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ABSTRACT ix

Abstract

This thesis describes a search for a stochastic background of gravitational waves
at high frequency, 37.52 kHz. At this frequency, the separation between distant
detectors precludes the use of a correlation technique. Instead I rely on the
spectral response of the LASER interferometer (IFO) to isolate a possible signal
from the underlying noise. This research was carried out at the LIGO (LASER
Interferometer Gravitational Observatory) located in Hanford, WA and within
the LIGO Scientific Collaboration (LSC).[20]

Chapter 1 serves as a general introduction to the present state of the search
for gravitational waves (GW). I discuss the indirect observation of gravitational
radiation as well as the expected sources of GW and their characteristics. I also
discuss possible future developments, in particular the Advanced LIGO instru-
ments and the LASER Interferometer Space Antenna (LISA). The characteristics
of the large LASER interferometers, layout, terminology and analytic formulae
are developed in Chapter 2.

To carry out the proposed search, it is essential that the frequency response of
the interferometer be thoroughly understood, including all possible noise sources.
This was the subject of a series of experimental investigations using sideband
injection and mirror excitations to characterize the IFO response in the region of
the characteristic frequency of the optical system (free spectral range) at 37.52
kHz. The results of these experiments as well as the theoretical modeling are

presented in Chapter 3. Contributions to the spectrum from mechanical noise



are investigated in Chapter 4, and compared to the expected contribution due
to thermal excitation.

The results of my search are based on data obtained during the third science
run of LIGO (S3) and are presented in Chapter 5. I show that a signal such
as expected from a stochastic gravitational wave background is manifest in the
data and compare it to the expected noise. This allows me to set a limit on
a possible stochastic background of GW. I also discuss possible future higher

sensitivity measurements at these frequencies.
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Chapter 1

Introduction

Many of the current gravitational metric theories predict gravitational radiation
in the form of quadrupolar transverse waves. There is strong indirect evidence
for these waves from radio astronomy: the gradual orbital decay of PSR 1913+16
has been observed since its discovery in 1974, and perfectly matches predictions
based on energy loss due to gravitational radiation. However, gravitational radi-
ation has not yet been directly detected. Gravitational radiation should appear
to inertial observers as an oscillation of the distance between free falling objects
at the frequency of the gravitational wave. In the LIGO gravitational detector
(See fig: 1.4), the test masses (which are also the optics) are suspended by thin
wires, in an attempt to approximate freely falling bodies, and thus make them
sensitive to gravitational radiation. This is achieved using a series of vibration-
isolation mechanisms, from which the optic is eventually suspended by a thin

wire.

Following Einstein’s theory of gravitation [25], gravity can be thought of as a
deformation of space-time around objects with mass. Because it is not possible

to shield a gravitational field, the field has infinite extent. When an object
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moves, this field changes; however, the field at infinity cannot change at the same
instant as the object moves without instantaneous action at a distance. Thus,
any change in field propagates from the source in the form of gravitational waves
traveling at the speed of light. As gravity determines the curvature of space-
time, a gravitational wave is regarded as a ripple in the curvature of space-time.
Since the distance between objects is measured along [47] geodesics that follow
the curvature of space-time, a gravitational wave changes the distance between
objects as it passes by them. If a gravitational wave is traveling along the z axis,
and is polarized along the z, y axes, then the metric (the square of the distance
between space-time events) has a simple form which shows that a gravitational
wave of amplitude h causes a change Arz = 1+ %h along the z direction, and
a change Ay = 1 — Zh along y (see Sect. 1.1). With this in mind one could
use a Michelson type of interferometer to measure the passage of a gravitational
wave. This holds despite the fact that light is also affected by the curvature of

space-time [61].

A quadrupole moment is the lowest-order moment in a mass distribution,
which can have an oscillatory acceleration, and thus produce a gravitational
wave. The monopole term cannot contribute because of conservation of energy,
so the second derivative with respect to time (yielding acceleration and radiation)
of the total mass of the system must vanish. Similarly, the dipole term cannot
contribute because that would violate conservation of momentum. Given the 4
km long arms of LIGO, the anticipated mirror motion is 10~!® meters ~ 1,/1000
of the diameter of a proton, for an h = §I/L = 1072!. Of the possible sources
of gravity waves, the best understood is the orbital decay of a binary neutron
star system. Modeling such systems suggests a typical wave amplitude (h) of

1072, which is distressingly small, and furthermore lasts for only a few seconds
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(within the LIGO frequency band).

1.1 General Relativity

In the realm of general relativity, gravity is not an external force transmitted
through space and time but a curvature of space-time.! Special Relativity pos-
tulates the invariance of the interval between space-time events given by ds?

which in Cartesian coordinates is
ds® = —c*dt* + dz® + dy* + d2* (1.1)

Which can be written more compactly as

ds* = n,,dztdz” (1.2)
with
-1 000
0100
Nuv = (13)
0010
0001

In General Relativity the Minkowski metric 7, is modified and is no longer

“flat”, and Eq.(1.2) must now be written as
ds® = g, dz"dz” (1.4)

where g, is the metric of the curved space. When the curvature is small, as is

usually the case, one can treat the curvature as a perturbation to the flat metric

Juv = Muv + huu (15)

! Quintessentially speaking: Space-time grips mass, telling it how to move; and mass grips

space-time, telling it how to curve.
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The metric perturbation notation is particularly useful when investigating
gravitational waves. There is a great deal of gauge freedom in GW theory. A
particularly useful gauge is known as the “Transverse Traceless Gauge”, where
the coordinates are marked by freely falling hypothetical test masses. In this

gauge and in the weak field limit, Einstein’s equations reduce to a wave equation

1 02 167G
2 _
(v -3 —8t2> b = == Ty (1.6)

In free space the stress energy tensor 7, = 0. Consider a wave propagating in

the z direction; it is represented in the Transverse Traceless gauge by

00 00
0 a b 0
hy = (1.7)
0 b —a O
00 00

which breaks down into two independent polarizations h = aiz+ +bizx. With the

basis vectors

00 0O 00 0O

. 01 0O . 0 010

h+ - h>< - (18)
00 -1 0 0100
00 0O 00 0O

Thus, elements of h take the form h(wt — kz). The two polarizations are 45°
apart while a 90° rotation takes one of these tensors onto itself, up to a change

in sign. This can be visualized as shown in Fig. 1.1.

If a gravitational wave of amplitude A is traveling along the z axis, and is
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Figure 1.1: Graphical simulation of Gravitational Wave Polarizations

polarized along the z,y axes then h,, = hﬁ+. This leads to a metric tensor

—1 0 0 0
0 1+h 0 0

uv = (19)
0 0 1-h O

0 0 0 1

To determine the effect of this metric tensor on lengths along z or y, Eq.(1.4) is
used with either dz* or dz” set to the dimension of interest. Thus Az = v/ds?
with dz# = dz” = (0100 ), so Ax = y/gidr'dz! and using the metric in
Eq.(1.9), Az =1+ h~1+ % h; similarly Ay =1 —h~1— % h.

1.2 Binary Pulsar Evidence for GW

The primary evidence thus far for the existence of gravitational radiation is the
Binary Pulsar PSR 1913+16, discovered by Hulse and Taylor in 1974 [34, 73],
for which they were awarded the Nobel Prize in 1993. This is a binary neu-
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tron star system, with an orbit slightly larger than our Sun’s diameter. Ob-
servations over more than twenty years have confirmed that the orbital de-
cay of this system matches predictions based on general relativity, as shown
in Fig. 1.2. One measure of this decrease in orbital period is the steady shift
of the time of the pulsar’s closest approach (periastron) to its companion star.
The cumulative value of this shift measured by J. Taylor and J. Weisberg at
the Arecibo radio telescope in Puerto Rico over several decades is shown in
Fig.1.2. The points are their measured data. The agreement with theory is
better than a third of a percent, and there are no free parameters in
the fit! This plot is taken from Ref. [53]. The system has been observed in
great detail, and is documented in several sources, including Ref. [17]. The
masses of the system are deduced to be M; = 1.4410 4+ 0.0005 M (the pul-
sar) and My, = 1.3874 4+ 0.0005 M (the companion). The period and ec-
centricity of the binary orbit were P,y = 27906.9808968 + 0.0000016 s and
e = 0.6171308 4+ 0.0000004 in 1990, respectively. As the system radiates energy,
the system’s orbit decreases and the periastron (where the two neutron stars
are nearest each other) precesses. The measured value of 4.22626° per year is
in good agreement with the theoretical value. This effect is cumulative, making
it easier to measure the longer the system is observed. The rate at which the

orbital period changes due to gravitational radiation is

3172 2\ 4/3
dPorb _%G M 2 (471' ) f(e) (110)

P orb — = y
T e 5 ¢ \GM) p3

where

M,y M,
M, + M,
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Figure 1.2: The orbital period of any body around another decreases because
of the energy lost to gravitational radiation. That effect is strongest in highly
relativistic systems such as the binary pulsar PSR1913+16.
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and f(e) describes the effect of the eccentricity of the orbit,

fle) = (1 + ;—ieQ + g—ge4> (1- 62)_7/2 :
Higher order correlation terms are neglected in the above formula. This leads
to an expected decrease in orbital period of Py = —2.40259 x 1072, which, as
indicated above, agrees with the measured value to within 0.3%. When reporting
their findings in 1984, Joel Weisberg and Joseph Taylor wrote: “It now seems
an inescapable conclusion that gravitational radiation exists as predicted by the

general relativistic quadrupole formula.”

1.3 Detectors

Initially predicted by Einstein [25], the field of Gravitational Wave (GW) detec-
tion was pioneered by J. Weber [71] in the early 1960s. Weber’s paper of 1969 [72]
inspired a community of independent researchers to confirm his reported detec-
tion of a GW event. Although Weber’s initial report of an observation has never
been confirmed, and was later determined to be in error, the search continues.
There are two primary types of gravitational wave detectors, resonant bars and

interferometers.

1.3.1 Resonant Bars

Figure 1.3 shows a bar detector currently on display at the LIGO Hanford IFO
site. The bar was one of three used by Weber at the University of Maryland
in his experiments to search for gravitational waves from astrophysical sources.
Another of the bars is on exhibit at the Smithsonian Institution in Washington

DC. The bar is a solid object, held together, as usual, through electrostatic forces
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Figure 1.3: Resonant Bar Gravitational Wave Antenna

which are dependent upon the distance its constituent components. Thus, when
a gravitational wave passes through the area of space-time occupied by a bar
detector the distances between points within that space are changed as described
by the GW metric. This change in distance between the molecules of the bar
causes a change in the internal pressure of the bar at the frequency of the GW.
If this frequency corresponds to the resonant frequency of the bar, then the bar
will resonate and “ring”. The amount of vibrational energy in this ringing would
correspond to the amount of energy transferred to the bar by the gravitational
wave, which is to say very small. Modern bar detectors are cooled to cryogenic
temperatures to reduce thermal noise, and thereby enhance the possibility of
detecting the motion by transducers attached to the end faces. The bar antenna
is essentially a simple device, but it has a narrow frequency response and for

most bars it is centered at ~ 700 — 900 Hz.

1.3.2 LASER Interferometers (IFOs)

The other type of detector is a LASER Interferometer. Here a LASER beam

is split by a beamsplitter and sent in orthogonal directions to semitransparent
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recycling
mirror

Light Source

beamsplitter
photodetactor

Figure 1.4: Schematic layout of the Interferometer showing mirror suspensions

mirrors which reflect the light back to the beamsplitter. When a gravitational
wave is incident on the IFO, it moves the mirrors in each arm in a differential way
which changes the interference pattern of the light returning to the beamsplitter.
To obtain the desired sensitivity, further refinements are needed and these will
be discussed in detail in the following chapters. The main benefit of an IFO over
a bar is that the IFO is a broadband device, sensitive to GW events of much
lower frequency and can therefore reach greater sensitivity. Figure 1.4 shows a
simple diagram of an IFO with Fabry-Perot arm cavities and a power recycling

mirror.
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1.4 Expected Sources of Gravitational Waves

The primary interest in the direct observation of GWs lies in the expectation of
carrying out GW-astronomy, opening up a new window on the universe. Because
GW'’s interact so weakly with matter, it will be possible to observe sources
for which electro-magnetic (EM) radiation is absorbed, such as sources within
galactic interiors. It will also make possible the study of violent astrophysical
phenomena, such as the coalescence of binary stars and supernovae explosions.
Such events are rare, and must therefore be detectable over large distances in
order to observe even a few events per year.

The intensity of a GW falls off as 1/R?, where R is the distance of the source
to the observer on earth. Thus, the GW amplitude A(t), falls off as 1/R. The
distance R at which a source can be detected is proportional to the inverse of
the minimum strain sensitivity, hg4, of the detector. Lowering the sensitivity by a
factor D, increases the observation volume and the number of observable sources
by a factor of D3.

Because of the weakness of the GW signal relative to the noise in the in-
struments, it is important to exploit coincident detection at several sites. Given
the low frequency of the GW, these sites can be widely separated as indicated
in Fig. 1.5. There are three LIGO interferometers (IFOs), two at the Hanford
site in Washington State (a 4 km IFO and a 2 km IFO) and one at the site in
Livingston, Louisiana (4 km IFO). Furthermore, a signal received at several sites
can be used to establish the direction of arrival of the GW. Collaboration with
the other IFO GW detector groups VIRGO, GEO and TAMA can improve the
localization of the source, as is illustrated in Fig. 1.6.

GW sources are categorized in three main groups: (a) Quasi-periodic and

truly periodic sources, (b) Burst events of short duration, and (c) An incoher-
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Figure 1.5: LIGO Detectors in Richland, WA (LHO) and Livingston, LA (LLO)

LIGO Translent Event Locallzation LIGO+VIRGO Translent Event Locallzation

SOURCE

LIGO+VIRGO+GEO Translent Event Localization  LIGO+VIRGO+GEO+TAMA Translent Event Locallzation|

SOURCE 4% < SOURCE

Figure 1.6: Measurement of GW source by inter-collaboration correlation mea-
surements
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ent stochastic background. In the first category, the coalescence of binary-star
systems leads to a chirped frequency signal with a very distinct pattern. This
pattern lasts only a few minutes in the LIGO frequency band, but this is suffi-
cient to extract the signal from the noise. Truly periodic sources such as pulsars
and non-coalescing binary systems (see Section 1.2) also emit GW, but the ex-
pected amplitude on earth is very weak or not within the LIGO frequency band.
Long integration time can be used to extract the signal from the noise, provided
Doppler corrections are properly applied. This implies knowledge of the position
of the source in the sky, which is not available a priori when searching for new

sources.

Burst events occur during the core-collapse of supernovae (SN) or in other
similar phenomena. While SN are extensively studied, there is no information
on the fraction of energy (e) that is converted to GWs, as it depends on the
asymmetry of the collapse. The theoretical prejudice is that e < 10~7 to 1078,
In contrast, LIGO at design sensitivity could detect a SN with ¢ > 107, at a
distance of 55 kpc [26]. The expected SN rate within this volume is only one
event per = thirty years. The waveform of the emitted burst is unknown, and in
general, it is difficult to distinguish a “burst” event from background noise, even
with coincidence between multiple detectors. One can, however, take advantage
of observational data, because the light curve of a SN fixes the time of collapse
to within an hour. Similar considerations apply to vy-ray bursts, which are now
routinely observed, and are assumed to occur during the formation of M black

holes. These are referred to as “triggered” searches.

Estimates of the GW amplitude as a function of frequency for several periodic
sources are shown in Fig. 1.7, and for burst sources in Fig. 1.8 [70]. These graphs

also show the sensitivity of the LIGO detector and of Advanced LIGO (see



14

Dimensionless Wave Amplitude h

and Detector Sensitivity h

1 0—21

1 0—22

-

=
na
w
I

N

107°%

107#

CHAPTER 1. INTRODUCTION

-—t

<
n
F
|

GW Spindown Pulsars T, = 102 yrs. -
: D e Crablimit | 5o/ &
IMPROVED ’.S .
ISOLATION [ : /:

——

1 0——25 ==

u
a
2
é?
£3

40103130 A18V3 090,

PERIODIC WAVES

yo19313a GHONV"GVOBH

: .
= Vela limit

i GW Spind

o
1937 + 214 limit
RESONANT

RECYCLING
1 0—28 -
RESONANT
RECYCLING
- : : ENVELOPE
10~
1 10 102

10° 10*
Frequency f (Hz)

Figure 1.7: LIGO Sensitivity to Periodic Sources, estimated 1989 [70]



1.4. EXPECTED SOURCES OF GRAVITATIONAL WAVES 15

10—15

10—17 =

BURSTS

c

10—18_

IMPROVED
SEISMIC

ISOLATION  §i
B Il

o
E“; i
=i
ok
o

-t
s |
ol
w

\10‘N0179hole <

S NG

- SN 3 Ns T Se
10720 SHEaR e Zlescence @ 10y, 22y

i 2 R —— i
Mo BH Coslescence 70 roe-

Characteristic Wave Amplitude h
and Detector Sensitivity hy

10742

IMPROVED RECYCLING N

10723

107%4

104

Frequency f (Hz)

Figure 1.8: LIGO Sensitivity to Burst Sources, estimated 1989 [70]



16 CHAPTER 1. INTRODUCTION

following Section 1.5.1). The following abbreviations are used in the figures: f
= frequency, h(f) = square root of the spectral density of the IFO’s noise, SN =
supernova, NS = neutron star, BH = black hole, M,c? = one solar rest mass (in
units of energy carried by GWs) and e = fraction of mass emitted in GWs. One
parsec (pc) 1 pc = 3.086 x 10'® m = 3.26 light years. For the periodic sources
in Fig. 1.7 the LIGO sensitivity curve represents a detected signal-to-noise ratio
of unity, after integration of a source of known frequency for 7 = 107 seconds
(4 months) with hy related to the square root of the noise by hy = h(f)/V7.
For burst sources in Fig. 1.8, the characteristic amplitude h, ~ h+/n, where n

is the number of cycles in the burst for which the amplitude is near h and the

frequency is near f and the benchmark sensitivities are hy ~ l~z( VT

LIGO has a fixed configuration unlike Advanced LIGO, described in Section
1.5.1. Design requirements call for a peak sensitivity for the LIGO instrument
of h(f) = (3 —6) x 102 //Hz in the 75-500 Hz frequency band. Of interest is
the distance at which LIGO will be able to “see” a a given gravitational event,
or the volume of space searched for such events. The distance is defined for
a specific type of binary inspiral event, defined as a binary system with mass
M = (1.4 + 1.4) Mg and radius r ~ M®/S; this gives the expected strain of
h = 107%! mentioned earlier. With a signal to noise ratio of ~ 8 this gives LIGO
a Science Reach of r = 14 Mpc. For comparison, note that the Milky Way
has a disk diameter of approximately 50 kilo-parsecs (kpc), a halo diameter of
100 kpc, and the Sun’s distance from the center of the galaxy is approximately
8.5 kpc [74]. Our Milky Way Galaxy and the Andromeda Galaxy (M31) are part
of a cluster of galaxies called the local group, which spans about 1 Mpc along
its largest dimension. The Virgo cluster of galaxies is approximately 15.7 Mpc

away.
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Stochastic GW can be of cosmological origin (e.g. the Big Bang), or can
originate from an incoherent addition of GWs emitted from several independent
astrophysical sources. It is customary to define the strength of the stochas-
tic background in terms of the fractional energy in a logarithmic interval (see

Chapter 5)
_ [ dpgw
~ pe df

where p,. is the critical energy density required to close the universe and pgy is

Qg (f)

the energy density of gravitational waves. In this model, the amplitude A(f), in
a bandwidth Af = f falls off as 1/f2. This is shown in Fig. 1.9 for an integration
time of 107 seconds. Theoretical prejudice and limits on Q,, are discussed in
Section 5.1.

Figure 1.10 shows the sensitivity achieved by the LIGO instruments (H1 =
LHO 4k IFO, H2 = LHO 2k IFO, L1 = LLO 4k IFO) during the S1 science
run (Sept. 2002). Significant improvements have been made since that time,
resulting in an overall reduction of the noise floor of roughly a factor of 10. This
compares favorably with the “Early Detector” design shown in the previous
figures. New calculations on source characteristics and expected signal levels are

constantly being done; see for instance [12, 33, 43].

1.5 Future Detectors

1.5.1 Advanced LIGO

Advanced LIGO is an upgrade proposed for the current LIGO configuration, and
has an anticipated sensitivity more than ten times better than LIGO, and also
extends the detection sensitivity to lower frequencies. As the volume of search

space grows with the cube of the sensitivity it is estimated that 2.5 hours of run-
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ning with Advanced LIGO should be equivalent to 1 year of running with LIGO.
Primarily the upgrade calls for higher input LASER power, better optics, quieter
suspension and a more sophisticated vibration isolation system|[38]. Advanced
LIGO is expected to have a much higher probability of detecting gravitational
events as it is designed to have a search space more than 1,000 times larger than
LIGO. Advanced LIGO should theoretically have a search space containing the
nearest one or two million galaxies. It is expected that approximately one binary
neutron-star merger per year should occur within this search space [36] of radius
200 Mpc. The exact timing of the upgrade from LIGO to Advanced LIGO is
still unknown, but installation is slated to begin in 2007 [54].

The upgrade from LIGO to Advanced LIGO involves an improvement in sen-
sitivity by a factor of more than ten over the entire initial LIGO band and in-
creased bandwidth in the low-frequency regime (from = 40 Hz to ~ 10 Hz). The
installation of a signal-recycling mirror (much like the power-recycling mirror
on the input port but the signal-recycling mirror will be on the anti-symmetric
port) will allow the instrument to be used as a tunable narrow band detector.

This could also provide higher-frequency operation than for the initial LIGO.

Advanced LIGO was to use Sapphire optics instead of Fused Silica, as cur-
rently used in LIGO. Continuing research has shown that there may not be as
much of an advantage to this technique as originally predicted, and a decision is
expected soon. In addition, the optics are to be larger to reduce thermal noise
(=~ 30 cm up from 25 cm) and more massive to reduce radiation pressure noise
(~ 40 kg up from 11 kg). It is also expected that compensation for thermal
lensing (changing the curvature of the optics by LASER heating) will be incor-
porated into the optics design. Test mass suspensions will be switched from steel

wire slings to fused silica fibers improving both the magnitude and shape of the
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Venu

Figure 1.11: Orbital Schematic of LISA: LASER Interferometer Space Antenna

contribution from suspension thermal noise.

One of the most important changes will be the upgrade of the seismic iso-
lation system required to move the “seismic wall” from 40 Hz to 10 Hz. The
suspension system will become more complicated, and involve several layers of

passive isolation as well as isolation based on active feedback.

1.5.2 LISA

Seismic noise, both natural and man-made, is the primary limiting factor to
LIGO sensitivity at low frequency. As it is expected that a great number of
sources are generating signals at frequencies below 1 Hz, one would like to have
a gravitational wave detector that is not limited by seismic noise. One way to
achieve this is to place the detector in outer space. This is the motivation for

LISA: the LASER Interferometer Space Antenna (see Fig. 1.11).
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Figure 1.12: Cutaway of LISA’s instrument. The actual spacecraft will be pro-
tected with a cover. Image from LISA webpage [19].

LISA is expected to detect a completely different (lower) range of the spec-
trum than LIGO. LISA is comprised of three Y-shaped spacecrafts (Fig. 1.12),
moving together in helio-centric orbit, following the orbit of the earth around
the sun. Each of LISA’s three arms would stretch five million kilometers. Small
telescopes in each spacecraft would collect the LASER light sent sixteen sec-
onds earlier from the other two crafts. The test masses used would be metal
cubes, four centimeters across, free-floating in space within (but not touching)
the spacecraft [35]. Each of LISA’s spacecrafts houses two separate test masses,
as shown in Fig. 1.13. Because of the vast distances involved, the relative posi-
tions of the test masses must be measured only to an accuracy of two-tenths of
an angstrom (2 x 10~ m), which should be easier than LIGO’s requirement of
one thousandth the diameter of a proton (1 x 10! m).

