 expanding Eq.(35)

we find

η(t) = h(t)kL e−iΩτ (Ωτ)2

12
(36)

which is a “gain” in phase shift over that for a single arm of length � by a factor of

L/2�.

Of more interest is a long fiber of length L in the x-direction. In this case we

can take over Eq.(16) directly but we can now assume that Ωτ > π leading to the

result of Eq.(21). As an example if we consider a communications fiber laid out over

1,500 km then the above condition is satisfied for νg >∼ 100 Hz, which is in the

range of frequencies of interest. One could then consider looking for sidebands on the

transmitted light. For h0 = 10−21 the modulation index x = 10−8. Thus the sideband

is at -160 db with respect to the carrier and at a 100 Hz offset. Whether that is

detectable is an issue of noise calculation and signal duration.
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