LISA is a joint European-U.S. mission, with a currently estimated launch
date of 2011. The total costs range from a 2002 estimate of $600 million to more
than $1 billion. Design and engineering projects are underway for satellite flight
by the European Space Agency (ESA) planned for 2006 to check crucial LISA
technology [37]. The ESA satellite SMART-2 will fly two test packages of proof

masses and hardware, to validate the engineering to within a factor of ten of
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Figure 1.13: LISA Instrument

LISA’s goals.

Gravitational radiation expected in LISA’s low frequency band (1074 — 107!
Hz) provides cause for optimism. According to Neil Cornish of Montana State
University, Bozeman: “We have a massive signal-to-noise, far better than for
some optical instruments. We will see sources within the first hour of turning
on.” Not only is the signal strength expected to be much higher, but also LISA
is sensitive to more sources than LIGO or Advanced LIGO. It is even possible
that these sources will combine into a noise source for LISA. Some predictions
show that LISA should be sensitive to GW emissions from close pairs of white

dwarfs within our own galaxy, the Milky Way.
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Chapter 2

The LIGO IFOs

2.1 LIGO Layout

Many of the terms and acronyms used at LIGO are difficult to recall without
having worked at the site. Also I have found that simple lists of acronyms do
little to alleviate the confusion. For this reason I have included Figure 2.1, as well

as a walk through the system introducing the acronym’s as they are encountered.

The LASER source for the system is a 10 Watt industry LASER from Light-
Wave. This is frequency locked onto a Reference Cavity, which is a Fabry-Perot
Cavity (cavity or FP) of fixed length suspended in vacuum inside an insulated
chamber to minimize thermal variations. The LASER output is then passed
through a Pre-Mode Cleaner (PMC). The PMC is a small ring cavity which
changes its length to stay locked onto the LASER frequency, the primary pur-
pose of which is to filter out the non TEMgy LASER output. After the PMC the
beam is sent through Electro-Optic Modulators (EOMs) to put the phase mod-
ulated sidebands on the carrier frequency. These are necessary for locking the

interferometer with the Pound-Drever-Hall [24] locking method. The configura-
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tion described so far is referred to as the Pre-Stabilized LASER (PSL). The PSL
is contained entirely on one LASER table in the LASER Vacuum Equipment
Area (LVEA) and is enclosed in an acoustic shielding cabinet.

The PSL output is directed into the vacuum system. The rest of the inter-
ferometer components are in vacuum with some LASER beams exiting through
view-ports for diagnostic and detection purposes. All exiting beams are care-
fully contained and are routed onto optics tables with suitable diagnostic and
detection equipment used to lock and characterize the interferometer. The PSL
output enters HAM7 and is mode matched into the Mode Cleaner (MC). There
are two types of vacuum chambers used to contain optics: HAMs and BSCs. A
HAM is a Horizontal Access Module and a BSC is a Beam Splitter Chamber (or
a Bi-Symmetric Chamber). Figure 2.2 is a computer generated image of a HAM

chamber, Fig. 2.3 similarly shows a BSC chamber. The BSCs are larger and

Figure 2.2: HAM Chamber and its seismic isolation
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Figure 2.3: BSC Chamber and its seismic isolation

the optics table is suspended from the top of the chamber while in the HAM the
optics table is mounted from the bottom. Both types of chambers use similar
passive vibration/seismic isolation systems consisting of stacked layers of masses
and springs, referred to as stacks. Although initially designed for different pur-
poses many of the reasons for the differences between HAMs and BSCs were
later abandoned.! The chamber’s numbers reference the order in which they
were manufactured. Thus although it is useful to reference HAM7 and HAMS
as containing the Mode Cleaner, the numbers 7 and 8 do not necessarily have

any relation to the chamber’s location in the interferometer.

The suspended optics are labeled in Fig. 2.1, these consist of the small optics

and the large optics. The small optics are 0.25 kg and are used in the Mode

'HAMs and BSCs are also occasionally referred to as WHAMs or LHAMs and WBSCs or
LBSCs, the preceding W or L referencing the Washington or Louisiana site.
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Cleaner (MC), the Mode Matching Telescope (MMT) and as Steering Mirrors
(SM). The large optics are 11 kg and are used for the core interferometer optics:
Recycling Mirror (RM), Beam Splitter (BS), Folding Mirrors (FM), Input Test
Masses (ITM) and End Test Masses (ETM). The exception is the third Mode
Matching Telescope mirror MMT3 which is a large optic. The MC is a three
mirror ring cavity 15 meters in length. The mirrors are 0.25 kg and are suspended
in much the same way as the primary interferometer optics. The MC stabilizes
the LASER in frequency and intensity and selects the TEMgg mode. The PSL
is locked onto the MC using a standard PDH (Pound Drever Hall) method. The
feedback control signal for this is split and filtered for low frequency and high
frequency. The idea is that at high frequency the MC is very stable and is used as
a reference to change the frequency of the PSL. It does this by sending a feedback
signal to an Acousto-Optic Modulator (AOM) which is placed before the PSL
reference cavity. The LASER into the reference cavity passes through the AOM
twice to remove the AOM induced angle in the beampath. Since the AOM
changes the frequency of the light incident on the reference cavity, the frequency
of the LASER light out of the LASER has to change in the opposite direction
to stay locked to the reference cavity (the reference cavity locking signal is sent
back to the LASER). The high frequency MC feedback signal is sent through a
high pass filter and is labeled as MC_F (Mode Cleaner Frequency).

Since the MC is suspended by wires it may drift at low frequency and there-
fore the feedback at low frequency is used to control the MC length. This
feedback signal is sent through a low pass filter and is labeled as MC_L (Mode
Cleaner Length). The entire signal name is H2:I00-MC_L. H2 indicates the
second interferometer at the Hanford site, H1 would be the 4k interferometer at

Hanford and L1 would be the 4k interferometer at Louisiana. 10O references
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the Input Output Optics subsystem of the interferometer.

After the Mode Cleaner the LASER is steered (with SM1 and SM2) into the
Mode Matching Telescope (MMT1, MMT2 and MMT3) which “mode matches”
the LASER into the interferometer. The LASER “mode” references the spatial
characteristics of the LASER beam, minimum beam size, shape and location.
The first core optic encountered is the Recycling Mirror (RM), the purpose of
which is to reflect most of the interferometer output light back into the inter-
ferometer. The instrument is referred to by the components: Arm Cavities,
which consist of an ITM and an ETM forming a FP cavity and Power Recycled
Michelson (PRM) which consists of the RM, BS and both ITMs also forming a
FP cavity. If one were to lock both arm cavities and lock the interferometer on
a dark fringe at the antisymmetric port of the BS while having the RM com-
pletely misaligned (so that it simply acts as an input attenuator and doesn’t
form a cavity) the system is referred to as being in recombined mode. This
is to distinguish the recombined interferometer configuration used during the
second engineering run (E2) from the power recycled interferometer (PRIFO)

configuration as originally designed and currently in use.

2.2 The mirror equations

Here I derive the equations for the electric fields at various locations in the
power recycled interferometer. Then I investigate how symmetry arguments
can simplify those equations. This allows for an analytic investigation of the
interferometer response to various stimuli.

When dealing with reflection and transmission from real mirrors there can
be some confusion on how to deal with relative phases acquired during the

light /mirror interaction. In some of the LIGO related documents (e.g. [29,
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39, 57]) the convention used is to give reflection from one side of the mirror
as a negative coefficient and reflection from the other as a positive coefficient.
However, most optics documentation (e.g. [59, 65]) uses a convention where the
reflection is the same from either side of the optic as is the transmission, but the
transmission is given an additional factor of 7. Siegman [65] has a nice discussion

about the two conventions in Chapter 11, page 405-6 of his book.

For all future analysis of LASER cavities and interferometers in
this book, however, I will arbitrarily choose the complex symmetric
form S = [r, it,it, r], with r and ¢ purely real, as the scattering matrix
form to describe all mirrors and beam-splitters. This arbitrary choice
will make no difference in any of the physical conclusions I reach
about LASER devices. It seems easier, however, to remember that
transmission coefficients always have a factor of ¢ associated with
them than to remember which side of each mirror in a LASER system

is the +r and which is the -r side. [Siegman [65] page 406]

I will also use the Siegman convention as its use of symmetry does tend to make
the math easier to follow. The physics is the same independent of convention. In
fact the LIGO Length Sensing and Control design [68] is convention independent.
I also use the convention that a propagation phase is given by e * (and not €*),

this is arbitrary but consistency is necessary.

2.2.1 Simple Fabry-Perot

In the case of a generic two mirror Fabry-Perot Cavity as shown in Fig. 2.4 the

circulating field can be represented as an infinite summation.

Eci'r = Z'tlEo + T1T2€_i¢it1Eo + T%T§€_2i¢it1E0 + 7':137'36_3i¢7;t1E0 + - (21)
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EO Ecir Et

Figure 2.4: Simple Fabry-Perot Cavity

This equals:

1t1Ey

By = — %0
1 —ryrge=i

(2.2)

where ¢ is the phase collected in one round trip through the cavity (nominally
“2L with L = length of the cavity), r is the electric field amplitude reflectivity
of the optic, ¢t is the amplitude transmission coefficient of the optic and A is
the intensity absorption (or loss) of the optic. For any given optic the relation

r?+t>+ A =1 is true.

NOTE: The circulating field is given in terms of the F field traveling in the
direction of the incident beam at mirror 1. There is a counter propagating field

given by roe~*®E,;, at mirror 1. This field is not used in these calculations.

So the cavity field equations are:
Er = 7"1E0 + it1T2€7i¢Eci7-
Eur = it1Eg+ rirse " Ey,

. _;0
Et = ’Lt26 ZQECZ'T

which combine to give the field equations for a Fabry-Perot cavity in terms of
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the incident field Ejy:

Er _ r —T2 (T% + t%)eiw (2 3)
E, 1 — rireei® '
Ecz'r o Ztl (2 4)

Ey 1 —=riree '
)

Et —t1t26_12

- = — 2.5

E, 1 —rirge= (2:5)

and the power built up in the cavity can be obtained by taking the absolute

magnitude squared of E.;,. Thus the “power build up factor” is:
2 t%

1= 2r179 cos(@) + rirs

Eci'r
‘ (2.6)

Eo

A cavity is said to be “resonant” when the phase of the light obtained while
traveling through the cavity interferes constructively with the phase of the light
incident on the cavity. That is to say, a cavity is resonant when ¢ is a value
providing equation 2.6 with the lowest denominator and thus the highest build

up factor. Thus a Fabry-Perot cavity is resonant when cos(¢) = 1 and:

2 t%
- (2.7)

Ecir
Ey

A cavity is said to be “anti-resonant” when the phase is such that the denomi-

nator is largest, giving the smallest build up factor.

2 t%
= 2.8
(1 +779)2 (2:8)

Ecir
Eq

2.2.2 Interferometer with Fabry-Perot Arms

A Michelson IFO utilizes a beamsplitter and two mirrors to reflect the split beams
back toward the beamsplitter to measure small differences in the distances to
those mirrors through observation of the interference of the reflected light at the

beamsplitter. This is shown in Fig. 2.6. An interferometer with Fabry-Perot
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arms is similar with the difference that instead of single mirrors, Fabry-Perot

cavities are used, as shown in Fig. 2.5.

ETMY

ITMY

Iy <

m \|
E,

Ep

<
M

><
HZHm

Figure 2.5: Michelson Interferometer with Fabry-Perot Arms

Figure 2.5 can be simplified to Fig. 2.6 by treating the arm cavities as mirrors
with complex reflectance given by Eq.(2.3) and transmission given by Eq.(2.5)
divided by ¢ as per the adopted convention. Thus the Fabry-Perot arms X and
Y are replaced with mirrors X and Y with complex reflectance r, and r,.

Here the input light is specified as F;, with the phase defined as 0 at the
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Y
A
Iy 4
X
Ein \ @
E, < — -
Iz
Ep

Figure 2.6: Michelson Interferometer

Beam-Splitter (BS). The light will be split at the beam-splitter and reflect off
the mirrors X and Y, return and interfere at the beam-splitter. If T define the
distance between the beam-splitter and the Y mirror as [, and the distance from
the beam-splitter and the X mirror as [, then the phases picked up during one
round trip are e *<?= or e *¢?v respectively. Therefore the fields for the light

returning to the BS from the X,Y mirrors are:
W
from Y ryrpetc 2 By,
3 4%
from X ryitpe e Ey,

The fields will interfere, sending some light back toward the input beam in the
symmetric direction (the “reflected beam” E,) and some in the anti-symmetric

direction (the “dark port” Ep).

ED . _sw . _sw
= itpsTyTpse P2y 4 Gy ptpse te 2l (2.9)
Ein
E, e e
E = 'rbsryrbse te 2y tbsrmtbse te 2ha (210)

]

Note: Special attention has and will be paid to keeping the reflection and
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transmission coefficients in the proper order so that the general equations which
result may be used with matrix coefficients (useful when mixing fields of different

frequencies).

2.2.3 Power Recycled Interferometer

Iy <

RM - X

Figure 2.7: Power Recycled Michelson Interferometer

Now, for the Power Recycled Interferometer, a mirror is placed at the sym-
metric port to reflect most of the light being sent toward the LASER, Eq.(2.10),
back into the interferometer. This can be thought of as a simple Fabry-Perot
cavity with a complex back mirror formed from the interferometer with reflec-
tion coefficient given by Eq.(2.10) and transmission coefficient given by Eq.(2.9)
divided by 7. Fields of interest are the built up field incident upon the beam-
splitter (Epgrys) and the field exiting the “dark” port (Ep). The field inside the
cavity (Epgys) is given by using Eq.(2.4) with 75 specified by Eq.(2.10) and 7,

given by the recycling mirror with the “cavity” length specified as the distance
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between the recycling mirror and the beam-splitter? (I;,). The “dark” port field
(Ep) is given by combining Eqs.(2.5, 2.9) in a similar fashion. Thus:

Eprm . 1trm
EO B 1- Trm(rbsryrbseii%ﬂy - tbsrwtbseii%mm)eii%%m
Ep  —tem(tesTyTpee "o 4 myrytpe e ta)e telin
FO - - Trm(rbsryrbse_i%ﬂy - tbsTsctbse_i%ﬂw)e_i%Qli"

Now I do a simple variable redefinition. Since the [;, distance is common
to both arms of the interferometer I add it to /, and [, and redefine the I, [,

distances.

ly +lin — 1

b+l —

The formulae now become:

Eprv itrm o)
Ey 1= T (T Tpse ™ e 2 — by 1ty e e 2le) .
& — (_trm)(tbsTyTbse_i%Qly —+ T’bs/rxtbse_i%2l“?)ei%lin (2 12)
Eo 1= Ty (TosTyTose 7o — tysrytpse™ %) '
and for completeness I also give the field returning to the LASER:
& _ Trm— (Tbsryrbse_i%ﬂy - tbsrmtbse_i%mm)(rzm + t?m) (2 13)
E, 1 = T (TosTyTps€ e 2 — tyerytpse e 2le) :

At this point one can define a Power Recycled Michelson Interferometer with
Fabry-Perot Arms by using Eq.(2.3) for r, and r,. I will not do this substitution
in general form as it provides ample opportunity for error, makes the equations
even less understandable and provides no further insight into the operation of

the interferometer.

2The distance between the Recycling Mirror (RM) and the Beam-Splitter (BS) is actually

the same for both Eprjs and the counter propagating beam.
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2.2.4 A Perfect Interferometer
Common and Differential cavity lengths of the PRM

In order to obtain a feel for how the interferometer is locked some simplify-
ing assumptions are needed. This will allow me to check that the calculations
performed in sections 2.2.1 through 2.2.3 are correct as well as help me to un-
derstand how certain feedback signals are obtained and how to best feed them
back to the interferometer. In sections 2.2.1 through 2.2.3 I took special care to
maintain the proper order of operations for reflection and transmission through
the optics. In this section I will assume that the mode matching from cavity
to cavity is perfect and therefore will not consider scattering into higher order
modes. Thus the reflection and transmission coeflicients are scalars and therefore
commute. Also for simplification I will consider the beam-splitter to be a perfect
optic (i.e. rps = tps = %) and that the arms are identical (i.e. 7, = ry = r,).

2
Thus Egs.( 2.11, 2.12) become:

Eprm 1trm
Ey, — 1- Trm(3Ta€ 02 — Lr,eic2h)
Ep ~trm (3rge 1M 4 Lp e 1T e el Clin
F0 B 1-— Trm(%rae_i%my _ %rae_i%%)
which simplify to
Eprm _ trm (2.14)
Ey 1— %rrmra(e—i%% — el :
Ep  Flemra(e /e 4 e7ie % )eiclin )15
By 1= Lrpra(e 2% — eivte) (2.15)
where
_ Titm — Tetm (Tftm + t?tm)efi%QL (2 16)
@ —i92L .

1- TitmTetm€ ~©
At this point the almost sinusoidal form of these equations becomes obvious,

the complication being that [, # [,. Defining the new variables [, = [, + [, and
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lm =l — I, and performing the algebra gives:®:

e 8t | omi¥Uy il (pmitlm | =il

- e*i%lp(zcos(%zm)) (2.17)
eTi52s _ omi2y — mitly(pitlm _ mitlm)

= efzcl”(—stin(%lm)) (2.18)

This allows for the description of the fields in terms of the Common ([,) and
Differential® (I,,) cavity lengths. Combining Eq.(2.14) with Eq.(2.18) as well as
combining Eq.(2.15) with Eqgs.(2.17, 2.18) gives:

Epru _ irm (2.19)
Ey 1+ irpprae tele sin(“l,) '

@ B _trm,raefi%(lp*lin) COS(%lm) (2 20)
Ey 1+ irpmree” e sin(£l,,) '

Which can be multiplied by their corresponding complex conjugate to give the
power at the recycling mirror or the dark port as a fraction of the incident power

on the cavity.

‘EPRM 2 i (2.21)
Ey 14 72,,72sin”(2ly,) + 27pmra sin(2y,) sin(21,) '
Fp 2 _ t2.,,72 cos?(%ly,) (2.29)
E, 14 72,,72si0”(2ly,) + 27pm7a sin(2y,) sin(21,) '

Resonance Conditions

In this section I look at the resonance conditions for the whole interferometer for

both the carrier and the first order r.f. sidebands. These are used to mix with

3For calculation purposes it is necessary to note that within LIGO these parameters are

generally defined as 1/2 these values (eg. I, = (I, +1,)/2 ).
4 A small [ is used to denote PRM lengths as a large L is reserved for the arm cavity lengths,

see page 41.
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the carrier to give the feedback to keep the arms locked by the Pound-Drever-
Hall locking technique. The carrier should be resonant in the cavity but not
the r.f. sidebands; this is the desired operating condition for the arm cavities.
Referencing section 2.2.1 these conditions are specified in Eqs.(2.4 - 2.8). Thus
for resonance I let e7* — 1 or cos(¢) — 1. However I want the r.f. sidebands
to be almost anti-resonant® which means that e™* — —1. This means that 7,
from Eq.(2.3) can be approximated as —1 for a resonant carrier and 1 for the

sidebands when numerical values from Table 2.1 are used.

Carrier : r, ~ —1

Sideband : 7, &~ 1 (2.23)

In order for the sidebands to be incident upon the arm cavities at all, they
must be resonant in the power recycled Michelson. However, in order to provide
maximum signal for the feedback to the arms I want the maximum amount of
sideband light to leak out of the dark port. Thus taking a look at section 2.2.2
along with the assumptions for this section I can see that:

Ep
Ein

]. ;W ;W
— 5,,,.a/(e—lzly + e—'Lzlz)

so as r, — 1 for the sidebands

2

ED 9, W
—  cos“(—!
For maximum transmission of sideband light we want gﬁ — tpm. This gives a

restriction on the static differential PRM length [,,,, which is commonly referred

SIf the first order r.f. sidebands are exactly anti-resonant then all the even order r.f.

sidebands are resonant.
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to as the PRM “asymmetry”. Giving the dark port resonance condition of

Carrier :  sin(%l,,) =~ 1 cos(glm) ~ 0
c

Sideband :  sin(%l,,) & Trp cos(glm) & trm, (2.24)
c
This leaves to be specified the resonance condition for the power recycled

Michelson itself which are found by combining Eqgs.(2.19 or 2.21) with Eqs.(2.23
and 2.24)

Carrier : sin(%lp) ~1

Sideband : sin(%],) ~ —1

With Arms Resonant

Carrier : sin(%lp) ~ —1

With Arms NOT Resonant (2.25)
Sideband : sin(2],) ~ —1

Note the 180° phase change in Power Recycled Michelson resonance condition
when the arms are unlocked vs. when they are locked. As locking the Full IFO
requires first locking the PRM without the arms (so that light is then incident
upon the arms) and then locking the arms; the [, feedback signal must be inverted
the moment the arms resonate. This creates a need for some good electronics

and some excellent programming in the control system and by the operators.

Common and Differential Arm Lengths

While investigating the PRM it was assumed that the arm cavity lengths were
exactly the same, and it was observed that the lengths between the BeamSplit-
ter and each Input Test Mass could be combined into common and differential
length variables. I use the resonant conditions to show a similar redefinition of
variables for the Arm cavity lengths. I continue to assume that the reflection

and transmission coefficients are commuting scalars and that the beamsplitter
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6

is perfect. Combining equations 2.24 and 2.25 for the carrier®, one can see that:

1m 1x
—ly === lpy+1,=——
e =1y k2 Tl k2
so that
27
2, = —— 2, =
l ) ly,=0

where k is the wave vector of the carrier £ = w/ec.
Now when I put these resonant conditions along with my stated assumptions

into equations 2.11 through 2.13 I get:

Epru Wrm
E, T 1 Trm(57y + 372) (2:26)
Bp _ Zitm(3ty = 7o) (2.27)
E, 1- rrm(%ry + %rm)
Erp _ Tem— 5(ry +12) (12, + 12, (2.28)

Ey 1= 137y + 370)
where r, and r, are the arm cavity reflectivities from equation 2.3 with ¢ being
given by 2k L, and 2kL,,. With the desired resonance conditions I can use L, and
L, as the small perturbations off resonance instead of the complete length of the
cavities (at least where it regards phase conditions), as the nominal resonance
condition shows the resonant phase terms to be integer multiples of 2. One can
begin to see a similarity with the common and differential length parameters
from the PRM. Since the item of interest is in signal variations due to length
differences I will assume that that is the only difference between the two arms. A
GW signal changes the effective differential length of the IFO arms, allowing me
to initially set the other parameters in the equation to be the same in both arms.

Experimental observation shows that some non-negligible effects are caused by

6Since the r.f. sidebands are not resonant in the arms it is unnecessary to see how arm

length changes affect them.
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differences in effective losses and possibly other parameters between the arms;
this is better handled by a computational method described in section 3.2.2.
Combining equation 2.16 to form r, + r, and r, — r, with an analogous variable
re-definition L, = L, + L, and L,, = L, — L, as used in equations 2.17 and 2.18

leads to

[ Titm — Tetm COS(%Lm)(2Ti2tm + t;?tm) -| ¥
2 e “cP

2 2 2 —i2L
[ +74’£?5rr1.7netm (Titm + titm)e e’ (2 29)
Ty + Tz = ; ; :
Y T w —1¥L 2 2 —1%2L
1 — 27imTetm cOS(2 L e et + 17, 7 »

etm€ °©

. . ¥
— 207 etmt 2y SIN (L Ly J e e Lo
Ty =Tz = w 9L 2 2 _—i%L (2.30)
1 — 27imTetm COS(“ Ly )e ™ e + 15y, 7 »

itmTetm€ ~°
The above equations could then be used in conjunction with Eqs. (2.26, 2.27 and
2.28) to get the effect of common or differential arm motion on the key fields
of the IFO. These are, however, still rather cumbersome equations so I will not

perform the combination algebraically.

Buildup Factors

The nominal parameters for the LIGO Washington 2k interferometer are speci-
fied in Table 2.1. Using Egs.(2.6, 2.21 and 2.22) along with the resonance con-
ditions specified in section 2.2.4 and the values in Table 2.1, T get the buildup
factors shown in Table 2.2. MATLAB simulations used to fit data in chapter 3
showed that mirror losses and approximations made here had a non-negligible ef-
fect on the calculated build-up factors leading to much better agreement with ex-
perimental measurements. Those measurements and simulations however, were
done for the 4k IFO and not the 2k IFO. Table 2.3 shows a comparison of the
build-up values with lossless mirrors and perfectly reflective ETMs to build-up

values using nominal mirror values.
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Table 2.1: Nominal Parameters for WA 2k Interferometer

| Parameter | Value |
LASER Power in TE0O0 Mode 6 (W)
Resonant SB frequency* 29505880 (Hz)
Resonant SB modulation depth 0.45
Distance RM to BS* 3.022 (m)
Distance BS to in-line ITM* 9.528 (m)
Distance BS to off-line ITM* 9.828 (m)
BS Reflectance® 0.5
BS Transmittance! 0.5
RM Reflectancef 0.969
RM Transmittance® 0.028
RM Loss' le-3
ITM Reflectance! 0.971825
ITM Transmittance 0.0281
ITM Losst 75e-6
ETM Reflectance! 0.999925
ETM Transmittance! oe-6
ETM Losst '70e-6

due to the extreme length sensitivity involved.

*The dark port resonance conditions were used instead of these distances and frequencies

tValues are Power coefficients, for amplitude coefficients take the square root.
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Table 2.2: Build-up Factors for Carrier and Resonant Sidebands for the 2k
Recycled Interferometer as calculated by the Algebraic method.

H Field Frequency ‘ Field ‘ Build-up H
Arms*: carrier %1: ’ 138.9
sideband | | e ’ 0.007
PRM: carrier E%’;M ’ 114.7
sideband E’E’ZM ’ 29.1
Dark Port: carrier » i 0.000
sideband | |2 ’ 0.816

*Remembering that the buildup factor for the arm cavities is with respect to the field

incident upon the arm cavity |E;,| = % |Epra|

Table 2.3: Build-up Factors for Carrier and Resonant Sidebands in the 4k Re-
cycled Interferometer as calculated by the Numerical method of Sec. 3.2.2

Field Frequency Field | Build-up | Build-up
(lossless) | (nominal)

Arms*: carrier %”;: ’ 140.3 138.9
sideband | | e i 0.008 0.008

PRM: carrier EPEROM ’ 140.9 46.5
sideband | |Zzzat ‘2 40.3 40.0

Dark Port: carrier %—ﬁ i 0.000 0.000
sideband | |22 i 0.945 0.937

*Remembering that the buildup factor for the arm cavities is with respect to the field

incident upon the arm cavity |E;p| = % |Eprum|
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Chapter 3

Characterization of the

Instrument

3.1 Sideband Injection

In the Fall of 2002 measurements were taken that contribute to the characteri-
zation of the LIGO Hanford 4k Interferometer (LHO 4k IFO)[5] examining high

frequency signals around the free spectral range (FSR)

C
fiw = 57 = 37.52 kHz

This work was aimed at establishing the sensitivity and noise level of the IFO
to a stochastic background of gravitational radiation at this frequency. Similar
measurements were carried out by M. Rakhmanov and R. Savage[63] and a
calculation of the sensitivity at the FSR was recently carried out by D. Sigg[66]

The LIGO IFO (conceptually in Fig 1.4, schematically in Fig 2.1) can be op-
erated in various configurations including single arm mode and power recycled
IFO. The measurements reported in sections 3.1.2 and 3.1.3 were obtained by

injecting frequency sidebands upon, (frequency modulation of) the incident light

47
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and sweeping around the free spectral range frequency (FSR). This was done in
the single arm mode for both the X and Y arms. Sweeping the frequency around
the 1/2 and 3/2 free spectral range frequencies provides additional information
on cavity arm lengths, and the results are particularly sensitive to the demod-
ulation phase and to the non-resonant sideband frequency. Pertinent references
on cavities, FSR, sidebands and Electro-Optic or Acousto-Optic modulation of

light can be found in [59, 65, 55].

The readout of the signal is done via the appropriate RF phase of the de-
modulated IFO dark port output[57]. For single arm measurements this is the
in-phase component, and for Full-TFO measurements this is the quadrature-phase
component. Details about signal readout are given in greater detail in [57, 68].
Appropriate mixing between the I and ) channels is determined as discussed in
section 3.1.1 and is used for fitting the plots presented in section 3.1.2 and 3.1.3.
For single arm measurements I simply misalign the recycling mirror (RM) and
the arm that is not of interest. Then the signal which returns to the dark port
(AS) is the reflection off the FP cavity. For full IFO locking, all mirrors are
aligned and the primary signal of interest (differential arm motion) comes out
the AS port. The r.f. output of the diode is taken via coaxial cable to a de-
modulator board, the output of which is processed and digitized for filtering and
feedback as well as data analysis. On the demodulator board there are also mon-
itor points where I connected the spectrum analyzer to obtain an analog version
of the demodulated output prior to its input into the DAQ (Data Acquisition)

system.

The spectrum analyzer that I use (Stanford Research Systems SRS785) can
operate in several modes. The primary functions which I use are the FF'T and

Frequency Response. When I take an FFT I simply look at the output signal
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in the frequency domain. When I sweep the frequency range of interest then I
use the Frequency Response mode. This function takes a series of measurements
at different frequencies in which the transfer function from drive to output is
measured. In this mode both magnitude and phase response are recorded.

In section 3.2 I examine parametric conversion due to the motion of one
of the test masses near the FSR frequencies. As a result (audio) sidebands
are imposed on the carrier. Obviously there are similarities, but also differences,
between sideband injection directly on the carrier and through test mass motion.
In the latter case the data are fitted using some MATLAB routines which are
inspired by the matrix method from the program TWIDDLE [58] and described
in detail in section 3.2.2.

The presence of dips (cancellation) for sidebands injected at fr, has been
known for a long time [48, 58, 67, 56], however I believe this to be the first
systematic experimental study of these effects [28]. The measurements confirm
the theory to a great accuracy and this reflects the advanced status of alignment
and control of the IFO.

Perhaps the most interesting conclusion is that the LASER phase noise has
a minimum at fg,. This is to be expected from my analysis, since the sidebands
imposed by phase noise are symmetric and thus the level of the noise is greatly
attenuated at fi,. In Fig 3.16 I show the noise floor around fi, and a narrow 6

db drop is clearly observed at the fsr.

3.1.1 Calculation of Fields

To model the response of the IFO to frequency sidebands on the incident light
a first order expansion of the fields is sufficient. However one must avoid the

assumption that the upper and lower sidebands are equivalent. The signal read
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out by the diode is the absolute square of the complex field expansion of the
light out of the AS port (or reflected off the cavity). This will be of the form®
|\E{Jo (L) + J1 (L) emt — Jy (T ) e “mtH Jo(Ts) + J1(Ts)e™rit — Jy (Ty)e it} |?
where F is the unmodulated field. Adopting the notation that a subscript of 0

! is left off as it conveniently

indicates the carrier field (the corresponding e®e
cancels when evaluating the power as it is common to all terms, r.f. and audio
modulation frequencies are indicated relative to the carrier frequency), a sub-
script of ‘m’ indicates the applied modulation frequency (audio), a subscript of
‘s’ indicates the non-resonant r.f. sidebands on the light necessary for locking the
cavity by an optical heterodyning technique[68] such as the Pound-Drever-Hall
(PDH) method. A subscript of ‘a’ indicates the sideband at the sum of the r.f.
and modulation frequencies, and ‘b’ indicates the sideband at the difference of
the r.f. and modulation frequencies. It is also necessary to distinguish between
the upper and lower sidebands as they obtain different phases upon reflection

from the cavity (indicated by a ‘+’ for the upper sideband and a ‘-’ for the

lower). Thus the signal is proportional to:

EO + Em+eiwmt _ Em_e—z'wmt + E5+eiwst _ Es_e—iwst

+Ea+ei(ws+wm)t + Ea,efi(ws_kwm)t o Eb+ei(ws —wm)t __ Ebiefi(ws —Wm )t
(3.1)

Where all E-fields specified are the fields reflected off the cavity. Reflection off

ASrf =

a simple Fabry Perot cavity is given by

E, 1y —ry(r} +17)e™"
Ey 1 —riree=id

(3.2)

This is derived in [14] and section 2.2.1 which also includes expressions for the

other fields. The parameter ¢ is nominally 2Lw/c where L = length of the cavity.

!For pure phase modulation I adopt the convention of the sidebands being real, the upper

one positive and the lower one negative.
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This was simulated in software by ¢ = 27w/ fr, where fr, = ¢/2L.

51

The output of the photo-diode is sent through a bandpass filter to limit

the signal to the range of interest around the r.f. sideband frequency. Thus

after demodulation the signal of interest is once again at the applied modulation

frequency. So I take equation 3.1 and expand it while keeping only the terms at

+(ws & wyy,) then separate it out so that it can be written in terms of cos(w;t)

and sin(wst). The result is (where * indicates the complex conjugate field):

eiwmt
AS,¢ = cos(wst)
+e—iwmt
eiwmt
+i sin(wst)
+€—iwmt

EtEoy + BB — En E* — E*_E,,
—E3Ey, — BB}, + B 2, + B2 _E,_
E;E. + EyE*, — E,_E?, — E:, E,_
BBy — BoF}_ + Ey E: + E2 E,,
EgEoy + EoE; — EmyE; — B Egy
+E}Ey_ + EoE;, — By E?, — Er,_FE,_
— BB, — ByE’, + Ep_E?, + EZ, E,_
—E}Eyy — BoE; + En_E:_+ E, Ey,

Eq.(3.3) may be written compactly as

ASyp = cos(wst)[e™! () + e7m(B)] + 4 sin(wst)[e™ () + €7 (6)]

' (3.3)

(3.4)

where I substitute o, 5, v and ¢ for the corresponding sets of field terms. Upon

closer inspection of Eq.(3.3) it is apparent that 5 = o* and 6 = —v*, so that

Eq.(3.4) can be further simplified to

ASy = cos(wyt)[ae™™ + a*e™m!] + sin(w,t) [iye™ ™t — iy*emm!]

= 2cos(wit)Re{ae "1} + 2sin(w,tRe{ire ")

(3.5)
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In-line demodulation selects the term oscillating as sin(wst) while quadrature
demodulation selects the term oscillating as cos(wst). Thus the demodulated

signals are

AST = Re{iye™m'}
AS.Q = Re{ae™m'} (3.6)

Spectral analysis of these signals at the frequency w,, yields the magnitude
and phase of the complex amplitudes iy and « respectively. These amplitudes
are defined in Eq.(3.3) and are frequency dependent because the fields in Eq.(3.3)
are reflected fields.

So far I have assumed that the phase of the demodulating r.f. coincided
exactly with the phase of the r.f. component of the detected signal. This is not

always the case and a possible phase difference ¢ may exist. Thus

ASI(¢) = %/TASrfsin(wst—i-(b)
1 i
AS Qo) = T/ AS;¢ cos(wst + @) (3.7)
0

where T' = 27 /ws and I assume integration over multiples of the r.f. period.

Expanding the sine and cosine I immediately find that
ASI(¢) = Re{(iycosd + asing)e“m'}
AS . Q(¢) = Re{(acosp — iysing)e™“m'} (3.8)
I have fitted the data to the complex amplitude indicated in Eq.(3.8) where «
and 47y are given by Eq.(3.3). As a simple example I can consider the case when
the injected sideband frequency is far from fi, (resonance). Then the reflected

fields are approximately the same as the incident fields (except for the carrier

which is reversed). Thus I can take the fields as real and write

Ey~-1 E,~FE, ~Iy E,,~FE, ~T,
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E,,~FE, ~E,~FE ~T,I

It then follows that
a~0 v~ —8T,,T far off resonance (3.9)

When the injected sideband equals fg, then also F,,. and FE,, change sign, and
it follows that

a0 v~0 on resonance (3.10)

3.1.2 Response to sideband injection at fg, and 2 fg,

The primary method of injecting the sidebands is through the use of the Mode
Cleaner feedback circuit which at this frequency feeds back almost directly to
the VCO controlling the LASER frequency. This has the disadvantage of suf-
fering from a non-linear transfer function from drive to output. However it has
the advantage of providing an injection point that does not disturb the control
system. A different injection point was considered which in principle had a flat
drive with respect to frequency, however the DC shift caused by connecting the
readout instruments typically resulted in the IFO losing lock. The modulation
frequency was swept (“swept sine” mode) between two limits and the magnitude
and phase of the transfer function was recorded by the spectrum analyzer.

Data for the X-arm are shown in Figs (3.1, 3.2) and for the Y-arm in Figs (3.4,
3.5, 3.6). The fitting was done in MATLAB to the form?

fit = 21 x (fpi(f, 22) + 23) (3.11)

where fpi is the calculated signal for pure I-phase [Eqs.(3.3,3.6)] and

2Tt is necessary to include x3 in the high resolution fit (Fig. 3.1) to account for very slight

effects near resonance.
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1 = overall normalization to account for different gains
2 = the demodulation phase ¢ in degrees
x3 = a background (noise) level

For some fits 1 and z3 were allowed to be complex in order to fit both the
magnitude and the phase of the data as well as allow an overall relative phase
difference between the noise (parameter x3) and the model results. This was
found to be unnecessary, so all parameters x1, 2 and x3 are real. In Figs 3.1
and 3.2 the magnitude was fit and the “initial phase” angle was determined by
comparing the data and initial fit at some specific frequency point (usually the
FSR). Thus the final fit is the initial fit multiplied by a complex number with
unity magnitude and phase set at the “initial phase” (in degrees). It was found
necessary to include a 1/f dependence to account for the response of the servo
loop. This was achieved in practice by multiplying the data points by f. In
addition to optimizing z1 through x3 with the fit routine, I sought the best
value of arm length and of the initial phase. The results returned by the fit are
indicated in the figures. The arm length is a parameter hard coded into the fpi

function and varied manually while fitting the other parameters.

In the X-arm measurements the demodulation phase ¢ is sufficiently small
so that there is essentially no signal in the Q-phase channel, as suggested by
introducing the result of Eq.(3.9) into Eq.(3.6). The I-phase signal shows a
sharp dip at the fg, as suggested by Eq.(3.10), and provides a very accurate

measure of the arm length.

Fig. 3.1 is a combination of several runs and contains a total of 2,000 data
points. The data can not be distinguished from the fit except in the wings of
the plot. To estimate the error on the fitted parameters I form the x? of the
fit by assigning equal errors to each data point such that x2/DF ~ 1. DF are
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the degrees of freedom, the number of data points being fitted minus the fit
parameters and x? = X;(x; — 7;)*/0? where o; is the error of the data point 4
which is defined such that o; = o and x?/DF =~ 1. A plot of x* as a function of
X-arm length is shown in Fig. 3.3, and I take the one standard deviation error

to be given by the values that increase x? by one unit. I find for the two arms

L, = 3995.05948 £ 0.00006 m

L, = 3995.01332 £ 0.00041 m

The above values are, of course, directly dependent on the accuracy of the fre-
quency of the injected sidebands. This frequency is read off the spectrum ana-
lyzer and at this point can not be trusted to better than 1/106.

For the Y-arm measurements (Figures 3.4, 3.5 and 3.6) the demodulation
phase is sufficiently different from zero so that both the I-phase and Q-phase show
a signal. The resulting phase error as extracted from the data is ¢ ~ 6 degrees.
During the measurements of the Y-arm, instead of the phase of the transfer
function, the absolute phase of the response was recorded. This manifests itself
in that the measured phase has a large monotonic increase corresponding to the
phase of the drive signal. Thus the parameters z1, 2, 3 and the arm length

are fit in the same manner as for the X-arm, but no initial phase is calculated.

Finally Figs. 3.7 and 3.8 show sideband injection with the complete PRIFO.
These fits were obtained using parameters given in section 3.2.3 and the modeling
techniques described in section 3.2.2. This is because the full PRIFO configu-
ration results (unlike the single arm results) are highly sensitive to a number of
additional parameters, not all of which were directly measurable. To account
for some of these effects I introduced the parameter &, defined in section 3.2.2,

which controls the dark port resonance conditions of the simulation. The fit to
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the Q-phase (Fig 3.7) is satisfactory and returned the following values:

N = 7.08x1073
Anoise = 0.12
£ = 4.16°

Note that the resonant peak has a FWHM of ~ 2Hz as expected for the double
cavity pole. This corresponds to a Q-value v/Av = 1.5x10'*! One may also note
that the normalization is significantly larger than that for the single arm mea-
surement. This is due to the fact that for the single arm measurement the light
must be transmitted through both the recycling mirror and the beam-splitter
(without resonating) before encountering the arm cavity, while the simulation
starts at the arm cavity with no input attenuation. For the PRIFO, both the

experiment and the simulation start at effectively the same input level.

The fit for the I-phase returns different parameters. Both the & term and the

normalization are different.

N = 1513 x 1073
Anoise = 0.01

£ = 2.50°

This can be understood because the signal is very noisy. However, the mirror
excitation measurement (Fig. 3.19) taken shortly after the sideband injection
measurements was reasonably fit with similar parameters. Thus I conclude that
sideband injection with the full PRIFO is much more sensitive to the fit param-

eters than for the single arm. This was verified by my modeling.
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3.1.3 Response to sideband injection at %.ffsr and % fsr

If the r.f. sidebands were exactly anti-resonant, then the injected sidebands
would resonate at half-integer values of fg,. This is not the case and therefore the
sidebands resonate at two nearby frequencies as can be understood intuitively.

If T designate by A, fs the wavelength and frequency of the r.f. sidebands,
exact anti-resonance would imply

1
Ay <N+§> =2

fs = (N+ %) ffsr

with NV an integer, and as usual fi, = ¢/2L. In practice the r.f. frequency is

or

chosen to deviate from the above condition by a frequency decrement® A

1
fs = <N+ 5) ffsr -A (312)
Resonance will occur when the injected sideband frequency, f,,, satisfies
1 N+1 ffsr
fsifm:<N+_)ffsr:|:fm_A: ( )
2 fosr
or equivalently
f1_7),|— - A= %ffsra %ffsr: etc...
o+ A= 1fia 3 frer, etc... (3.13)

It follows that the two resonant peaks are separated by

fi—fn =2

3To avoid feedback problems caused by the fact that the second order sidebands would be

resonant.
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which is measured experimentally to be of the order A = 456 Hz. From Eq.(3.12)
which defines A I see that it depends on both f, and fg,. Indeed the error on

A is given by

ffsr fs (314)

5A:fs |:5ffsr (5fs:|

The data are shown in Figs 3.9 and 3.10 for f,, ~ %ffsr and in Figs 3.11 and
3.12 for f,, ~ % fisr- They were obtained with only the X-arm locked. Note that
there is signal in both the I-phase and in the Q-phase. Furthermore the “shape”
of the response is extremely sensitive to the demodulation phase.

The fits to the data are done in the same way as discussed in section 3.1.2
using the expression for the signals derived in section 3.1.1 Egs.(3.3 - 3.8). How-
ever now the fit must also optimize the r.f. frequency because the reflected fields
E, and Ej in Egs.(3.1 - 3.3) become strongly frequency dependent. As before the
fits are excellent and return an average demodulation phase ¢ ~ —10 degrees

and an r.f. frequency
fs =24,481,843 +1 Hz (derived)

The derived value of f, differs significantly from the directly measured* value

of f

fs = 24,481,698 Hz (measured)

I assign the observed difference to an error in the fg, reading obtained from the
spectrum analyzer. According to Eq.(3.14), this error amounts to ¢ fg/ frsr =~

6 x 107%; large, but not excluded for an uncalibrated instrument.

*Which was later checked against a Rubidium standard (Stanford FS725) and found to

have an error ~ 1/106.
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3.1.4 Transverse Modes

It is well known that optical cavities will support Hermite-Gaussian modes of
the fields [55, 65]. Such modes are distinguished by the axial index n ~ L/2\
(L is the length of the cavity and A the wavelength) and labeled by the small
integers m, £ which specify the field distribution in the two directions transverse
to the cavity axis. For a cavity with spherical mirrors of radii R; and Ry the
frequency of the n, m, ¢ mode is

)05 Vg2 (3.15)

C
Vimt = 57 n+(l+m+/¢ -

and

9i=1—L/R; 1=1,2 (3.16)

I decided to search for the lowest transverse mode [13] by injecting a side-
band onto the carrier. When the sideband frequency is exactly at the difference
between the populated TE My, mode and a transverse mode, a dip should be
observed in the demodulated signal similar to that seen in Figs. 3.1 and 3.2 and
described in section 3.1.2.

The IFO is injected with a LASER beam precisely aligned to the axis of the
optical cavity and matched to the T'E My, mode. Thus the transverse modes are
not excited in the arm. To observe the transverse mode I locked a single arm
and intentionally misaligned the cavity. Using the digital suspension controls,
the input test mass was rotated either around a vertical axis (yaw) or a hori-
zontal axis (pitch). This coupled the input LASER beam to the £ = 1,m = 0
(horizontal) mode in the first case or to the £ = 0,m = 1 (vertical) mode in the
second. Fig. 3.13 shows a typical response curve obtained when the suspension
control “slider” was set at 2.241 units; the observed frequency was 11.48 kHz.

Misalignment of the ITM not only increases the coupling to the transverse
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mode but also shifts the frequency of the mode. This was immediately evident
from the data shown in Fig. 3.14 for the horizontal mode and in Fig. 3.15 for
the vertical mode. In these figures the mode frequency is shown as a function
of pitch or yaw of the I'TM, the angle being labeled in slider units. Since the
frequency shift must be symmetric with respect to the pitch or yaw angle the
lowest contribution is proportional to the angle squared. Therefore a quadratic
fit was made to the data as shown in Figs. 3.14 and 3.15. The peak of the curve
corresponds to the properly aligned cavity for which the measured frequency

shifts as obtained from the fit are

AZ/horizont;al = 11, 530 £+ 5 Hz
(3.17)

AZ/vert;i(:aul = 11, 560 + 5 Hz

From Eq.(3.16) I see that the frequency shift is related to the mirror curva-

tures by
Av = ’% cos™' (\/9105) (3.18)
and find
9192 = 0.3239 + 0.0004 horizontal mode
= 0.3215 £ 0.0004 vertical mode

The values deduced from the measurement of the two modes differ by ~ 40 and
this may be due to a deformation of the mirror surface.
The design values for the curvature are given in [8] and the “as built” val-
ues [9] are
R, = 14,240 m (ITM)
R, = 7,260 m (ETM)
This leads to

g1 = 0.719 go = 0.450 and g1g2 = 0.324
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in close agreement with the g;go product obtained from the frequency of the

horizontal mode.

3.2 Parametric Conversion

In section 3.1 and [15] I examined the response of a single arm cavity to frequency
sideband injection at multiples of 1/2 the free spectral range (FSR). Here I
continue the IFO characterization by investigating the response of a single arm
cavity as well as the response of the complete power recycled interferometer
(PRIFO) to mirror motion. I use the term “parametric conversion” in the sense
that harmonic variation (€2) of one parameter of the system (in this case the
arm length) results in the conversion of a fraction of the carrier (w.) to the sum
and difference frequency (w. & 2). For an optical cavity the effect can also be
interpreted as arising from the Doppler shift of the carrier when reflected from a
moving mirror. The conversion is most pronounced when the sidebands coincide
with one of the resonant modes of the system. Since the modes of the IFO
are equally spaced by the fi, = ¢/2L, with L the arm length, the parametric
conversion response is peaked when ) = 27 f;,. The width of the line is given

by the @ of the arm cavity (or the PRIFO). For a simple cavity

2L L 27 1
=ZF~Z =kL 1
Q A )\I—TA 1—7‘A’ (3 9)

where 7, is the (amplitude) reflectivity of the entrance mirror, I have ignored

any losses, and set 7 =1 and k = 27 /\. It follows that

_ fc ~ L—ra
=G = e (3.20)

where A f is the FWHM power, or the FWHM at 1/+/2 of the fields.

Af
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The amplitude E’ of the parametrically converted signal is given on resonance
by
1
E'=2x §hQEc, (3.21)

where F, is the carrier amplitude and A the fractional parametric perturbation.
The additional factor of two is introduced because both the upper and lower
sidebands are populated. Eq(3.21) is valid for hQ < 1.

If the mirror position is given by
x(t) = xo cos(Q2t),

then h = x¢/L. Introducing this expression for h and the definition of @ in
Eq(3.21) I find (on resonance)

2
E' = Bcko—— (3.22)

Note that both fields, E, and E’ are measured inside the cavity (at the mirror)
but have different frequencies. To relate Eq(3.22) to the observed fields I must
propagate the incident carrier into the cavity as well as propagate the sideband
E' out of the cavity to the detection port. This is done using the matrix method
described in section 3.2.2.

The results that I obtain agree with Regehr [57] and Lyons [44] who start
from Eq(3.22) and propagate the fields analytically using the low frequency ap-
proximation. Since all response functions are valid modulo f,, the expressions

given by Regehr and Lyons are equally applicable to the present case where

Q/Q’ﬂ' >~ ffsr.

3.2.1 Modulation and Demodulation

As in section 3.1.1 a first order expansion in the fields is sufficient and I must

still treat the upper and lower sidebands separately. However, the modulation
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and resulting demodulation is slightly different in the case of mirror motion.
This is because the r.f. sidebands are anti-resonant and do not enter the cavity.
Thus they are not parametrically converted. With sideband injection there were
8 demodulation terms of interest: 4 terms with fi,; beating against fi, and
4 terms with fi(rim) beating against the carrier (where f,; indicates the non-
resonant sideband required for heterodyne locking and f,, indicates the sideband
injected at the frequency of interest.) In the case of mirror motion only the 4
terms with fi,; beating against fi, are present where in this case f,, is the

mirror motion frequency; compare Eqgs.(3.3) and (3.24).

One may be justly concerned about the signal when the front mirror, on
which the r.f. is incident, is excited. This case can be analyzed by a thought ex-
periment. Consider a simple two mirror cavity. Now consider that both mirrors
are moving in a common motion, that is to say they are both oscillating sinu-
soidally at the same frequency and with the same phase so that they both move
in the same direction at the same time. The frequency response to this situation
would be null, as the length of the cavity never changes leaving the resonance
conditions static. Thus E,, = 0 and the sum of the terms E.4(;r+p) is also 0 (as
essentially f,, = 0 and the sum of E,,; is the locking signal which is null on res-
onance). Next consider moving only the back mirror. As the f,; is non-resonant
there are no E,; sidebands incident on the moving mirror. Thus there can be
no fields at frequency f,s+,, so all fields E(y1m) = 0. Finally consider moving
only the front mirror. By superposition and comparison with the common mode
motion of both mirrors I know that the sum of the fields at fi(+m) of the back
mirror motion is equal in magnitude and negative in sign to the sum of the fields
at fi(rf+m) Of the front mirror motion. But these fields of the back mirror motion

are zero so I can set all Ei(;rip) = 0 in front mirror motion as well. It may be
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of interest to recall that resonance of the E.(,s+y,) sidebands within the cavity
gave rise to the (1/2)fs, features from sideband injection as demonstrated in
section 3.1.3. As such fields are not present when mirrors move, I do not expect
(nor do I see) any such features with mirror excitation.

For pure phase modulation I repeat the initial steps of section 3.1.1 using
real sidebands. However, as I have just shown that the f,; and f,, terms do not

mix in the case of mirror excitation, Eq.(3.1) can be simplified to

2

ASyy = ‘ Ey+ Eppevmt — E, e~wmt 4 | elwst B e~twst (3.23)

For the demodulation signal I need only terms of the form e*ws*wm)t  Thus I
obtain
crt ( By Ej_ 4 By Bl — Eny Bl ~ BBl )|

AS;s = cos(wst) .
| emont ( BBy, + En-E; ~ B, Bl — B, E,, ) |

¢rt (B, B}, + Byi}, + Eny Bl + BB, )
—e~iwmt ( EyEf, + Ep_E* +E, FE' +FE,_E!_ )
(3.24)

—1 sin(wst)

I write Eq.(3.24) compactly as
AS,¢ = cos(w,t)[e“mta’ + e7“mtB'] — i sin(w,t) [y + e ] (3.25)
where I substitute o/, ', 7' and ¢’ for the corresponding sets of field terms.
Upon closer inspection of Eq.(3.24) it is apparent that ' = o/ and ¢’ = 7, so
that Eq.(3.25) can be further simplified to
AS;y = cos(w,t)[a'e“mt + (a'e“mt)*] — i sin(w,t)[y'e“mt — (7 e™m?)*]
= 2cos(w,t)Re{a'e™'} — 2sin(w,t)Re{iye“m'} (3.26)
Since I have adopted the convention of the sidebands being real, we imply

that the r.f. sidebands were imposed by a sine modulation. If T had adopted
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the convention of imaginary sidebands it would imply cosine modulation. Thus
in my convention in-line demodulation selects the term oscillating as sin(wjt)
while quadrature demodulation selects the term oscillating as cos(wst). Cosine
modulation would reverse which term is selected by in-line vs. quadrature de-
modulation, however it would also change o and +' such that regardless of the
convention, in-line (or quadrature) signals are convention independent. If I as-
sume a phase difference ¢ between the demodulating r.f and the r.f. component

of the detected signal I find

ASI(¢) = Re{(—iv cos¢ + o' sing)e™m'}
AS . Q(#) = Re{(a’cos + iy sin ¢)e™'} (3.27)

The LIGO convention for modulation and resulting demodulation is to use
cosine modulation [57, 68]. Nominally the fact that I am using a different con-
vention should not cause any problems with readout of the signals from the IFO
as the in-line signal is the same regardless of convention as is the quadrature
signal. It did cause a certain amount of confusion as the readouts being used
(Imon and Qmon) were analog monitoring points located on the demod board
and once they were digitized their phase was adjusted by 90 degrees, thus mak-
ing Imon = Q, and Qmon = 1. However, it also appears that in the formulation
of the LIGO demodulation convention the distance from the recycling mirror
(RM) to the beam-splitter (BS) was not taken into account. As that distance
is approximately 1/4 of the wavelength of the r.f. sidebands it has the effect
of switching the r.f. modulation convention. All this has no effect upon the
operation of the IFO as in practice the signal is routed to the demod board
and the phase is tuned until one of the channels provides a maximum for the
signal. This channel is then defined as the channel of interest. The effect upon

fitting routines can be summarized as follows: In single-arm mode, Imon = Q
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and Qmon = I, in PRIFO mode, Imon = I and Qmon = Q.

3.2.2 Field Calculation Methods

Two separate methods are used to model the IFO output. The first method is
through algebraic calculation and the use of the formulae given in [14]. This was
used to fit the sideband injection into the IFO as the computational requirements
of this method are significantly smaller. This also allows a point of comparison
with results obtained from the second method. The second method was through
a matrix inversion process similar to that done in TWIDDLE [58]. The primary
reason for using the matrix method of calculation is that some of the symmetry
arguments used to obtain the formulae for the first method do not hold when
shaking a single mirror. Although a single mirror excitation could theoretically
be modeled by the superposition of a common and a differential shake (both of
which have sufficient symmetry to be adapted to the formulae in [14]) the matrix
method is well adapted to computer calculation.

Both simulation methods required an additional parameter to properly sim-
ulate a locked PRIFO using the conventions adopted earlier. As previously

described the fields returning from the arms (Egs. 2.9 and 2.10) are given by

S
S

. ¥ . W
= itpsTyThs€ oW + iTpgTytpse e (3.28)

= =
3

_gw _aw
= TpsTyTpse P2yt rptpse Ve e (3.29)

S|

n

which eventually lead to (Eq. 2.12) the dark port output

W - w Sw.
Ep —trm) (tosTyThs€ ™" <2 + TpsTatpse” e )erelin

_ rm J\bs! y! bs bs! zlbs (3 30)
— = — —= .
EO 1- Trm (Tbsryrbse vy — tbsrmtbse b 2lz)

The calculational procedure that I have adopted involves setting the carrier fre-

quency to zero and using modulation frequencies relative to the carrier. Although
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1 2
E1 E3 E5 E7
Ey Ey Eg

Figure 3.17: Simple Fabry-Perot Cavity

this method worked fine with no adjustments for the simple cavity calculations it
can be seen from Eqs.(3.28 & 3.29) that under these conditions the “dark” port
has a field magnitude ~ 2 while the “refl” port has a field magnitude ~ 0. When
the full carrier frequency is used then the length values of [, and [/, can be set
such that the “dark” port is arbitrarily dark. As this leads to an over-sensitivity
of the simulation to some of the input lengths, the equations were modified to
establish proper resonance conditions with relative frequencies. A parameter &

was introduced to control the resonance condition. The modified equations are:

5!
S

. _aw ; . A —
T = — Uty Ty Ths€ P2y el |y erptpse e te e (3.31)
mn
E, —i291, i€ —i290, —if
T = TThsTyrse e Ve — tpeTatpse e (3.32)
7
W ; g% —1 —ah
ED (_trm)(_tbsryTbse ZC2ly€z£'i"’nbs'ractbse ZCZlme zﬁ)ezclm 3.33
E. 1—r (—7“ =192y pit _ ¢ tr et 2 _ig) ( ) )
0 rm bsTyThs€ "c™7€ bsTzlps€ "c77€

The nominal value is & = 0 for which resonance conditions are established at
zero frequency. To fit the data £ is varied off nominal, and this is a measure of
how well the IFO is tuned.

The second method used to model the data is a matrix inversion calculation.
Each location at an optic within the system is given a number to denote the
electric field at that location. This includes the fields incident on the optic and
those fields leaving the optic in all directions of interest. Then the field equations

(with the carrier frequency set to zero) are set out in a matrix form. For example
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for an optic with fields incident from both sides (like the input mass for a simple
cavity) I can label the field incident from the left as 1, the field leaving to the
left as 2, the field leaving to the right as 3 and the field incident from the right
as 4, as illustrated in Fig.(3.17). I set field 1 equal to itself and leave it at that.
Field 2 is itself plus field 1 times the optic’s reflectivity plus field 4 times the
optic’s transmissivity. Field 3 is itself plus field 4 times the reflectivity and field
1 times the transmissivity. Field 4 is itself plus likely another field with a spatial
propagation term. I write this set of linear equations so that they are all equal
to zero, except in the case of field 1, which is equal to 1. Written in matrix
form, the element (j,k) refers to the contribution of field £ to the field j. In
the simple example used above (1,1) =1, (2,2) = 1, (2,1) = —r, (2,4) = —ity.
The matrix, when multiplying a column vector of the actual field values, should
equal the input column vector, in this case [1,0,0,0,...]. Thus when the matrix
(M) is inverted and multiplied into the input vector [1,0,0,...] the resulting vector
contains the fields at all locations in the system. It is a simple matter to modify
the input vector to simulate injection of sidebands at a different location, for

example by shaking a mirror instead of sideband injection on the incident field.

The example discussed above is shown in Fig.(3.17) and the accompanying
Eqs.(3.34 and 3.35) show the equations in matrix form. The ¢, in the equations is
the length propagator to appropriately adjust the phase and is given by ¢, = wl/c
where [ is the length of the cavity. Given that the matrix is frequency dependent,
when implemented in MATLAB, a 3-dimensional matrix is used so that a 2-
dimensional matrix is available for each frequency of interest. For the full PRIFO

a 22x22 matrix is needed.
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1 0 0 0 0 0 0 E, 1
—r; 1 0 —ity 0 0 0 E, 0
—ity 0 1 —r 0 0 0 B, 0
0 0 0 1 0 — 0| x| E |=]0 (3.34)
0 0 —e@ 0 1 0 0 Es 0
0 0 0 0 —-r, 1 0 Eg 0
| 0 0 0 0 =—ity, 0 1| |E| |0
‘5] [ 1 0 o o o o o] [1]
E, 1 10 —it; 0 0 0 0
E; —ity 0 1  —r 0 0 0 0
E,|l=| 0 0 o0 1 0 —e 0 X |0 (3.35)
E; 0 0 —™ 0 1 0 0 0
Eg 0 0 0 0 —-r, 1 0 0
B | 0 0 0 0 —it, 0 1| | 0 |

3.2.3 Data Fits

I have fit the following data sets:
(a) Single arm excitation of ITMX (Data obtained in October 2002; Fig. 3.18)
(b) PRIFO excitation of ITMX (Data obtained in October 2002; Fig. 3.19)

(¢) PRIFO excitation of ITMX (Data obtained in December 2002; Fig. 3.20);
Both Q-phase and I-phase are shown.

(d) Figure 3.21 is an enlarged view of the I-phase data and fit of Figure 3.20

(e) Figure 3.22 is an enlarged view of the Q-phase data and fit of Figure 3.20.
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Case (a) is simple to fit either algebraically or with the matrix method. The
parameters varied were the normalization, demodulation phase and a frequency
independent noise level (which is also multiplied by the normalization factor).

The fit is shown in Fig.3.18 and it returned the following values:

N = 3.42x10°°
¢ = 0°
Apoise = 2.06 x 1078

Note that the noise level is essentially zero. The noise parameter was a remnant
from the fits to sideband injection [15] where it was very important in order to
obtain a good fit. The arm length was kept fixed at 3995.05948 m as determined
previously in section 3.1.2. The data is cut off at 37.75 kHz due to the presence
of a strong internal resonance of the test mass at 37.8 kHz. This may also be
the reason that the data does not agree better with the fitted curve.

Data on the full Power Recycled Interferometer (PRIFO) was taken primarily
in two distinct periods (case b and c¢). As extensive commissioning work was
constantly in progress on the IFO at this time, there are substantial differences
in the instrument response. Primarily this can be explained as a decrease in
the amount that £ (as defined in Sec. 3.2.2) varied off the “perfect” dark port
condition. It is believed that all other parameters that would affect the fit
stayed essentially constant during this period. The £ parameter can vary from
measurement to measurement as it is dependent on the quality of the lock. Thus
if the control loop is already near its limit, then a small increase in the ambient
noise, although not necessarily enough to cause a loss of lock, would result in a
decrease of the lock quality (an increase in £) and not an increase in the feedback

signal.
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With the complete PRIFO many more parameters have to be specified. These
are given in Table 3.1 and were obtained from a combination of design specifica-
tions, measured values and best fits as indicated. With the complete PRIFO the
data exhibits the same broad resonance observed when a single arm is excited
(Fig 3.18) which is referred to as the “cavity pole”, and an additional much
narrower peak referred to as the “double cavity pole”. This arises because the
recycling mirror significantly improves the finesse of the common mode signal.
However, the common mode signal can not appear at the AS port except for
a small leakage that arises because of the “asymmetry” between the two arms.
This asymmetry is introduced in order to provide maximal r.f. sideband power
at the AS port. When the PRIFO is not perfectly locked (£ # 0) the com-
mon mode signal becomes more pronounced at the AS port. This is the case in

Fig. 3.19.

Moving a mirror in one arm is equivalent to the presence of both a differential
mode and a common mode signal as the excitation of a single ITM is equivalent
to a linear combination of common and differential motion of both ITMs. That
is, by changing the length of a single arm one changes both the average length
of the two arm cavities as well as the difference between the lengths of the two
arm cavities. The PRIFO is designed to have the anti-symmetric (AS) port on
a common motion “dark fringe” and a differential motion “bright fringe”. Thus
common motion of the arm cavities will not result in a signal (this is because a
properly polarized gravitational wave excites the differential motion of the test

masses).

As far as the differential signal is concerned there is no recycling mirror, the
light simply leaves the arm cavity and exits to the AS port diode. A differential

motion signal from the PRIFO is the same as that from a single arm. A common
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Table 3.1: Nominal Parameters for WA 4k Interferometer

| Parameter | Value |
LASER Power in TE00 Mode 1 (W)
Resonant SB frequency* 24481323 (Hz)
Resonant SB modulation depth 0.45
Distance RM to BS' 3  (m)
Distance BS to in-line ITM# 6.191 - asym  (m)
Distance BS to off-line ITM? 6.191 4+ asym  (m)
Michelson Asymmetry (asym)* 0.151  (m)
Michelson Asymmetry (asym)? 0.110  (m)
Distance in-line Arm* 3995.05948  (m)
Distance off-line Arm* 3995.01332  (m)
BS Reflectancel 0.49997999
BS Transmittance¥ 0.49997999
BS LossY 40e-6
RM Reflectance! 0.971825
RM Transmittance’ 0.0281
RM LossY 75e-6
ITM Reflectance’ 0.971825
ITM Transmittance’ 0.0281
ITM Loss? 75e-6
ETM Reflectance’ 0.999925
ETM Transmittance¥ 5e-6
ETM Loss' 70e-6
ITM / ETM pendulum frequency! 0.74 (Hz)

*Obtained from fits in [15].

tEstimate based on experience on-site.

tObtained from [23].

§Obtained from fits presented in this paper.

TValues are Power coefficients, for amplitude coefficients take the square

root. Values obtained from specifications [8] and previously designed simu-

lations for the E2E program [7, 6].
lObtained from [41].
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motion signal however, is sent back to the recycling mirror and is reflected back
to the arm cavities. This has the effect of increasing the reflectivity of the
respective arm cavity’s input mirror; thus giving it a higher finesse and a more
narrow frequency response. The common mode appears as a narrow peak or
“glitch” superimposed on the differential mode broad signal. Fig. 3.19 shows the
data obtained in October 2002 with the complete PRIFO and the corresponding

fit. The parameters are

N = 0.46x107°
Apoise = —0.32
& = 4.00°
specified, not fit :
6 = 0°
Mich Asymmetry = 0.110 meters

Length of Y Arm = 3995.0134 meters

Fig. 3.20 shows the data obtained in December 2002 with the complete
PRIFO and the corresponding fit to the I phase. I had both quadratures of
data for the December data and was therefore able to extract more information
from the fitting of the data. To fit this data I varied two additional parameters
while eliminating another. I varied the Michelson asymmetry and the Y arm
length (to vary the arm asymmetry); I was able to eliminate the noise param-
eter from the fit as its contribution was inconsequential. I was then able to

obtain a fit to the I phase data where the same parameters produced a Q phase
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prediction with good agreement to the data.

N = 282x107°
& = 6.82°
Mich Asymmetry = 0.21 meters
Length of Y Arm = 3995.01112 meters

specified, not fit :
6 = O

The agreement in this case is quite encouraging. Expanded views of these curves
are shown in Figs 3.21, 3.22. Fig 3.21 shows the I-phase data and the correspond-
ing fit, while Fig 3.22 shows the Q-phase data and the Q-phase prediction using
the parameters obtained in the I-phase fit. As a significant amount of work had
taken place on the instrument between the measurements leading to the values
listed in Table 3.1 and given the time these measurements were taken, some of
the parameters in the Table may have been modified. Nevertheless the quality

of the fits demonstrates the validity and predictive power of the model used.

3.2.4 Calibration and Normalization

In the measurements discussed in the previous section ITMX was driven at fre-
quencies around fg, = 37.52 kHz. This was rather unusual (since in normal IFO
operations only frequencies up to a few kHz are used to calibrate the instrument
response) and was achieved by introducing a modified controller which could
drive the test mass coils at high current. To relate the drive signal to mirror

motion I use the D.C. calibration values:
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0.163 nm / count drive®
20,000 / 175 counts drive / mVp, on coils
22 /.2 mV,, on coils / V,, drive®

Thus at DC (0.1 Hz) the calibration is:
zpc = 2.049 pym / V,, drive (3.36)

To obtain the calibration at f = f, = 37.52 kHz we treat the optic as a

simple pendulum driven far off resonance [49]

2(f) = oe . (3.37)

Here fj is the resonant frequency of the pendulum mode fy = 0.743 Hz [41] and
@ the Q-value. For f/fy > 1, Eq(3.37) reduces to

£(f) = 2o (%) . (3.38)

Therefore I take the calibration at fi, = 37.52 kHz as
z(37.52 kHz) = 8.04 x 107" m / V, drive. (3.39)

Next I must establish the relation between the optical power (at the frequency
that is demodulated) and the signal recorded on the SRS spectrum analyzer.
These factors are shown in Table 3.2 below and consist of: (a) Signal attenuation
by an E/O shutter, (b) A series of pick-offs (as the LIGO design calls for an
eventual set of four photodiodes at the AS port), (c) The photodiode conversion
efficiency, (d) The photodiode r.f. impedance and (e) The signal transmission

efficiency from r.f. output to the demodulated output. Thus 1 W of optical

At D.C., obtained from the calibration group at LHO [40].
6Measured ratio of the drive seen by the optic divided by the drive signal sent to the optic.
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Table 3.2: Output Attenuation

H Parameter ‘ Value H
E/O Shutter T %
Beam-path 0.245
Diode Eff. 064 A/ W

Diode Imped. 4000 €
Signal Transfer | 0.269 V,, (SRS) / Vj signal

| Total | 11.76  V,x (SRS) / W |

power yields 11.76 V on the SRS spectrum analyzer or
11.76 V. / W. (3.40)

Finally to compare my model to the data I must relate the field Ey in the arm
to the input LASER power (including the recycling effects). I must also know
the r.f. sideband field at the AS port. I initially will assume an input power
I, =1W.

The PRM (power) build-up factor is determined as follows: with the recycling
mirror misaligned the intensity through a single locked arm is measured. The
measurement is repeated with the PRIFO locked and the ratio of the transmitted
intensities is designated as NPTR (the Normalized Power TRansmitted through

the arm cavity).
Iin 5 BermuBxTx  Bpgru

In3TanBxTx — Tau

where Bx and Bpgy are the build up factors in the arm and the recycling cavity,

NPTR = (3.41)

Tx and Try the (power) transmission coefficients of the arm end mirror and of
the recycling mirror.

The field in the arm is given by

1
EX = Eincident V BX = Iin 5 BPRMBX (342)
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The measured value of NPTR was 1400 and Tgy = 0.03 and therefore Bpry =

42. For Bx I can use

t2
M = 139. (3.43)
(1 — rrem”ET™)

Thus for I,, =1 W

(N

Ex =54 (W3) (3.44)

The modulation index during this period was I' = 0.45, so that
Jo(T') =0.95 Ji(T') = 0.22

Therefore the carrier field of Eq(3.44) must be multiplied by 0.95 and the side-
band field at the AS port is

N =

Eg = 0.22 (W2) (3.45)

In my numerical program, the term driving the audio sideband

was set to unity, as was the r.f. sideband field. Here k is the carrier wave vector

2T

Alight

k

=5.91 x 10° (3.47)

Using the results of Eqs(3.39, 3.47, 3.44 and 3.45) the output of the program
must be multiplied by

(8.04 x 1071%)(5.91 x 10°)(54 x 0.95)(0.22) = 5.36 x 10~® (3.48)

to give the optical power at the demodulation frequency. Finally multiplying by
the factor of Eq(3.40) I obtain the normalization that leads to signal voltage

N =6.30 x 107, (3.49)
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Eq(3.49) is valid for 1 V drive and 1 W input.
I compare this normalization with the data of Fig. 3.20. Since the data
gives the transfer function, it already assumes 1 V drive. The input power was

estimated at 0.9 W7 so that the calculated normalization factor should be

N =568x10"" (3.50)
The observed normalization instead is:

N=282x10"° (3.51)

In view of the uncertainty in the mirror motion given in Eq(3.39) due to nearby
test mass resonances and the long extrapolation in Eq(3.38) the factor of four
between the calculated and observed values is acceptable. I also stress that the

same normalization is used for both the ASQ and ASI quadratures.

3.3 Sensitivity @ 37.52 kHz

So far I have shown “transfer functions” obtained by sweeping the frequency at
which the ITM was excited, or of the sidebands injected around fg,. To establish
the sensitivity of the PRIFO to a G.W. (i.e. a parametric perturbation) I drive
the ITM at a fixed frequency and record the FFT at the AS port. This is shown
in Figure 3.23 where the I'TM was driven at fi,, and the AS_I quadrature was
monitored.

I note that the signal and noise levels are

Vo =87 uV Vy=40nV

"As per elog entry 11/25/2002 by Nergis and PeterF
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This signal level is in agreement with that displayed in Fig 3.20. The bandwidth
of the data acquisition was 50 Hz / (800 channels) = 0.0625 Hz so that the noise
spectral density is
Sy = 0.16 uV/VHz

This noise level is in agreement with other measurements and corroborated
by [62]. When the E/O shutter was closed from 7% to 3% the noise density
decreased further to Sy = 0.11 pV/ \/E, an indication that not all the noise
was from the electronics.

The signal responds linearly to the ITM drive as shown in Fig. 3.24 for both
quadratures. One can therefore extrapolate to very small drive values, being
limited only by the noise floor. Since 1 V drive corresponds to zo = 8 X 10716 m
drive, the strain in the arm is h = zo/L = 2 x 107" for 1 V drive. Assuming
optimal orientation of the G.W., both arms will contribute. Thus signal to noise

unity (S/N = 1) is reached when
h=4.5x 10" /VHz (3.52)

This level of strain can therefore be achieved in a single measurement with
BW = 1 Hz. Excluding DAQ overhead, 86,400 such measurements can be av-
eraged in a day, reducing the noise fluctuations so that S/N = 1 is reached

for

h=15x10% /VHz (3.53)

This low value for the strain is valid only at f, and falls off as the frequency is
shifted from the resonant value.

If the G.W. signal is continuous in frequency, as is the case for the stochastic
background, the response will have the typical shape of Fig. 3.20. Averaging
over the direction of incidence and polarization for the stochastic background

reduces the sensitivity by a factor of 5.3 as calculated by D.Sigg [66].
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Chapter 4

Mechanical Noise

4.1 Active Measurements

There are several sources of noise within the IFO; as I am primarily interested
in frequencies at or near the free spectral range I will confine my interest of me-
chanical noise sources to those observed in that range, such as internal test mass
resonances. Other noise sources which are observable near the FSR frequency,
such as phase noise and electronics noise, and their effect on the detection of a

stochastic signal are discussed in Chap. 5.

The optimum method for characterizing internal test mass resonances is
through a process known as “ring down” measurements. This involves excit-
ing the resonance by driving the mass at a specified frequency (as close to the
resonance frequency as possible) for a short time and observing the response
as the resonance damps naturally. For a LIGO test mass the driving excita-
tion is done through one or more of the positioning magnets and the response
is measured through the feedback signal to keep the cavity on resonance. This

allows one to accurately measure both the Q (quality factor) of the resonance

103
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and its frequency to a high degree of accuracy in a reasonable amount of time.
I assisted Gregg Harry with several measurements of this type in 2002. The
modes measured at that time are too low in frequency to be of interest here,
however, the measurements were helpful for calculations of non-homogeneous
loss contributions to thermal noise [32].

A different method for characterizing the internal test mass resonances is by
a “swept sine transfer function” measurement. The problem with this measure-
ment method is that the width of the resonance is quite narrow, often smaller
than the frequency step of a swept sine measurement. I did observe two res-
onances near the FSR frequency while doing swept sine measurements. This
was possible because at the time I was investigating the narrow common mode
response and was consequently sweeping very slowly through a small frequency

range. The results of these measurements are presented here.

4.1.1 Test Mass Internal Resonances

The test masses are subject to elastic oscillations due to the finite temperature
of the environment, what is referred to as Brownian motion. Such oscillations in-
duce a phase shift on the incident (and stored) LASER beam and thus contribute
a “random” noise at the read-out channel, in particular at low frequencies. The
motion of the mirror surfaces can be expanded in the normal modes (resonances)
of the test mass, as detailed by Gillespie and Raab [30, 60]. The individual mode
n contributes to the displacement power density at the frequency f = w/(27).

_ 4kgT W2 Py (w)
Capmw | (W2 — w2)? + wie2(w)

Sen(f) (4.1)

where kp,T are the Boltzmann constant and temperature; w, is the resonant

angular frequency of the mode, m the mass of the optic and w = 27 f; o, is an
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effective mass coefficient which accounts for the coupling of that particular mode
to the LASER beam. The coefficient o, can vary between 1072 — 10'. ¢, (w)
is the loss function, and on resonance, ¢, (w,) = 1/Q,, where @Q,, is the quality
factor of the mode.

At frequencies much lower than w,, one can sum all the modes to find the

total displacement power density [30, 60].

Self) = kT fn(w) <m2> (4.2)

aymw? w Hz

n

Simulations by Gillespie and Raab find that at f = 100 Hz the LIGO 4km IFO
has

S,(100 Hz) ~ 8 x 10™**m?/Hz

Similar results were obtained by Y. Levin [42] using a more general technique.

Fig.4.1 shows the response of the full IFO to a frequency sweep of ITMX. The
same data were presented in Fig. 3.19 of Sec. 3.2.3 where parametric conversion
was discussed [16]. In that case however the data was cropped at 37.7 kHz to
exclude the two peaks appearing at 37.804 and 37.971 kHz. I attribute these
peaks to internal resonances (modes) of the optic driven by the exciting force
applied to the back plane.

To fit the data I model the test mass as a simple harmonic oscillator [30, 60]
in which case the force to displacement transfer function is [49]

1
T (W/wn)? + i(w/wn)$n(w)]

Replacing ¢, (w) by 1/Q and introducing a normalization factor N/Q, I write

H(f) (4.3)

for the measured transfer function (Volts drive to Volts signal)

B N/Q
1) = 1o+ Q) won) (44

On resonance |H(f,)| = N independently of the Q-value.
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While Eq.(4.4) is suitable for fitting the data, the real @)-value cannot be
extracted because of the relatively low frequency resolution with which the data
was acquired. Typically I expect @ ~ 10° to 107 which implies a full width of
.04 to .004 Hz as compared to the resolution of the data Af =1 Hz. Thus the
values of () returned by the fit are lower limits of the real @,,.

The two resonance peaks were first fit independently to Eq.(4.4) in order to
determine the corresponding values of N and Quin.. Then the two resonances
were combined with the parametric conversion response of the IFO [16] to pro-
duce an overall fit in the range 37.3 to 38.0 kHz. In this case each of the internal
resonances was given an adjustable phase, and an overall noise floor was added

as well. The results of the fits are shown in Tables 4.1 and 4.2.

Table 4.1: Test Mass Internal Resonances

Central Frequency f (Hz) Qmin Normalization N
37804.5 £+ 0.5 1.03 x 10° 1.87 x 107*
37971.7 £ 0.5 1.00 x 10* 5.65 x 1076

Table 4.2: Overall Fit Parameters

Resonance #1 Phase —171°
Resonance #2 Phase 1°
Noise Floor Phase 174°
Noise Floor Magnitude | 3.4 x 10~
Overall Additive Phase 93°

As can be seen in Fig. 4.1 these parameters produce an excellent fit not only
to the magnitude of the response but also to the measured phase over the entire

frequency band.
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4.2 Passive Measurements

When using the instrument of a large collaboration for a non-standard investiga-
tion it is often not possible to perform active measurements on the instrument.
However, it is often possible to obtain a great deal of information from passive
measurements. Measurements of this type take longer and this leads to the prob-
lem of validating the consistency of various parameters throughout the period
of the measurement. For this reason the LIGO operating procedures specify
time periods to be set aside as “Science Runs” during which extensive effort is
made to maintain consistent running of the instrument with a minimal change
to the operating parameters. When attempting to measure the parameters of a
mechanical resonance, the stability of the resonance being measured is a possible
problem. When I mentioned the frequency domain method of measuring these
resonances to Gregg Harry he replied “I have always found this to be problem-
atic as drifting temperature changes the normal mode frequency, and can widen
the peak.”

Section 4.2.1 is an investigation into noise observed through an only partially
passive measurement. In this case an active excitation was used, but not an
active excitation of the resonances observed. Section 4.2.2 is a discussion of
several internal test mass resonances observed by a passive measurement during

a “Science Run” referred to as S3.

4.2.1 Up-converted Seismic and Suspension Noise

FFT’s obtained with high resolution when the test mass was driven at the fixed
frequency of 37.52 kHz are presented in Figs. 4.2, 4.3 and 4.4. As expected
they show a strong response at the driving frequency since it corresponds to the

fsr (free spectral range) of the IFO. However the FFT’s also exhibit sidebands
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around the main peak. The symmetric appearance of the sidebands indicates
that they are due to low frequency oscillations up-converted to near the driving

frequency.

If the amplitude of the low frequency oscillation (at fz) is xg then the
sidebands will appear at frequencies (fy & fz) and with a relative amplitude
Ag/Ay = 2kzg. Here f; is the driving frequency and A, the amplitude of the
response at fo; k is the wavenumber of the carrier light £ = 27/A. I have as-
sumed that the low frequency oscillations are independent of the high frequency
excitation and that the mixing occurs at the detection point; recall that the

diode signal is proportional to | Eotar|*

While all three FFT’s exhibit low frequency sidebands the details of the
spectrum differ. The data in Figs. 4.2 and 4.3 were taken in December 2002;
Fig. 4.2 with a 0.5 V drive, 0.125 Hz bandwidth and 483 averages. Fig. 4.3 with
a 1V drive, 0.0625 Hz bandwidth and 41 averages. The data in Fig. 4.4 were
obtained in October 2002 and correspond to different operating conditions of
the IFO; the drive was 2 V, the bandwidth 0.0625 Hz and only 11 averages were
taken. The discrete lines at a fraction of a Hz and at a few Hz are identified
as oscillation modes of the suspension, while the broader features, especially

apparent in Fig. 4.3, are attributed to seismic noise.

To provide some quantitative measure of these data I have fitted the spectra
as follows: A Gaussian was used for the central peak since its width is instru-
mental, and each sideband was fit by a Lorentzian [Eq.(4.4)]. In addition a noise
floor was included. In Fig. 4.3 the central peak was fitted by a double Gaussian
in order to account for some of the low frequency seismic noise. The quality
of the fits can be judged better by the log-log plots shown in Figs. 4.2B, 4.3B
and 4.4B. The results of the fits are summarized in Table 4.3 where I give the
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Figure 4.2: FFT of AS_I with mass excitation of 0.5V, @ 37.52 kHz taken in
December of 2002. A) Linear frequency; B) Log frequency away from 37.52 kHz
plotted vs. magnitude
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Figure 4.3: FFT of AS_I with mass excitation of 1.0V, @ 37.52 kHz taken in
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Figure 4.4: FFT of AS_I with a 2V excitation @ 37.52 kHz taken in October of
2002 (at this time the drive was not calibrated). A) Linear frequency; B) Log
frequency away from 37.52 kHz plotted vs. magnitude
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sideband offset frequency and relative amplitude separately for each of the three
spectra.

The peak at ~0.75 Hz is clearly the pendulum mode of the suspension which
is known to be at 0.71 Hz [41]. The peak around 2 Hz may be the third harmonic
of the above resonance; possibly the peak at 1.3 Hz seen in Fig. 4.4 is the second
harmonic. The prominent peaks in Fig. 4.4 at ~11 Hz and ~19 Hz can be
identified with the bounce mode of the suspension which is located at 11.9 Hz
and the roll mode, expected to be at 17.5 Hz [41]. If T use an average value of the
relative amplitude as A/Aq ~ 1072 I conclude that 5 ~ 8 x 107'° m which is of
the order of the thermal excitation of such low frequency modes [using Eq.(4.1)
and @ ~ 107].

Finally I consider the quasi-continuous noise level extending out to ~15 Hz
that is most pronounced in Fig. 4.3. I believe that it is due to seismic noise
exciting the mirror suspension as well as tables and chambers on which the optics
are mounted. Support for this interpretation is provided by Fig. 4.5 which shows
low frequency measurements made with a seismometer (top) in the LVEA and
of the motion of the Beam Splitter, ITMX and ITMY (bottom). The similarity
of this spectrum with the sidebands in Fig. 4.3 is notable, including the cut-off

at ~15 Hz which is probably due to vibration suppression or active feedback.

4.2.2 Test Mass Internal Resonances

When analyzing the contribution to thermal noise of the IFO from internal test
mass resonances one would hope for a combination of measurements both active
and passive. As all of the resonances are excited by thermal contact (primarily
radiative with a small conductive contribution) to the heat bath of the out-

side environment at a relatively constant temperature, the amount of energy



114

f1(Hz)
Al/AO

f2(Hz)
AQ/AO

f3(Hz)
Ag/AO

f1(Hz)
Ay/Ap

Table 4.3: Up-converted Noise

From fig.4.2

0.75
7x 1073

1.91
7x 1073

7.60
1073
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From fig.4.3

0.73
7.9 % 1073

2.09
8.3 x 1073

From fig.4.4

0.61
1.6 x 1072

1.35
1.3 x 1072

2.01
7x 1073

11.90
3.8 x 1072

17.44
2 x 1072

19.13
2.3 x 102
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Figure 4.6: Mode 2

contained in each resonant mode is known. Knowing both this, as well as the
frequency and the Q of the resonance, it is possible to calculate the amplitude of
the mechanical mode. Initially one might believe that this is sufficient informa-
tion to calculate the mode’s contribution to noise detected by the IFO. Further
thought will reveal that the noise contribution is strongly dependent on the mode
shape and the overlap function with the LASER light. If the mass resonance
mode is one in which the center of the optic does not move, and the LASER
light is centered on the optic, then there will be very little coupling between the
noise in the mode and the noise detected by the IFO system. This is discussed
in the literature, for example by Gillespie and Raab [30] as well as by Bondu
and Vinet [10]. The noise dependence on the overlap function is also somewhat
obvious when visualizing the mode shapes. For example compare Figs. 4.6 and
4.7 as calculated by Dennis Coyne using finite element analysis [22].

During the S3 run at the end of 2003 and beginning of 2004 a significant
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Figure 4.7: Mode 99

amount of quiet running data was taken and stored for future analysis which
allowed for passive measurements of the mechanical resonances near 37.5 kHz. To
record the frequency spectrum in the vicinity of the FSR a lock-in detector was
used to heterodyne the AS_Q signal (AS2_Q monitor port). The local oscillator
was set at 37.0 kHz and the output was filtered and digitized at 2048 samples
per second to be written in the DAQ (Data Acquisition) stream [46]. Each frame
contains 16 seconds of data. The results presented here are based on 12.4 hours
of a continuous lock of the Hanford 4k IFO on December 12th, 2003 [51]. No
image rejection was used so the data represent not only the frequency range of
interest, from 37.0 to 38.024 kHz, but also from 37.0 to 35.976 kHz.

The data stream includes significant “glitches” as can be seen from a typical
segment, of the time series displayed in Fig.4.8. To remove these anomalous
entries I replaced data points with amplitude less than —900 counts by the

mean value of the time series (a more accurate method was not used due to
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limitations on computation time). This resulted in loss of 1.1% of the data
points. The corrected data in each frame was Fourier analyzed without and with
a (Hanning) window. The resulting FFT spectra were similar and I chose to use
the Hanning window with 0% overlap. The magnitude of the Fourier amplitudes

was averaged over the ~2.800 frames to produce the spectrum shown in Fig. 4.9.

The spectrum extends from 37.0 kHz to 38.024 kHz and one recognizes the
effects of the filter used by the lock-in detector at the upper limit of the range.
Note also the pronounced sequence of odd harmonics (as well as some even har-
monics at lower amplitude) of the line frequency. These lines are most probably
introduced by the digitizer and can be removed in software. The other distinctive
features of the spectrum are narrow lines which can be clearly identified with
test mass resonances. In fact, the lines at 37.804 kHz and 37.972 kHz correspond
exactly to the measured resonances of ITMX (see Table 4.1). That the test mass
resonances come in nearly degenerate groups of four is to be expected. This, be-
cause there are four different test masses that predominately contribute to the
differential signal, each at a slightly different frequency. Finally, the spectrum
shows a small but distinct dispersive feature at the exact fsr frequency. This, I
believe, is due to laser frequency (phase) noise which is discussed later. Here I
will concentrate on analyzing the data to characterize the peaks which are most

likely due to internal test mass resonances.

One of the difficult aspects of passively measuring resonances is in selecting
the proper bandwidth for the Fourier transform (or FFT) of the time series. If the
bandwidth is too large (relative to the resonance width), then one cannot resolve
the resonance accurately. If the bandwidth is too small, then the resonance does
not remain coherent over the extent of the time series and the peak does not show

up in the FFT. As the overall sample was fixed, increasing the resolution of the
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Figure 4.8: Typical sample of the time-series of channel H1:LSC-AS_1FSR.
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FFT implies a reduction in the number of averages. As a result, I took five sets
of averages with different bandwidths: 2800 averages at 1 frame per FFT (BW =
0.0625 Hz, shown in Fig. 4.9), 280 averages at 10 frames per FFT (BW = 0.00625
Hz), 140 averages at 20 frames per FFT (BW = 0.003125 Hz), 70 averages at 40
frames per FFT (BW = 0.0015625 Hz) and 35 averages at 80 frames per FFT
(BW = 0.00078125 Hz). This allowed for a reasonably accurate measurement
of the resonance characteristics as well as a consistency check. Figure 4.10 is
an example of a high resolution FFT and a fit to the measured mechanical
resonance. I have no explanation for the sidebands that appear in Fig.4.10
and which are separated by 0.0685 Hz. Most probably this is an instrumental
effect introduced by the lock-in detector used for the down-conversion. Measured
values are shown in Table 4.5 and are obtained by the method discussed in
section 4.1.1 using Eq. 4.4. The first group of four resonances (37803 - 37812
Hz) are sufficiently close to the previously observed resonance (37805 Hz in
sec. 4.1.1) that I conclude that they are the same resonance mode with slight
frequency differences caused by differences in test masses. In particular some
differences between test masses are the way suspension offsets and drive magnets
are mounted as well as wedge angle differences between ITMs and ETMs. The
indicated higher frequencies are assumed (at this time) to be internal test mass
resonances as no evidence exists to the contrary. Table 4.4 shows the modes

calculated by Dennis Coyne [22] in the region of 37.5-39 kHz.

As this channel (H1:LSC-AS_1FSR) is uncalibrated, the primary calibration
of interest is the level of contribution from the mechanical resonances at the
FSR frequency. The first step is to determine a common bandwidth at which
to specify the parameters. For this, I use the single frame per FFT shown in

Fig. 4.9 as it is the bandwidth at which I will perform stochastic background
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Figure 4.10: High resolution, BW = 0.78125 x 10~® Hz, spectrum in the region
of a thermally excited resonance at f = 37,812.5618 Hz. The fit is also shown
and gives Q = 2.68 x 107, or full-width at half-power Af = 1.41 mHz. The
presence of the two sidebands is not understood.



4.2. PASSIVE MEASUREMENTS 123

Table 4.4: Test Mass Modes prediction [22]

Mode Number | Frequency (Hz)
105 37009
106 37009
107 37296
108 37296
109 37570
110 37570
111 37749
112 37749
113 37806
114 37806
115 38497
116 38567
117 38569

analysis in Chap. 5.

Complete comparison using a common bandwidth could pose a problem as
quantities which are invariant in the regime with a bandwidth smaller than the
resonance width are not invariant when the bandwidth is larger than the reso-
nance width. Thus different conversion calculations would be needed near the
resonance frequencies than would be needed far away from the resonance (over
frequency ranges more than a few resonance widths away from the resonance
frequency). If, however, I limit my comparisons to areas of the spectrum which

are several resonance widths off the resonance, this is no longer a problem.

The FFT routine within MATLAB returns quantities which I shall label A%
where j indicates the bin number of the FFT. Each bin of the FFT can be
associated with a specific frequency when given the bandwidth BW® associated
with the FFT. A superscript « refers to the parameters associated with each
FFT, allowing me to indicate differing FFTs. Before I can get at the spectral

density (which is scale invariant) I need to normalize the values output by the
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Table 4.5: Parameters for Passively Measured Mechanical Resonances.

Frequency (Hz) | Q (x10°) | Peak Value (x10° /sqrtHz)
80 Frames per FFT
37806.9548 16.0 35.7
37809.4857 13.1 41.3
37812.5618 26.9 40.1
37840.9297 0.8 26.9
37849.6636 5.0 75.0
37875.0699 9.1 36.2
37883.7849 11.9 25.5
40 Frames per FFT
37806.9549 15.3 23.8
37809.4827 16.6 28.3
37812.5616 18.7 22.6
37840.9300 0.7 18.3
37849.6637 5.3 53.2
37875.0697 10.6 28.9
37883.7848 9.0 16.2
20 Frames per FFT
37803.5942 0.4 1.3
37806.9568 6.2 8.5
37809.4836 6.1 13.5
37812.5645 8.0 94
37840.9255 0.6 124
37849.6612 3.7 30.7
37875.0689 6.8 15.1
37883.7837 8.9 10.3
10 Frames per FFT
37803.5958 0.4 0.9
37806.9670 2.6 4.4
37809.4898 3.4 6.5
37812.5706 3.8 3.9
37840.9172 0.5 7.8
37849.6529 1.0 13.9
37875.0670 7.3 11.3
37883.7811 4.8 5.3
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MATLAB FFT routine using

A% A%
BY=_1 — _JBW“ 4.5
7 N/2 Ry W (45)

where N is the total number of points, which is equal to the sample rate times
the total time. The sample rate R, is a constant as all of the FF'Ts are from the
same time series (previously stated as 2048 samples per second) and the total
time is simply the inverse of the bandwidth BW®. Note that the power can be
written as either the square of the normalized FF'T coefficient or as a simple

function of the power spectral density

S(f) df, = Power = |BJ°-"|2 (4.6)
and therefore 1/S(f) the square root of the spectral density is given by
B¢ B¢ A%
S(f) J l_ = 2/BW* (4.7)

T Vdf.  VBWS R,

In the limit where the bandwidth is less than the feature width, the square
root of the spectral density (given by Eq. 4.7) is independent of the chosen band-
width. Therefore I can convert the resonance peak value from one bandwidth

FFT to another by the formula

s VSR, ., [BWe
4= e i Bw (4.8)

For example if I designate the resonance peak value as A and specify that a =

80 frames and $ = 1 frame then

Al frame — ASOframes i
V 80

As resolution limits do not allow me to determine the resonance Q and error,
I shall use the fit parameters which result in the highest Q for each resonance.

As this fitting method will tend toward an underestimation of the resonance Q
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Table 4.6: Measured Parameters used for Mechanical Resonance Characteriza-
tion

vo (Hz) | Q (x10°) | Peak Value (x10°) | Frames / FFT
37803.5942 0.38 1.32 20
37806.9548 16.00 35.66 30
37809.4827 16.58 28.33 40
37812.5618 26.87 40.12 80
37840.9297 0.76 26.89 80
37849.6637 5.26 53.25 40
37875.0697 10.62 28.88 40
37883.7849 11.90 25.45 80

rather than an overestimation, this seems an appropriate course of action. The
parameters used are specified in Table 4.6 and their renormalized peak values

are shown in Table 4.7.

The final step of this analysis is to establish the contribution to the spectrum
at the FSR frequency (37.52 kHz) due to the various mechanical resonances. For
this I assume that each resonance produces a frequency dependent motion equiv-
alent to that of a single test mass excitation transfer function with a drive equal
to the magnitude of the mechanical resonance spectral function. Thus I multiply
(frequency point by frequency point) the single test mass transfer function (as
obtained in sec. 3.2.2) by the magnitude of the mechanical resonance spectral
function. As the magnitude of the resonance spectral function was determined
through a measurement of the ambient excitation of the test mass, I re-normalize
by dividing by the test mass transfer function magnitude at the mechanical res-
onance frequency. This results in the same peak value as measured, with an
accurate measure of the contribution due to differential arm motion at the FSR
frequency. The resulting transfer functions can be added (coherently or incoher-
ently as desired) to determine the overall contribution of test mass resonances at

any frequency of the measured spectrum (Fig. 4.9). This procedure is used in the
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Table 4.7: Parameters used for Mechanical Resonance Characterization, Nor-
malized to 1 Frame per FF'T

vy (Hz) | Q (x10°) | Peak Value (x10%)
37803.5942 0.38 147.88
37806.9548 16.00 3986.59
37809.4827 16.58 44'79.45
37812.5618 26.87 4485.07
37840.9297 0.76 3005.89
37849.6637 2.26 8418.82
37875.0697 10.62 4566.98
37883.7849 11.90 2845.54

analysis presented in section 5.4 after their combined contribution is calculated

as specified in section 4.3.1.

4.3 Test Mass Resonance Comparison with Theory

4.3.1 Contributions to FSR Signal

I am interested in the contribution of the test mass resonances to the noise
measured at the IFO FSR frequency (37.52 kHz). I have only characterized
resonances above this frequency as resonances below this frequency will have a
negligible contribution. As each resonance has been measured and its peak value
re-normalized for comparison at this bandwidth (see table 4.7) the remaining
task was to combine them in a plausible way to find the total contribution off
resonance. First it was recognized that a vibrating test mass will have some
contribution similar to a differential mass motion, as it involves motion of the
surface of the optic. Therefore, a calculation was made for the IFO response to a
single ETM motion in the same way that the phase noise and differential motion

transfer functions were calculated. This transfer function shows the IFO response
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assuming a constant magnitude motion of the test mass at different frequencies.
The test mass does not move with the same magnitude at all frequencies however,
the magnitude of motion can be described as a function of frequency by the
magnitude of the resonance spectral function. Therefore I multiply the single
test mass transfer function by the magnitude of the resonance spectral function (I
do this separately for all of the measured resonances). Then, as the peak values
were measured through the IFO response, I re-normalize the product to the
peak value of the resonance (thus the predicted peak value is the value specified
in table 4.7). As there is no physical reason for the resonances to maintain a
constant phase relative to the other resonances I add the contributions from the
eight resonances incoherently by multiplying each resonance spectral function by
a random phase (and unity magnitude) and then summing. Finally to simulate
a randomly changing phase of the total mechanical contribution relative to the
LASER phase noise I take the magnitude of the sum and hold its relative phase

at zero (the same as several other terms used for the fits described in Chap. 5).

4.3.2 Calibration and Coupling

Although the down-converted channel containing the FSR frequency information
is not calibrated or validated at this time, some information (including a rough
calibration) can be recovered with a minimal number of assumptions. If I assume
that the noise floor of this channel is the same as the noise floor measured
previously (in Chap. 3 and by others [46]) then I can translate the fit value
of the differential mode into an equivalent strain due to a gravitational signal.
If T further assume that the mechanical resonances measured in Chap. 4 are
thermally excited and not driven in any other way, then I can ascertain the

effective mass coefficients of their modes which relate the overlap of the optic’s
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motion with the laser spot.

First I will look at the mechanical resonances. To compare the observed
resonance amplitudes with a physical model I need to express the PSD (Power
Spectral Density) in absolute units!. In the region f, = 37.520 kHz the FFT

coefficients have an average value
Cr =430 (4.9)

This corresponds to a PSD, at that frequency

1 2/Cy/?

PSD(ffsr) = BW N2

(4.10)

Here, N is the total number of points in the record, namely the sampling fre-
quency R = 2,048 Hz multiplied by the length of the record 7" = 16 s. The
bandwidth BW = 1/T = 0.0625 Hz.

Numerically

PSD( fg:) = 5.51 x 107%(X,)? m?/Hz (4.11)

or

v/PSD(fg;) = 7.42 x 1072(X,) m/vHz (4.12)

Where X, is a calibration factor with dimensions of length. For this analysis I

adopt (from Chap. 3 and reference [46])
X, =2x10"" m (4.13)

The eight resonances in the range 37.8 - 37.9 kHz were fitted to a Lorentzian

spectral density

~1/2
y(f) =Y {[1 )+ é(f/fo)Q} (4.14)

1Such an absolute calibration is not necessary to calculate the contribution of the resonances

to the spectrum as was done in section 4.3.1
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The fitted values of fy, @ and Y@ (the value of y at the resonance peak) are
given in columns 1-3 of Table 4.8. The observed value of y(f) is related to an
effective displacement of the mirror surface, zes(f), through the transfer function

for ITMX motion
y(f) = Hrrmx (f) e (f) (4.15)
Finally, z.s(f) is related to the amplitude, zg,(f), of a s.h.o mode of the test

mass through a coefficient S which accounts for the coupling of the particular

mechanical mode to the Gaussian (TEMyg) laser beam profile, or

oyl
Ten(f) = m

The s.h.o. amplitude zq,,(f) can be obtained from a simple model, and on the

= BZsho(f) (4.16)

resonance peak?

4kgT(Q)
sho - Y 4.17
Tsh, (fO) m(27Tf0)3 ( )
with m = 11 kg, fo = 37.8 kHz and T = 300° K. It follows that
B = Zer (fo)/Tsno (fo) (4.18)

The values of z.g(fo) as calculated from the data using Eq.(4.16) are given
in column 4 of Table 4.8 while zg,, is given in column 5, and £ in column 6.
The deduced values of 8 are reasonable and fall in two groups. For the first
four resonances the (’s are similar suggesting that all four lines correspond to
the same mode. The next two lines have significantly larger values indicating a
different mode. The last two lines are more problematic but I note that they are
on the edge of the frequency range passed by the filter in the lock-in detector.
Overall, the §’s are of the correct order of magnitude, validating the calibration

adopted in Eq.(4.13).

2Hirwmx (fo = 37.8 kHz) = 0.131
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Table 4.8: Measured Resonance Parameters

fo Q YQ/VHz Tert (fo) Tsho (o) B
(kHz) (10°) (uncalibrated) (107'"m/vHz) (10~"m/v/Hz)
37.8036 0.38 0.052 0.79 21 0.04
37.8066 16.0 0.69 10.5 134 0.08
37.8095 15.0 0.79 12.1 130 0.09
37.8126 27.0 0.77 11.9 174 0.07
37.8409 0.74 0.52 7.9 29 0.27
37.8497 5.1 1.45 22.1 76 0.29
37.8751 9.8 0.74 11.3 105 0.11
37.8838 10.5 0.50 7.6 109 0.07

To improve modeling of the internal test mass resonances and their contribu-
tion to the signal I would propose two things. Mirror excitation transfer function
measurements (as in Chap. 3) on all of the core optics should identify which res-
onances are contributed by which optics. Once this is done it would be possible
to perform resonance ring-down measurements (described in sec. 4.1.1) on each
resonance to obtain a more accurate measure of the resonance frequency and Q.
This measurement would be particularly useful as many of the measured QQ’s in
table 4.7 are higher than anticipated, especially given temperature broadening.
Harry [31] states that “the 27 million is, by far, the highest Q reported for an
in situ LIGO test mass. And the 15 and 16 million ones are about the same
as the highest measured by ringdowns.” It might also be worthwhile to repeat
the finite element analysis models of the optics to determine the mode shape

of the pertinent resonances and perform a more detailed comparison between
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measurement and prediction.



Chapter 5

Stochastic Gravitational Wave

Signal

Stochastic gravitational background radiation is analogous to the cosmic mi-
crowave background radiation. In the several kilohertz frequency region the
primary source of stochastic background should be from the Big Bang. Other
sources of astrophysical origin can also contribute but should be more prevalent
at lower frequencies. Examples of cosmological sources are zero-point fluctua-
tions of the space-time metric amplified during inflation, and first-order phase
transitions and decaying networks of cosmic strings in the early universe. An
interesting feature of the model based on string cosmology is the prediction that
the relic GW spectral density increases with the third power of frequency in cer-
tain ranges of frequency.[11] An example of an astrophysical source is the random
superposition of many weak signals from binary-system inspirals, coalescent ring-
downs, and supernovae. At lower frequencies, such as that of the primary region
of sensitivity for the LIGO instruments, a likely astrophysical source would be

the random superposition of many weak signals from binary-star systems.

133
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5.1 Present Limits

The spectrum of a stochastic background is usually described by the dimen-
sionless quantity Qg (f) which is the gravitational-wave energy density per unit
logarithmic frequency interval [1, 2, 45], divided by the critical energy density

pe required to close the universe:

_ f dpew
pe df

where pg, is the gravitational-wave energy density. The critical density p. =

(5.1)

3c?HZ /87G depends on the present day rate of Hubble expansion Hy. A dimen-
sionless factor higy is introduced to remove the dependence on changes in the

measured value of the Hubble constant

higo = Ho/Hloo, (5-2)
where
km g 1
Hip=100———— ~ 3.24 x 10 —_ (5.3)
sec - Mpc sec

Thus Qg (f)hiy, is independent of the Hubble expansion rate. Of particular
interest is the relation between (2, and the one-sided power spectrum of the
gravitational-wave strain Sgy (f) in a single detector arising from the gravitational-

wave signal h(t),

. 1 T/2 9 . o
fim g [ or = [ Sl (60
Since
2 . .
pow = 33— (has (A (1)) (5.5)

and h(t) has the space-time dependence h(z,t) = hgcos(wt — k - Z), it follows

that [2]
_ 3H 2

© 1072

(5.6)

Se(/) Qg (f) = 2| s
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where EST( f) is the stochastic amplitude density per square root Hz.

While predictions from cosmological models vary over many orders of mag-
nitude, there are several observational results that place upper limits on Qg (f)

in various frequency bands. These are given in Table 5.1 which is taken from

Ref. [21].

The high degree of isotropy observed in the cosmic microwave background
radiation (CMBR) places a strong constraint on 4y (f) at very low frequencies.
This limit applies only over several decades of frequency that are far below the
reach of current, and currently planned, Earth-based or space-based detectors.
Time-of-arrival jitter of radio pulses from several millisecond pulsars also places
an observational constraint on Qg (f). These constraints are valid at frequencies
on the order of the inverse of the observation time of the pulsars, 1/T ~ 1078
Hz, which corresponds to a much lower frequency band than that probed by

either Earth or space-based detectors.

The only limit on 4, (f) that could apply at frequencies high enough to be
probed by Earth-based detectors comes from the observed abundances of the
light elements in the universe, coupled with the standard model of big-bang
nucleosynthesis. One of the constrained parameters is the expansion rate of
the universe at the time of nucleosynthesis, thus setting a limit on the energy
density of the universe at that epoch, and consequently also on the energy density
in a cosmological background of gravitational radiation. Contributions to a
stochastic gravitational background from non-cosmological sources such as a

superposition of supernovae signals would not be affected by these arguments.
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Table 5.1: Summary of upper limits on Qyh%,, over a large range of frequency

bands (from [21]).
Observational Observed Frequency
Technique Limit Domain
Cosmic Microwave 3x107 8 Hz < f
Background* Qg (f) 1350 < 10713 (m*}ﬂf 1x107" Hz > f
Radio Pulsar 4x10°Hz < f
Timing* Qaw (f)h20 < 9.3 x 1078 4x 1078 Hz > f
Big-Bang
Nucleosynthesis* ff>10_8 dln fQuu(f)hlpe <1075 1x 10 Hz S f
Interferometers' 100 Hz < f
Qow (f)h3g < 3 x 10° 1000 Hz 2 f

Room Temp. Resonant

Bar (correlation)f Qaw (f)h25 < 3000

Cryogenic Resonant

Bar (single)f Qaw (R340 < 300

Cryogenic Resonant

Bar (single)f Qaw (f)h24 < 5000

Cryogenic Resonant

Bar (correlation)? Qaw (f)h24 < 60

fo = 985 = 80 Hz

f() - 907 HZ
fo = 1875 Hz
f() = 907 Hz

*Indirect limit derived from Astrophysical Observations

tDirect Gravitational Wave Measurement
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5.2 Correlation Technique

Within the primary frequency band of interest to LIGO, a signal generated
by stochastic background radiation has the same spectral shape as the noise
generated within or picked up by the system. If only a single IFO were used for
signal detection within this frequency band then only an upper limit on the signal
could be placed at the detector’s strain-noise level. There would be no way to
distinguish signal from noise. This is noted in a paper using the cross-correlation
between resonant bar detectors Explorer and Nautilus [3].

If, however, more than one detector is used, the equivalent strain output of

each detector can be written as:
si(t) = hi(t) + ny(t), (5.7)

where h;(t) is the strain signal in the i-th detector due to a gravitational signal,
and n;(t) is the detector’s equivalent strain noise. When the outputs of two
detectors are cross-correlated, then it is possible to take advantage of the fact
that the sources of noise n; in each detector will be, in general, independent
(1, 2, 45, 18, 27] while the strain signal h; will not. Detailed calculations are
given in Refs.[1, 21] to show that the upper limit placed on Qgh?,, through
cross-correlation is smaller (i.e. more constraining) than that obtainable from
one detector by a factor of vmsv/TApw, Where Agw is the bandwidth over
which the relevant integrand is significant and 7,y is the rms value of v(f)
over that bandwidth. The overlap reduction function y(f) is a real function
that characterizes the reduction in sensitivity to a stochastic background arising
from the separation time delay and relative orientation of the two detectors. This
function is shown in Fig. 5.1 for the Hanford and Livingston LIGO detectors.

It depends only on the relative detector geometry (for coincident and co-aligned
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100 150 200 250 300 350 400

Figure 5.1: Overlap Reduction Function 7(f) shown for the LHO-LLO detec-
tors [21]. The value of || is a little less than unity at 0 Hz because the interfer-
ometer arms are not exactly co-planar and co-aligned between the two sites.

detectors y(f) = 1 for all frequencies). For the LHO-LLO correlations in the S1
analysis [21], T ~ 2 x 10° sec, Agw =~ 100 Hz, and s ~ 0.1. Hence, using
cross-correlation techniques, a limit can be set on the signal that is a factor of
several hundred below the individual detectors’ strain noise.

The most recent result from the LIGO Collaboration [21] (accepted for pub-
lication in Phys. Rev. D) sets a limit of Qyh%,, < 23. Design sensitivities are

expected to probe Qoh?,, < 107°.

5.3 Free Spectral Range (FSR) Technique

As already mentioned, using a single detector one can place an upper limit on
a stochastic signal, but not measure its value. For instance an upper limit of

h <2 x 1072 /+/Hz on GW stochastic background at 1.8 kHz was established
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in 1999 by using the ALTAIR resonant bar detector [4] (see Table 5.1). Using
the noise floor from the S3 run as given by Eq.(5.15) I place a similar limit on h

at a frequency of 37.5 kHz.

However one can do better if the signal can be distinguished from the noise,
for instance due to a different spectral response of the detector to the signal and
noise. Not only can a much more sensitive upper limit be resolved, but detection

becomes possible.

It has been pointed out by several authors [64, 69, 56, 50, 66] that the re-
sponse of the IFO’s to a differential mode signal is substantially enhanced at
the free spectral range (fsr) frequency. For the 4 km IFO’s, fr, = 37.52 kHz.
Most importantly the differential signal has a definite spectral shape (frequency
response) centered at fr, with a width characterized by the so called “cavity

pole” w, =~ [(1 — rrrmrETM™) /A/TITMTETM] fise = 560 r/s. On the other hand, the

noise is relatively flat over this frequency range.

Recently, it was proposed [50, 66] to exploit these two features to distinguish
the contribution of a stationary (in time) differential mode signal from the noise
in the power spectrum of the AS port. The method depends, of course, on the
assumption that the noise does not follow the cavity pole spectrum. This seems
to be the case because at 37.52 kHz the primary noise sources are (a) shot noise
(b) laser frequency (phase) noise and (c) test mass thermal noise. In addition
instrumental (electronics) noise may be present. Seismic and environmental noise
are highly suppressed. Shot and phase noise are flat in the frequency interval of
interest, which for the present analysis was restricted to the range 37.2 to 37.8
kHz. Comprehensive knowledge of all noise sources contributing to the spectrum

is necessary when using this detection method.
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5.4 FSR Search Method

I have performed a proof of concept search for a stochastic gravitational wave
signal at the FSR frequency (37.52 kHz) of the LIGO Hanford 4k IFO using
data from the S3 run in December of 2003.

The same data was used for this analysis as is presented in sec. 4.2.2, see
Fig. 4.9. Here, however, I am concerned with fitting the data using a more
comprehensive method to determine the differential mode contribution to the
data, if any. As all features of interest were visible when using only a single
frame of data per FFT this is the resolution used for this analysis. The length
of the time series allowed for 2800 magnitude averages using a single frame of
data (16 seconds) per average; this results in a bandwidth BW = 0.0625 Hz. A
60 Hz line mask was applied to the averaged data to remove multiples of the 60
Hz line noise and replace it with the average value. The code for this is given in
Appendix B. Although some remnant of line noise can still be observed at 300
Hz after the mask application, the method was found to be quite effective. The
data is left as the magnitude of the units returned by MATLAB’s FF'T function
which is proportional to the square root of the power spectrum. This is also
discussed in section 4.2.2 on page 125.

To fit the FFT magnitude to the expected response from a d.m. signal I
restricted the data in the range 37.2 to 37.8 kHz. The fit included the following
terms:

(a) Constant term
(b) Linear term
(c) Phase noise
(d) Differential mode signal
(

e) Internal Test Mass Resonance Contribution
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The constant term and the linear term are each held to the same relative phase
(zero) and have no frequency dependent phase. The phase noise contribution
maintains its frequency dependent phase and has a relative (or starting) phase
which is fit. Both the Differential Mode signal and the Internal Test Mass
Resonance contribution terms are held at a zero relative phase and only the
magnitude calculation is used (no frequency dependent phase for either term).
This leads to significantly less correlation between their fit parameters as well
as being more physically plausible due to the stochastic nature of both signals.

I have not modeled specific processes in the IFO which correspond to the first
two terms of the fit (the constant and the linear proportionality to frequency),
they arise from the contribution of: electronics noise (analog to digital conver-
sion, demodulation phase jitter etc.), shot noise, radiation pressure noise and
lower frequency fold-over contributions from fit noise sources (phase noise, test
mass motion).

To estimate the expected level of shot noise I give a simple calculation (fol-
lowing the method presented in [57]). Note that this is not actually a parameter
to be fit from the data. I express the shot noise contribution as an equivalent

strain as follows

— 1/2
5, — _V Slight _ (3E-2|- + ‘Egc)l/2 (1 - Titmretm)2 1+ <27Tf) 2 m
motion H(f) Qk ‘ E2 |E+ ﬂtm’retm We /HZ

(5.8)
Where H(f) is the IFO transfer function to convert optical signal into a length
measurement, E, is the r.f. sideband field at the AS port, Ey4. is the d.c.
leakage of carrier field at the AS port, F5 is the carrier light incident upon the
beamsplitter from inside the PRM, r is the amplitude reflectivity of the indicated
optic and 7T is the power transmission of the indicated optic. For this calculation

I will make some simplifying assumptions: f = 0 (FSR sensitivity is theoretically
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equivalent to DC sensitivity), retm = 1, 1 — Tigm = 1.419 X 1072, Ty = 0.0281
(the optics are ideal), and E4. = 0 (the IFO is perfectly aligned). Now Eq.(5.8)

simplifies to

V Smotion = V3 A (7.2x107%). (5.9)
47 |E2|

I express |F,|? in units of photoelectrons per second, then for 1 Watt of input

light and a PRM build-up value of 42, |E,| = v/2.6 x 1020 s7!/2, leading to

v/ Sumotion = 6.13 x 10720 \/% (5.10)

which translates into a strain density of
h=15x10"%2  /vHz (5.11)

This result is at least a factor of ten below the estimated noise floor of the data
given in Eq.(5.15) indicating that at this point the instrument was not shot-noise

limited.

The phase noise and differential motion models used in the fit are generated
by the matrix calculation method described in section 3.2.2. Using IFO param-
eters obtained in Chap. 3 by fitting injected signals in the model, I calculate
the transfer function in the frequency range of interest (37.2 -37.8 kHz). Then
I normalize this transfer function by its peak magnitude value. For the phase
noise contribution, the full complex simulation results are used to maintain the
frequency dependent phase information. For the differential motion only the
magnitude of the model result is used in the fit since a stochastic source is in-
coherent. Contributions from internal test masses are calculated as specified in

section 4.3.1.
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Prepared Data with Comprehensive Fit
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Figure 5.2: Fitted spectrum and data for 37,200 < f < 37,800 Hz. The com-
prehensive fit for all parameters is used. See text for details.

5.5 FSR Search Results

The best fit to the data is shown in Fig. 5.2 and on an expanded scale in Fig. 5.3.

The results are summarized in Table 5.2. The x? was calculated by assuming
a constant error for each point and choosing o = 5.9433 so that for a fit to the
constant, linear and phase noise terms the x? value was exactly equal to the

number of data points (9600). Thus

=3 @;7;“)2 (5.12)
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Prepared Data with Comprehensive Fit
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Figure 5.3: As in Fig.5.2 but for a 40 Hz span in the fsr region.
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Table 5.2: Fit Coefficients

|A| 477 476 478 477 478 477 | Constant
¢4 (0°) | (0°) | (0°) | (0°) | (0°) | (0°) term”
IB| | —0.07 | —0.07 | —0.07 | —0.07 | —0.07 | —0.07 | Linear

¢p | (0°) | (0°) | (0°) | (00) | (09) | (0°) term”
il | 226 | 223 | 223 | 219 | 223 | 22.0 |Phase
¢o | 117° | 115° | 116° | 114° | 116° | 114° | noise

|D| - 1.23 — 1.17 — 1.17 | Differential
ép — (0°) - (0°) — (0°) Motion*
|E]| — — (1) (1) 0.89 0.85 | Mechanical
¢ - - (0°) | (0°) | (o) | (0°) term”

x> 9,599.9 19,578.5|9,578.7|9,559.7 | 9,578.3 | 9,559.1
D.O.F.| 9,597 | 9,596 | 9,597 | 9,596 | 9,596 | 9,595

*Parameters in parenthesis imply fixed value.

where x; is the value of the data point in array index ¢ and Z; is the value of the fit
prediction for array index . When the properly normalized x? increases by one
unit, the corresponding parameters constitute the 1o values, 4 units constitute

the 20 limits etc.

The first two columns in Table 5.2 show fits with and without a Differential
mode (DM) signal, with no contributions from mechanical resonances. In this
case inclusion of a DM signal lowers the x? by 22 units. A quadratic fit to the
x? distribution is shown in Fig. 5.4. The next two columns show fits with and

without DM signal, with a contribution from incoherently added mechanical res-
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Figure 5.4: x? vs the magnitude of the differential mode signal with no contri-
bution from mechanical resonances.
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Figure 5.5: x? vs the magnitude of the differential mode signal with mechanical
resonances of fixed magnitude included.

onances with a magnitude set at the value predicted in Chap. 4. The inclusion of
the DM signal results in a Ax? = 19 units. A quadratic fit to the y? distribution
is shown in Fig. 5.5. Finally the last two columns show fits with and without
DM signal while also fitting the magnitude of the included mechanical resonance
contributions. The same mechanical resonance contribution calculation is used
for all fits shown in Table 5.2, here I simply fit an overall multiplicative factor.
In this case the DM signal inclusion again results in Ax? = 19 units. Fig. 5.6

shows a quadratic fit to the x? distribution.
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Figure 5.6: x? vs the magnitude of the differential mode signal where the mag-
nitude of the mechanical resonances is being simultaneously fit.
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|D.M.] + Incoherently Added Mech Res

9600 I I I ‘ ‘
Data stepping |E|, fitting |D|
X Min x° via Fit
9595 —— Quadratic Fit 7
/
/
9590 /A
/

9585 /! s
9580 —

9575

9570

9565

9560 L -
9555 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
|E|

Figure 5.7: x? vs the magnitude of the mechanical resonance amplitude when
the magnitude of the differential mode is being simultaneously fit.

Figure 5.7 shows a quadratic fit to the x? distribution while holding the DM
contribution constant and varying the multiplicative magnitude of the mechani-
cal resonance contribution. A contour plot showing the correlation (and relative
independence) of the differential mode parameter to the mechanical resonance

parameter is shown in Fig. 5.8.

Following the calibration method discussed in section 4.3.1, theoretically the
mechanical resonance fit amplitude should be unity. As resonances are added

incoherently with random phase, the over all contribution magnitude can vary



150 CHAPTER 5. STOCHASTIC GRAVITATIONAL WAVE SIGNAL

16 N

1.4} .

12 .

|E|
-
T
I

0.8 i

0.6 N

0.4 N

0.2 .

0 ! ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Dl

Figure 5.8: x? contour plot with the magnitude of the differential mode vs the
magnitude of the mechanical resonance contribution. The central point is the
minimum fit, contours are 1 ¢ and 2 ¢. Note the minimal correlation of the two
parameters.
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depending on what phases are used. For this reason I did fits where the mechan-
ical resonance amplitude was varied as well (last two columns in Table 5.2). It is
quite encouraging that the fit amplitude is very close to unity (Fig. 5.7) as well
as the fact that the fit parameter is practically independent of the differential
motion fit amplitude (Fig. 5.8).

The conclusion from this analysis is that a differential mode signal is present
in the data with a confidence level of 40 to 50. However the amplitude of this
signal is only

1.17+0.25  FFT units (5.13)

as compared to the constant background (noise floor) of
430 FFT units (5.14)

Namely the spectral shape of the signal coupled with the large number of mea-
sured data points allows for a significant effective reduction in the noise level.

To check the validity of the fit I conducted a software injection of a differential
mode signal into the data to measure the corresponding fit values and compare
them with the injected value. A linear frequency spectrum was generated with
random fluctuations corresponding to the experimental o and a mean value of
400. This spectrum was then convolved with the Differential Mode (DM) transfer
function. The magnitude of the spectrum was added to the data in the region
37.2-37.8 kHz. The resulting spectrum was fit as described in section 5.4 with a
constant term, linear term, phase noise term, differential mode term and a term
from incoherently added mechanical resonances.

Table 5.3 shows the results for the injected and recovered DM in columns
1,2; Column 3 shows the confidence level in terms of the standard deviation
of the fit. Note that the recovered signal reflects both the injected signal and

the signal intrinsic to the data. One concludes that an intrinsic signal at the
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Table 5.3: Results of Differential Motion Signal Injection through software.

Injected Recovered Confidence
Signal Signal Level
400 404 1.52 x 10% o
40 41.5 156 o
4 5.20 20 0
2 3.18 12 o
1 2.17 8o
0.5 1.67 6o
—— 1.17 40

level of 1 to 1.5 units is present and detectable. The units refer to the scale
of the FF'T of the data time series, for BW = 0.0625 and sampling frequency
R = 2,048 Hz, as also used in Eqs.(5.13, 5.14). Recall that the average value of
the FFT coefficient at f = 37.52 kHz is C} = 430.

5.6 Calibration of FSR Data

While no direct calibration of the data stream used here is available I can esti-
mate the calibration as indicated in section 4.3.1. Using the calibration intro-

duced in Egs.(4.13 and 4.12) and dividing by the arm length (4000 m) I get

v/PSD (frer) = 3.71 x 10722 /v/Hz (5.15)

which corresponds to the total signal at the FSR frequency. For the proportion
of that which is due to differential motion, and therefore possibly due to gravi-

tational radiation, I multiply by the ratio of the DM fit parameter to the linear
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term (as the DM theory used in the fit was normalized to a max value of unity).
As this is best expressed as an upper limit, I use the 30 value of the DM fit

parameter farthest from zero instead of the best fit value.

- 1.95
hpum < ——— 3.71 x 102 /v/Hz (5.16)
477
or
hom < 1.5 x 1072 /v/Hz (5.17)

with 30 confidence.

To relate the limit on a differential mode signal to a limit on the stochastic
background I must average over the angle of incidence and polarizations. This
average was calculated by D. Sigg [66] and is also presented for reference in

Appendix A. The result is that
<h>=h/53 (5.18)
which leads to a 30 limit of
Pstochastic (37.52kHz) < 8.0 x 1072* /v/Hz (5.19)

To compare this result with the values of {24, discussed in section 5.1 I use

Eq.(5.6) with Hy = 100 Km/s - Mpc

1 Hz
f

so that Qg (f = 37.5 kHz) < 10,000 at the 30 level (99% confidence for a gaus-

3
ilstoch = 5.6 X 10719 ( ) ng(f) (520)

sian distribution). Fig. 5.9 shows the strain sensitivity of LIGO for a stochastic
background out to high frequencies and the upper limit from this measurement.
This is not a very significant limit, even though it is of the same order as the

limits from resonant bars included in Table 5.1. Of more interest is the fact that
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Figure 5.9: Predicted LIGO strain sensitivity with upper limit placed at FSR
(37520 Hz)



5.7. SENSITIVITY OF FUTURE MEASUREMENTS 155

- 10726

| 10~

1 5
1 102 10 1010
Frequency in Hertz

Figure 5.10: Stochastic characteristic strain spectra predicted in [11]. Also shown
is the design sensitivity of Advanced LIGO

one can bound the stochastic gravitational amplitude to A < 1072% /v/Hz at a
relatively high frequency. In the string model of ref [11] this value of A corre-
sponds to Qg ~ 107* as shown in Fig. 5.10. This indicates the advantage of

making measurements at high frequency if one wishes to test the string model.

5.7 Sensitivity of Future Measurements

It is clear that the result of Eq.(5.19) is preliminary, and based on an estimated
calibration. Furthermore, it is based on only one out of &~ 40 days of data from
the S3 run. These shortcomings should be remedied in the next run of LIGO in
late 2004.

Repeating the analysis, but using ~ 50 days of data, should reduce the fluc-
tuations in the noise by another factor of 7, and similarly improve the confidence
limit on the differential mode signal. In addition, exact calibration of the high

frequency channel, and other improvements planned in data taking, should con-
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tribute a factor of 10 or more to signal sensitivity so that hpy < 1072 /v/Hz.
This would test the string model at the level of g, = 107® (see Fig. 5.10). Using
a single detector will never convince the community at large that a stochastic
GW signal has been observed. To achieve this, it is necessary to carry out a
correlation experiment. Fortunately, the LHO 4k and the LHO 2k IFOs are
co-aligned and located in the same vacuum tunnel. Thus, they can be used to
measure a correlation even at this high frequency. The difficulty is that the fsr
for the H2 IFO is at 75 kHz so that in correlating the signal at 37.52 kHz the
sensitivity of the H2 IFO will be reduced by a factor of 130 from its peak (DC)
value. If common disturbances in the two instruments can be excluded from
the correlation product, the correlation experiment should then be successful.
This should be possible at these high frequencies. Also the eventual upgrade to
Advanced LIGO calls for the H2 TFO to be extended to 4 km in length, thus
both LHO IFOs would have the same fsr frequency.
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Appendix A

“Strain Calibration in LIGQO?”

This appendix is a subsection of the LIGO Technical document T970101-B-D by
D. Sigg [66]. The plots have been re-generated in matlab with the only difference
appearing in Fig. A.3 in the time delay. As the difference between this plot and
the one in the original paper only emphasize the point within the text (i.e. the

effect is negligible) no further note shall be made of the difference.

A.1 GW Interaction with an IFO Detector

A.1.1 The Coordinate System

We choose the coordinate system to be aligned with the two arms of the interfer-
ometer, where the origin is positioned at the beamsplitter and the z-axis points

vertically upwards (see Fig. A.1). Spherical coordinates are defined by

rsin 6 cos ¢

) 0<p<2m
r= | rsinfsin¢ with (A1)
0t

rcosf
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Figure A.1: Coordinate System

We then define the rotation operator O(f,¢) which rotates the z-axis in the

direction of 7:

00, ¢) = O(¢)O(0) (A.2)
cos¢p —sing 0 cosf 0 sinf
where O(¢) = | sing cos¢p 0 and O(9) = 0 I 0
0 0 1 —sinf 0 cosf
(A.3)

A.1.2 Round-Trip Phase Change

We write the phase of the light, which it acquires in one round-trip in one of the

interferometer arms, as

to-+t(2L)
Braty) = / w dt (A.4)

to

where L is the length of the arm, w is the angular frequency of the light and ¢,
the time the photon leaves the origin. We now change the integration over time

into one over length by using
dr? = dz,g,,dz" =0 with g,, = 1. + hy, (A.5)

where 7, is the Minkovski metric and A, is the space-time ripple due to the

gravitational wave [52]. For a gravitational wave traveling along the z-axis hy,,
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in the transverse-traceless guage becomes

0 0 0O
h+ hx O
0 R
hu, = cos(Qt — kz) . with Hig = | hy —hy 0 (A.6)
0 Hy,
0 0 0
- 0 -

where () is the angular frequency of the gravitational wave, k is its wave vector,
h, and hy are the wave amplitudes for the “+” and the “x” polarization,
respectively.

For arbitrary directions one has to rotate both z and H;; in the direction of

the wave vector k.

k; = sinf cos ¢

kz — k(kwx + kyy + kzZ) with ky = sin @ sin ¢ (A?)
k, = cos @
ﬁik — H’ik = 0(0’ ¢)ﬁlk0(0’ ¢)71 = hya: hyy hyz (A8)

For an integration along the x-axis or the y-axis h,, and hy, are the only relevant

matrix elements, respectively.
gz = — cos 0 sin 2¢h, + (cos® @ cos® ¢ — sin® @)k, (A.9)

hyy = cos 0sin 2¢hy + (cos® §sin® ¢ — cos® p)hy (A.10)

Fig. A.2 shows the angular dependence of |k, — hy,| for both polarizations and

their square-sum average. Using eqn.(A.5) we rewrite eqn.(A.4) as

®2,(t)) = £ [T{\/T+ hygcos(Qo + k(1 — k)z)  + (A.11)
1+ hygcos(Qtg + k(2L — (1 + ky)z))} da
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Figure A.2: h sensitivity as function of angle for the “+” polarization, the
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Similarly, ®Y,(¢) can be obtained by integrating along the y-axis. Since hg, < 1
we can Taylor expand the square root of eqn.(A.11). Performing the integration,
keeping only time-dependent terms, time-shift from departure to arrival, and
changing to a complex notation where the absolute value denotes the amplitude

and the argument denotes the phase shift, one gets:

T _ hgzgLw —i®q sin ®g+iks cos g —ikye *z 20
AQ, = fee o (liT) (A.12)

~ hzzLw 3 ke ®o —i(1+km/2)q>g
A e sinc®q, cos ) €

where ®q = L/c. The approximation yields the exact solution for a gravita-
tional wave traveling along the z-axis. For all directions we assume ¢o < 1.
From eqn.(A.12) one sees that the signal delay for photons arriving at the origin
is 1 + k;/2 times half the round-trip time. The finite time a photon spends in
a Michelson arm also leads to a small correction of the signal amplitude which
would otherwise be determined by h,, L only. Fig.A.3 shows the amplitude cor-
rection and time delay of the round trip phase of a gravitational wave as a
function of k, relative to one of normal incident and strength h,,. These effects

are generally small and in most cases negligible.

A.1.3 Higher Frequency Response

It is useful to calculate the antenna pattern at higher frequencies. Since the
arm cavities have a displacement response that is periodic in frequency and
repeats itself every free-spectral-range, one might assume that response to grav-
itational waves follows this pattern. In particular, the displacement sensitivity
of a Fabry-Perot cavity is as good at multiples of the free-spectral-range as it is
at dc. However, at the free-spectral-range frequency the antenna length is also

a multiple of a half-wave length of the gravitational wave. Using the variables
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of eqn.(A.12) we can write:

O = 2 fosy = 27rm% = &g = mm (A.13)

This in turn will result in a zero of the term proportional to sinc®g in the second
line of eqn.(A.12), and may look like the response of a Fabry-Perot cavity to
gravitational wave at the free-spectral-range frequency is identical zero. But, it
was first recognized in ref.[64] that this is not true for all directions. Going back
to the first line of eqn.(A.12) we see that for non-zero k, the second and third
term in the numerator will not vanish at the free-spectral-range. In Fig.A.4 we
show the angular dependency of the sensitivity |Hgsg| for both polarizations and
their square-sum average when the antenna length is A\/2. The boxes shown in
this figure are roughly an order of magnitude smaller than the ones in Fig.A.2.

The sensitivity at the first free-spectral-range can be simplified to:

hae(1 + €7 )ik, hy,(1 4 e"i™v)ik
H _ Nz z  'hyy Y A.14
FSR (1 — k2) m(1— k2) (A.14)

The polarization patterns are obtained as follows:

H_|_ = HFSR H, = HFSR‘hX:L}H_:O and FI = ‘H+‘2 + |H><|2 (A15)

hx :0,h+:1’ x

To estimate the overall loss of sensitivity at the free-spectral-range frequency we
can compute the volume of the corresponding antenna pattern and compare it

with the colume of the “peanut”. The volume integral can be written as

27 T |H(4,8)|
1% :/ d¢/ de/ dr r?sin 6. (A.16)
0 0 0

For the ratio of volumes V(&g = 7)/V(®o = 0) we obtain a factor of about
1/150. Or, in other words the average range that a source can be seen is about
a factor of 5.3 smaller at the first free-spectral-range frequency than at dc (as-

suming all other factors being equal).
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Appendix B

MATLAB functions and scripts

Throughout the course of data analysis I wrote and used several MATLAB
scripts and functions. I will include some of the more relevant or referenced code
here organized by directory structure. Please note that some of the command
lines would extend well beyond the margins of the page if unedited. In these
cases | have sometimes cut a single command into multiple lines. With this
exception I have attempted to copy the code here verbatim.

This appendix is not included in this hardcopy version. The electronic version

is available at http://www.ligo.caltech.edu/ document number P040026-00-R.
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B.1 General Functions

Routines here are more general routines which were often called from within

subdirectories for a variety of analysis.

B.1.1 Bode Plot

Here is a simple function to input complex data and output a single figure
with both a magnitude and phase plots. A variant form was used to plot the

)

magnitude on a log scale which used the MATLAB function “semilogy” instead

of “plot”. I will not include that variant.

function bplot(f,g)

%bode plot of g

figure;

subplot(2,1,1);

plot(f./1e3,abs(g));

grid on;xlabel(’Frequency (kHz)’);ylabel(’Linear Magnitude’);
phase = unwrap(angle(g),0.99%pi,2).*(180/pi);
subplot(2,1,2);

plot(f./1e3,phase);

grid on;xlabel(’Frequency (kHz)’);ylabel(’Unwraped Phase’);
subplot(2,1,1);

return;

B.1.2 Gaussian Curve Generation

Here is a routine to take needed input parameters and output a Gaussian curve.

This was used in some instances to fit to data and is especially useful for masking
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out 60 Hz line resonances.

function theory = gauss(f,f0,varargin)

% Series of Gaussian Curves

% gauss(f,f0,varargin)

% f = frequency for which the response is desired (can be array)
% f0 = resonant frequency (can be array)

% sigma = resonance sigma

h (single number or array of same length as fO0)
h Default = 0.1

% A = resonance Amplitude (must be same length as sigma)
A Default = 1

% N = Noise floor (single number only)

b Default = 0

% If complex parameters (f0,Q) are input then only the real part
% will be used.
% Complex A values are allowed to account for initial phase

% Complex N values are allowed to account for relative phase

sigma = 0.1; % Default Q
A=1; % Default Normalization factor
N = 0; % Default Noise Floor

if nargin > 2
sigma = varargin{1}; % if supplied
if nargin > 3

A = varargin{2}; ) Normalization factor if supplied;
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if length(A) ~= length(sigma)
disp(’Error number of Amplitudes MUST = number of sigmas’);
theory = [1;
return;
end;
if nargin > 4
N = varargin{3}; % Noise floor if supplied
if length(W) > 1
disp(’Error Noise floor must be single value’);
theory = [];
return;
end;
end;
end;
end;
f0 = real(f0); % Just in Case Imaginary Arguments sent

sigma = real(sigma);

if length(f0) > 1
if length(A) == length(sigma)
if length(A) > 1

% length(sigma) resonances each with their own sigma and A

theory = 0;

for k = 1:length(f0)
tmp = (£-f0(k)).*(£-f0(k));
term = A(k) .*x exp(-tmp/(2*sigma(k)*sigma(k)));

theory = theory + term;
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end;
theory = theory + N;
else
% length(f0) resonances each with SAME sigma and A
theory = 0;

for k

1:1ength(f0)
(£-£0(k)) . ¥ (£-£0(k));

tmp
term = A .* exp(-tmp/(2*sigma~2));
theory = theory + term;
end;
theory = theory + N;
end;
end;
else
if length(A) == length(sigma) ==
% single resonance single Q and N
tmp = (£-£0) .x(£-£0);
theory = A .*x exp(-tmp/(2*sigma~2)) + N;
else
disp(’ERROR: Number of Resonances and attributes differ’);
mech = [];
return;
end;

end;

return;
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B.1.3 Mechanical Resonance Curve Generation

This routine is similar to the Gaussian curve generation in use, however it gen-
erates a Lorentzian curve as specified in Meirovitch [49] as a prediction for the

resonance response of a mechanical system.

function mech = mech(f,f0,varargin)

% Mechanical Resonance Response as specified in Meirovitch

% "Elemends of Vibration Analysis" Chapter 2

% mech(f,f0,varargin)

% £ = frequency for which the response is desired (can be array)
% f0 = resonant frequency (only one per call)

% Q
h N

resonance (

resonance Normalization
% If complex parameters (f0,Q) are input then only the real part
% will be used.

% Complex N values are allowed to account for initial phase

Q = 1le6; % Default Q

N =1; % Default Normalization factor

if nargin > 2
Q = varargin{1}; % if supplied
if nargin > 3
N = varargin{2}; % Normalization factor if supplied;
end;
end;

f0 = real(f0); % Just in Case Imaginary Arguments sent
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Q = real(Q);
if length(£0) > 1
if length(N) == length(Q)
if length(N) > 1

% length(Q) resonances each with their own Q and N

mech = 0;

for k = 1:length(£0)

den = 1 - (£./£f0(k)) .*x(£f./£0(k)) + i.*xf ./ (Q(k)*£0(k));

N(k)./(den.*Q(k));

term

mech = mech + term;

end;

else
% length(f0) resonances each with SAME Q and N
% disp(length(£0));

mech = 0;
for k = 1:length(f0)
den = 1 - (£./f0(k)).*(£f./£f0(k)) + i.*f ./(Q*f0(k));
term = N ./ (den .* Q);
mech = mech + term;
end;
end;

else
disp(’ERROR: Number of Normalizations and Qs differ’);
mech = [];
return;

end;
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else

if length(N) == length(Q) ==
% single resonance single Q and N
den = 1 - (£./£f0).*(f£./£0) + i.xf ./ (Q*£0);
mech = N ./ (den.*Q);

else
disp(’ERROR: Number of Resonances and attributes differ’);
mech = [];
return;

end;

end;

return;

B.1.4 Step Function

On occasion it was useful to convolute some of the data with a step function to

cut off data above (or below) a certain point.

function out = theta(in)

% theta (aka step) function

% out 0 for all values of in < 0

% out = 1 for all values of in >= 0
% can take array of in values, returns array of out of same size
for k = 1:length(in)
if in(k) < 0
out(k) = 0;

else
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out(k) = 1;
end;
end;

return;

B.1.5 Index Locator

Use of the theta function in combination with the MATLAB max function just
to find the index of a specific frequency point was inefficient. Therefore this
routine was written to more directly provide the index value. For example; if
the current frequency (and data) arrays are for frequency values [0-1024] but I
am only interested in frequencies from [200-800] Hz I can use the function in

this way (where f is the full frequency array and d is the corresponding full data

array):

i1 = index(f,200);
i2 = index(f,800);
£ = £(i1:i2);

d = d(i1:i2);

This is most useful when interested in looking at the same frequency range

through a series of data sets of variable frequency resolution.

function out = index(f,f0)

% index(array,value)

% input: 1) array of values
b 2) value of interest
% output: index of the input array giving the location of the

% value of interest.
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% note: index returned is simply the first instance if multiple

% instances if value is not in the array then 0 is returned

out = 0;
for ii = 1:length(f)
if £(ii) == f0
out = ii;
break;
end;
end;

return;

B.2 Simple Fabry-Perot Cavity Calculations

Here are several functions which combine to give the response of a simple Fabry-

Perot cavity.

B.2.1 Reflectivity

The frequency dependent reflectivity of the cavity which is dependent also upon
length.

function r = R(x,L)

%R = FP cavity reflectivityri=(rl +(r1°2 + t17°2)*r1)/(1+r1°2);
r1=sqrt(1-0.0281-0.000075) ;

r2=sqrt (1-0.000005-0.000070) ;

t1=sqrt(0.0281);

£sr=299792458/ (2*L) ;
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num

rl - r2.%x(r17°2 + t172) .*xexp(-i*2*pixx/fsr);

den = 1 - rl.*r2.xexp(-i*2*pixx/fsr);

r

= num./den;

%lin = 9.041;

lin = 0;

r

= exp(-i*2*pi*1inkx/299792458) .*r;

return;

B.2.2 Demodulation Parameter Calculation

Here is the @ parameter discussed in section 3.1.1.

function A = a(f,rf,L)

h
h
h
h
h

alpha output

f = frequency range of interest (in form of an array)
rf = rf frequency

nominaly rf = 24481674.998;

L = arm cavity length

% nominally L = 3995.056

A = conj(r(0,L)) .*r(rf+f,L) + r(0,L).*conj(r(-rf-£f,L))...
-r(f,L) .*conj(r(-rf,L)) - conj(r(-f,L)).*r(rf,L)...
-conj(r(0,L)) .*r(-rf+f,L) - r(0,L).*conj(r(rf-f,L))...
+r(f,L) .*conj(r(rf,L)) + conj(r(-f,L)).*r(-rf,L);

return;

Here is the v parameter discussed in section 3.1.1.

function G = g(f,rf,L)

h

gamma output

185
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% £ = frequency range of interest (in form of an array)

% rf = rf frequency

% nominally rf = 24481674.998;

% L = cavity arm length

% nominally L = 3995.056

G = conj(r(0,L)) .*r(rf+f,L) + r(0,L).*conj(r(-rf-f,L))...
-r(f,L) .*conj(r(-rf,L)) - conj(r(-f,L)).*r(rf,L)...
+conj(r(0,L)) .*r(-rf+f,L) + r(0,L).*conj(r(rf-£f,L))...
-r(f,L) .*conj(r(rf,L)) - conj(r(-f,L)).*r(-rf,L);

return;

B.2.3 Demodulated Signal

Here is the in-phase demodulated function.

function FPI = fpi(f,phi,varargin)
% ASI with mixing angle phi
% rf = 24481674.998;
rf = 24481323;
if nargin > 2
L = varargin{1};
else
L = 3995.05948;
end;
p = (pi / 180) * phi;
FPI = a(f,rf,L).xsin(p) + g(f,rf,L).*(i*xcos(p));

return;

Here is the quadrature phase demodulated function.
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function FPQ = fpq(f,phi,varargin)
% ASQ with mixing angle phi

hrf = 24481674.998;

rf = 24481323;

if nargin > 2

L

varargin{1};

else

L 3995.05948;

end;

p = (pi / 180) * phi;

FPQ = a(f,rf,L).xcos(p) - g(f,rf,L).*x(i*sin(p));

return;

B.2.4 Data Fitting

187

Generally within MATLAB I used the “Isqcurvefit” routine to fit data to a theory

curve. In this particular instance I was running the fitting routine a number

of different times and so wrote a small function to go through the common

definitions and function calls needed without the need to remember and type

them in again and again. Similar routines were also written which vary only in

whether or not I fit to the complex data, real data, or real data with phase info.

%function FITFP = fitFP(n,data)

sfuntion for fitting data to theory in matlab
%tmp = n(1) .* (fpi(data,n(2)) + n(3));
WFITFP = [abs(tmp) ;unwrap(angle (tmp))];

Yreturn;
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function [x,chi2,resnorm,residual] = fitfpmag(freq,data,L,varargin)

h
h
h
h
b
h
h
h
h
h
h
h
h
A
b
b
b
h
h
h
b
b
h
h
rf

funtion f
fit alrea

remember

[abs (tmp

[x,chi2,r
any numbe
inputs af

inputs:

freq

data

L

x0 =

rf =

error=

outputs:
X
chi2
resnorm

residua

= 244816

or fitting data magnitude to theory in matlab
dy assumes a 1/f dependence,

when plotting results

tmp = x(1) .*x (fpi(freq,x(2),L) + x(3))

) ;unwrap(angle (tmp))]

~ [abs(data .* freq);unwrap(angle(data.x*freq)]
esnorm,residual] = fitfpmag(freq,data,L,x0,rf,error)

r of outputs allowed [x] or [x,chi2] or ...

ter L are optional (f,d,L) or (£f,d4,L,x0) or ...

frequency array of points

complex array of measurement points

assumed length of FP cavity

an array of initial fit parameters [x1,x2,x3]

the rf frequency to be used, if default value to be
used enter an empty cell {}

100 * inverse of the percentage error of each data

point, to be used to determine chi squared

the fit parameters in an array [x1,x2,x3]

the chi squared value of the overall fit

= the normalized residual (output from lsqcurvefit)

1 = an array giving the residual between each data

point and the fitted point corresponding to it.

74.998;
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error = 54.9;
fun = inline(’
[abs(x(1) .* (fpi(xdata(2:length(xdata)),x(2),xdata(1))+x(3)));
unwrap(angle(x(1) .x
(fpi(xdata(2:1length(xdata)) ,x(2),xdata(1))+x(3))))]1’,
’x?,’xdata’);
if nargin > 3
x0 = varargin{1};
if nargin > 4
if size(varargin{2}) > 0
rf = varargin{2};
end;
if nargin > 5
error = varargin{3};
end;
end;
else
x0 = [8,0,0];
end;
[x,resnorm,residual] =
1sqcurvefit (fun,x0, [L,freq],
[abs(data.*freq) ;unwrap(angle(data.*freq))]);
X = residual(1l,:)./(abs(data.*freq)./error);
chi2 = sum(X."2);

return;
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Here is the routine which only fit the magnitude of the theory to the magni-
tude of the data.

function [x,chi2,resnorm,residual]l = fitfpmag(freq,data,L,varargin)
% funtion for fitting data magnitude to theory in matlab

% fit already assumes a 1/f dependence,

b remember when plotting results
% fit = x(1) .*x (fpi(freq,x(2),L) + x(3))
b abs(fit) ~ abs(data .* freq)

% [x,chi2,resnorm,residual] = fitfpmag(freq,data,L,x0,rf,error)
% any number of outputs allowed [x] or [x,chi2] or ...

% inputs after L are optional (f,d,L) or (f,d,L,x0) or ...

% inputs:

% freq = frequency array of points

% data = complex array of measurement points

h L = assumed length of FP cavity

% x0 = an array of initial fit parameters [x1,x2,x3]

% error= 100 * inverse of the percentage error of each data
b point, to be used to determine chi squared

% outputs:

% x = the fit parameters in an array [x1,x2,x3]
% chi2 = the chi squared value of the overall fit
% resnorm = the normalized residual (output from lsqcurvefit)

% residual = an array giving the residual between each data

A point and the fitted point corresponding to it.
error = 34.03;

fun =
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inline(
’abs(x(1) .x (fpi(xdata(2:length(xdata)),x(2),xdata(1))+x(3)))’,
’x’,’xdata’);
if nargin > 3
x0 = varargin{1};
if nargin > 4
error = varargin{2};
end;
else
x0 = [8,0,0];
end;
[x,resnorm,residual] = lsqcurvefit(fun,x0, [L,freql,abs(data.*freq));
X = residual./(abs(data.*freq)./error);

chi2 = sum(X."2);

return;

B.2.5 Shaking Response

In section 3.2.1 I discuss the differences in demodulation needed for investigating
mirror excitation instead of phase noise injection. Here are the functions which

take this difference into account. First is the basic reflectivity of the cavity.

function sr = SR(x,L)

%R = FP cavity reflectivity
r1=sqrt(1-0.0281-0.000075) ;
r2=sqrt (1-0.000005-0.000070) ;
t1=sqrt(0.0281);
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£sr=299792458/ (2%L) ;

num = (rixtl1°2%r2°2) .*xexp(-i*pi*x/fsr);

den = (1-r1*r2).*(1 - rl.xr2.*exp(-i*2*pixx/fsr));
sr = num./den;

return;

B.2.6 Shaking Demodulation Parameters

Here is the o/ parameter.

function SA = sa(f,rf,L)

% alpha output

% £ = frequency range of interest (in form of an array)
% rf = rf frequency

% nominaly rf = 24481674.998;

% L = arm cavity length

% nominally L = 3995.056

SA

feval(@r,-rf,L) .*conj(feval(@sr,-f,L))...

+

feval(@sr,f,L) .*xconj(feval(@r,rf,L))...

feval(@sr,f,L) .*conj(feval(@r,-rf,L))...

feval(@r,rf,L).*conj(feval(@sr,-f,L));

return;
And the ' parameter.

function SG = sg(f,rf,L)
% alpha output
% f = frequency range of interest (in form of an array)

% rf = rf frequency
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% nominaly rf = 24481674.998;

%» L = arm cavity length

% nominally L = 3995.056

SG = feval(@r,-rf,L).*conj(feval(@sr,-f,L))...
+ feval(@sr,f,L).*conj(feval(@r,rf,L))...
+ feval(@sr,f,L).*conj(feval(@r,-rf,L))...
+ feval(@r,rf,L).*conj(feval(@sr,-f,L));

return;

B.2.7 Shaking Demodulation Functions

Here is the in-phase demodulation function for a mirror excitation.

function SFPI = sfpi(f,phi,varargin)
% FPI with mixing angle phi

% produced by shaking ITM or ETM
hrf = 24481674.998;

rf = 24481323;

if nargin > 2

L = varargin{1};
else

L

3995.05948;

end;

p = (pi / 180) * phi;

SFPI = sa(f,rf,L).*sin(p) - sg(f,rf,L).*x(ixcos(p));

return;

And the quadrature phase demodulation function for a mirror excitation.
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function SFPQ = sfpq(f,phi,varargin)
% FPQ with mixing angle phi
% produced by shaking of ITM or ETM
hrf = 24481674.998;
rf = 24481323;
if nargin > 2
L = varargin{1}
else
L = 3995.05948;
end;
p = (pi / 180) * phi;
SFPQ = sa(f,rf,L).*cos(p) + sg(f,rf,L).*x(i*sin(p));

return;

B.3 Power Recycled Interferometer

This is a set of functions which were used for the analytic calculation of the full
PRIFO response to both phase modulation and mirror excitation. Similarly to
the simple FP case, I give the phase modulation routines and then the excitation

specific routines.

B.3.1 Arm Cavity Reflection

This is the same as the reflection for the simple FP but there is no need for an

initial distance parameter between the laser and the cavity.

function r = R(x,L)

WR = FP cavity reflectivity
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r1=sqrt(1-0.0281-0.000075) ;
r2=sqrt (1-0.000005-0.000070) ;
t1=sqrt(0.0281);

¢ = 299792458;

num = r1 - r2.%(r1"2 + t172) .*exp(-i*4*xpi*xx*L/c);
den = 1 - ri1.xr2.%exp(-ix4*pixx*L/c);
r = num./den;

return;

B.3.2 Demodulation Parameters
Here is the oo parameter

function A = a(f,rf,varargin)
% alpha output
% f = frequency range of interest (in form of an array)
% rf = rf frequency
% nominaly rf = 24481674.998;
A = conj(as(0,varargin{:})) .*as(rf+f,varargin{:})...
+ as(0,varargin{:}) .*conj(as(-rf-f,varargin{:}))...
- as(f,varargin{:}) .*conj(as(-rf,varargin{:}))...
- conj(as(-f,varargin{:})) .*as(rf,varargin{:})...
- conj(as(0,varargin{:})) .*as(-rf+f,varargin{:})...
- as(0,varargin{:}) .*conj(as(rf-f,varargin{:}))...
+ as(f,varargin{:}) .*conj(as(rf,varargin{:}))...
+ conj(as(-f,varargin{:})).*as(-rf,varargin{:});

return;

and the vy parameter
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function G = g(f,rf,varargin)
% gamma output
% f = frequency range of interest (in form of an array)

% rf = rf frequency

=

, nominaly rf = 24481674.998;

[p]

= conj(as(0,varargin{:})) .*as(rf+f,varargin{:})...

+ as(0,varargin{:}) .*conj(as(-rf-f,varargin{:}))...
- as(f,varargin{:}) .*conj(as(-rf,varargin{:}))...

- conj(as(-f,varargin{:})).*as(rf,varargin{:})...

+ conj(as(0,varargin{:1})) .*as(-rf+f,varargin{:}) ...
+ as(0,varargin{:}) .*conj(as(rf-f,varargin{:}))...

- as(f,varargin{:}) .*conj(as(rf,varargin{:}))...

- conj(as(-f,varargin{:})).*as(-rf,varargin{:});

return;

B.3.3 Demodulation Functions

In-phase demodulation output from the anti-symmetric port

function ASI = asi(f,phi,varargin)
% ASI(f,phi) dark port output from FullIFO
% ASI with mixing angle phi at frequency f
rf = 24481323.5;
p = (pi / 180) * phi;
ASI = a(f,rf,varargin{:}).*sin(p)

+ g(f,rf,varargin{:}) .*(i*cos(p));

return;

and quadrature phase demodulation output from the anti-symmetric port.
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function ASQ = asq(f,phi,varargin)
% ASQ(f,phi) dark port output from FullIFO
% ASQ with mixing angle phi at frequency f
rf = 24481323.5;
p = (pi / 180) * phi;
ASQ = a(f,rf,varargin{:}).*cos(p)

- g(f,rf,varargin{:}) .*(i*sin(p));

return;

B.3.4 Arm Cavity Shaking Response

Essentially the same as the basic arm cavity response with the lack of a prompt

reflection (as it is the end mirror being shaken).

function sr = SR(x,L)

%R = FP cavity reflectivity
r1=sqrt(1-0.0281-0.000075) ;
r2=sqrt (1-0.000005-0.000070) ;
t1=sqrt(0.0281);

Cc = 299792458;

num (r1xt172%r272) .xexp(-i*6*pixx*L/c) ;

den = (1-rixr2).*(1 - ril.*xr2.*exp(-ix4*pi*x*L/c));

sr = num./den;

return;

B.3.5 Shaking Demodulation Parameters

First the o parameter:
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function SA = sa(f,varargin)

% alpha output for shaking

% f = frequency range of interest (in form of an array)
% Parameters set in file:

% rf = non-resonant sideband frequency (Hz)

rf = 24481323.5;

SA = as(-rf,varargin{:}).*conj(sas(-f,varargin{:})) + ...
sas(f,varargin{:}) .*conj(as(rf,varargin{:})) - ...
sas(f,varargin{:}) .*conj(as(-rf,varargin{:})) - ...
as(rf,varargin{:}) .*xconj(sas(-f,varargin{:}));

return;

and then the v parameter

function SG = sg(f,varargin)

% gamma output for shaking

% £ = frequency range of interest (in form of an array)

% Parameters set in file:

% rf = non-resonant sideband frequency (Hz)

rf = 24481323.5;

SG = as(-rf,varargin{:}).*conj(sas(-f,varargin{:})) + ...
sas(f,varargin{:}) .*conj(as(rf,varargin{:})) + ...
sas(f,varargin{:}) .*conj(as(-rf,varargin{:})) + ...
as(rf,varargin{:}) .*conj(sas(-f,varargin{:}));

return;

B.3.6 Shaking Demodulation Outputs

First the in-phase anti-symmetric port output:
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function SASI = sasi(f,phi,varargin)

=

, SASI(f,phi,...) dark port output from FullIFO, shaking input

% ASI with mixing angle phi at frequency f

% further parameters are passed along to sa and sg

% which pass them on to as and sas

p = (pi / 180) * phi;

SASI = sa(f,varargin{:}).*sin(p) + sg(f,varargin{:}).*(i*cos(p));

return;
and now the quadrature phase AS port output:

function SASQ = sasq(f,phi,varargin)

% SASQ(f,phi,...) dark port output from FullIFO, shaking input

% ASQ with mixing angle phi at frequency f

% further parameters are passed along to sa and sg

% which pass them on to as and sas

p = (pi / 180) * phi;

SASQ = sa(f,varargin{:}).*cos(p) - sg(f,varargin{:}).*(i*sin(p));

return;

B.4 Matrix Method Calculations

Here I present the code for the matrix method presented in section 3.2.2. Here

I also have both a simple FP cavity and a full PRIFO.

B.4.1 FP Matrix Code

Here is the root of the matrix method calculation.
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function tw = tw(f,varargin)

% Butler’s continuing modifications of the twiddle
% algorithm in matlab for simple FP

% f = array of input frequencies (can be scalar)

% varargin: optional arguments

% y = input matrix, default is SB injection

% y = [1;0;0;0;0;0;0]; by default

% y = [0;0;0;0;0;-1;0]; for ETM shaking

% z = output matrix, matrix of fields to output
» z = [2] by default

% L = cavity length

% As ALL FIELDS ARE CALCULATED EVERY TIME

h it is best to call the program only once
h and get all the fields of interest

h eg. if you want field 2 and 3 call

A tw(f,y, [4;9])

% Define Fields

% 1 = incident on mirror 1 from source (right)

h
h
h
b
b
h

= reflected from mirror 1 back to source (left)
= transmitted through mirror 1 (right)

= incident on mirror 1 from mirror 2 (left)

= incident on mirror 2 from mirror 1 (right)

= reflected from mirror 2 to mirror 1 (left)

~ (o} ol L) w N
|

= transmitted through mirror 2 (right)

% Define Lengths and frequencies
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if nargin > 3

L

varargin{3};
else

L

3995.05948;
end;

c = 299792458;

ph2 = 2xpixL.*f./c;

n = length(f);

% Define reflectivities and transmittance
r1=sqrt(1-0.0281-0.000075) ;

r2=sqrt (1-0.000005-0.000070) ;
t1=sqrt(0.0281);

t2=sqrt (0.000005) ;

% Create Matrix
A(1,1,1:n) = 1;
A(2,1,1:n) = -r1;
A(2,2,1:n) = 1;
A(2,4,1:n) = -ixtl;
A(3,1,1:n) = -ixtl;
A(3,3,1:n) = 1;
A(3,4,1:n) = -r1;
A(4,4,1:n) = 1;

A(4,6,:) = —exp(-i.*ph2);
A(5,3,:) = —exp(-i.*ph2);
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A(5,5,1:n) = 1;
A(6,5,1:n) = -r2;
A(6,6,1:n) = 1;
A(7,5,1:n) = -ixt2;
A(7,7,1:n) = 1;
hB = A;

%B(2,1,1:n) = ri;
%B(2,4,1:n) = -t1;
%B(3,1,1:n) = -t1;
%B(3,4,1:n) = -ri;
%B(6,5,1:n) = -r2;
%B(7,5,1:n) = -t2;
hA = B;

% input vector
y = [1;zeros(6,1)];
if nargin > 1
if length(varargin{1}) == length(y)
y = varargin{1};
else
display(’Invalid input matrix’);
end;

end;

for k = 1:n



B.4. MATRIX METHOD CALCULATIONS 203

tmp = A(:,:,kK)\y;
Ebi(:,k) = tmp;

end;

if nargin > 2
for k = 1:length(varargin{2})
tw(k,:) = Ebi(varargin{2}(k),:);
end;
else
tw = Ebi(2,:);

end;

return;

B.4.2 FP Demodulation Parameters

Here is a single function which returns both the o and v parameters for demod-
ulation for both the phase modulation and mirror excitation calculations. As
one can easily see this code was written later and is more general, adaptable and

complex.

function [A,G] = ag(f,rf,varargin)

% alpha gamma ouput [A;G] = ag(f,rf,varargin)

% £ = frequency range of interest (in form of an array)

% rf = rf frequency

% nominaly rf = 24481674.998;

% varargin parameters specifying SB injection of mirror excitation

% and further parameters to pass on to tw
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yrf =

if (na

% Code Modified to minimize

ca
pr
mr
pf
mf
pa
ma
pb
mb

G

APPENDIX B.

[1;zeros(6,1)];

rgin == 2) | (varargin{i}

r = tw(0,varargin{:});

f = tw(rf,varargin{:});

f = tw(-rf,varargin{:});
= tw(f,varargin{:});
= tw(-f,varargin{:});
= tw(rf+f,varargin{:});
= tw(-rf-f,varargin{:});
= tw(rf-f,varargin{:});

= tw(-rf+f,varargin{:});

= conj(car) .*pa. ..
+ car.*conj(ma)...
- pf.*conj(mrf)...
- conj(mf) .*prf...
- conj(car) .*mb. ..
- car.*conj(pb)...

+ pf.*conj(prf)...

+ conj(mf) . *mrf;

= conj(car) .*pa...
+ car.*conj(ma)...
- pf.*conj(mrf) ...
- conj(mf) .*prf...

+ conj(car) .*mb. ..

MATLAB FUNCTIONS AND SCRIPTS

== yrf)

calls to tw subroutine
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else

else

MATRIX METHOD CALCULATIONS

+ car.*conj(pb)...
- pf.*conj(prf)...
- conj(mf) . *mrf;
if length(varargin{1}) == length(yrf)
y = varargin{1};
if length(varargin) > 1
other = {varargin{2:length(varargin)}};
else
other = {3};
end;

% Code modified to minimize calls to tw subroutine

mrf = tw(-rf,yrf,other{:});
prf = tw(rf,yrf,other{:});
pf = tw(f,y,other{:});
mf = tw(-f,y,other{:});

A = mrf.*xconj(mf)...
+ pf .*conj(prf)...
- pf .*conj(mrf)...
- prf.*conj(mf) ;

G = mrf.*xconj(mf) ...
+ pf .*conj(prf)...
+ pf .*conj(mrf)...
+ prf.*conj(mf);

display(’Error input vector length incorrect’);
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end;

return;

B.4.3 FP Demodulation Functions

At this point calculation of the in-phase and quadrature demodulation outputs

is rather simple. Here is the in-phase function first.

function FPI = fpi(f,phi,varargin)

% FPI = fpi(f,phi,varargin)

% FPI with mixing angle phi

% rf = set in this file

% lengths and other parameters set in tw.m

% f = frequency for analysis

% phi = mixing angle (degrees) between optimum I and Q
% varargin = parameters passed on to tw.m

% note when calling for demodulated outputs you can only
% request one output field at a time.

% To study Simple FP call functions fpi and fpq

% To study Full LHO4k call functions asi and asq

rf = 24481323;

p = (pi / 180) * phi;
[alpha,gammal = ag(f,rf,varargin{:});
FPI = alpha.*sin(p) + gamma.*(i*cos(p));

return;

Followed by the quadrature phase function.
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function FPQ = fpq(f,phi,varargin)

h
h
h
h
h
h
h
h
h
h
h

FPQ = fpq(f,phi,varargin)

FPQ with mixing angle phi

rf = set in this file

lengths and other parameters set in tw.m

f = frequency for analysis

phi = mixing angle (degrees) between optimum I and Q
varargin = parameters passed on to tw.m

note when calling for demodulated outputs you can only
request one output field at a time.

To study Simple FP call functions fpi and fpq

To study Full LHO4k call functions asi and asq

rf = 24481323;

P

= (pi / 180) * phi;

[alpha,gamma] = ag(f,rf,varargin{:});

FPQ = alpha.*cos(p) - gamma.*(i*sin(p));

return;

B.4.4 AS Matrix Code

Here is the root of the matrix method calculation for the full PRIFQO. This

routine outputs the E field at any point within the configuration, the default is

for the AS port.

function tw2 = tw2(f,varargin)

h
b

tw2 = tw2(f,varargin)

algorithm in matlab for Full PRIFO with FP arms
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% f = array of input frequencies (can be scalar)

% varargin: optional arguments (y,xi,asym,z)

% y = input matrix, default is SB injection

» vy = [1;zeros(22,1)]; by default (SB injection)

% y = [zeros(13,1);-i;zeros(9,1)]; for ETMX shaking

% y = [zeros(21,1);-1;0]; for ETMY shaking

% y = [zeros(13,1);-i;zeros(7,1);-1;0]; for CM shaking
% y = [zeros(13,1);i;zeros(7,1);-i;0]; for DM shaking

% xi = degrees off perfect dark port conditions

% asym = Michelson Asymmetry
%» Ymod = modification to Y-arm length
% =z = output matrix, matrix of fields to output

% =z

h As ALL FIELDS ARE CALCULATED EVERY TIME

[23] by default (AS port output)

yA it is best to call the program only once
h and get all the fields of interest

h eg. if you want field 2 and 3 call

b tw(f,y, [4;9])

% Define Fields

% 1 = incident on RM from source (right)
% 2 = reflected from RM back to source (left)
% 3 = transmitted through RM (right)
% 4 = incident on RM from BS (left)
% 5 = incident on BS from RM (right)
% 6 = transmitted through BS from X (left)
% 7 = transmitted through BS from RM  (right)
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% 8 = incident on BS from X

% 9 = incident on ITMX from BS

% 10 = reflected from ITMX to BS

% 11 = transmitted through IMTX

% 12 = incident on ITMX from ETMX

% 13 = incident on ETMX from ITMX

% 14 = reflected from ETMX to ITMX
% 156 = reflected from BS to ITMY

% 16 = incident on BS from ITMY

% 17 = incident on ITMY from BS

% 18 = reflected from ITMY to BS

% 19 = transmitted through ITMY

% 20 = incident on ITMY from ETMY
% 21 = incident on EMTY from ITMY
% 22 = reflected from ETMY to ITMY

% 23 = transmitted through BS from Y

% Define Lengths and frequencies

Lx = 3995.05948; % X-arm length
Ly = 3995.01332; % Y-arm length
Ymod = 0;

if nargin > 3
asym = varargin{3};
if nargin > 4

Ymod = varargin{4};
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else
Ymod = 0;
end;
else
asym = 0.110;
end; b

Ly = Ly + Ymod;

1x = 6.191 - asym; b
ly = 6.191 + asym; b
lin = 3; h
c = 299792458; b
Px = 2%pixLx.*f./c; b
Py = 2%pixLy.*f./c; b
px = 2xpixlx.xf./c; b
py = 2*pixly.*f./c; b
pin = 2xpi*lin.*f./c; %
n = length(f); b

if nargin > 2

xi = varargin{2} * pi
else

xi = 0;
end; A
Py = py - xi/2; "
PX = px + xi/2; %

APPENDIX B. MATLAB FUNCTIONS AND SCRIPTS

Length modifications

Schematic D970003-00-D says
RC Optical length = 9191 mm
RC asymmetry = +- 150 mm
speed of light

Propogator X-arm

Propogator Y-arm

Propogator BS - ITMx
Propogator BS - ITMy
Propogator RM - BS

number of frequency points

/ 180;

Quality of Lock parameter

Easiest and most logical

way to insert chi
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% Define reflectivities and transmittance

ritm = sqrt(1-0.0281-0.000075) ; b
retm = sqrt(1-0.000005-0.000070) ; h
titm = sqrt(0.0281); b
tetm = sqrt(0.000005); b
rrm = sqrt(1-0.0281-0.000075) ; b
rbs = sqrt(1-0.49995-0.000070) ; b

trm = sqrt(0.0281);

h

tbs = sqrt(1-0.49995-0.000070) ; b

% optional params for lossless optics

%ritm = sqrt(1-0.0281);
%hretm = sqrt(l);

%itm = sqrt(0.0281);
%tetm = sqrt(0);

hrrm = sqrt(1-0.028);
%rbs = sqrt(.5);

%trm = sqrt(.028);
htbs = sqrt(.5);

% Create Matrix
for k = 1:23
A(k,k,1:n) = 1;

end;
A(2,1,:) = -rrm;
A(2,4,:) = —ixtrm;

% Create n kxk identity matrices
%» Now stick in the propogators

% and refl/trans coefficients

I™
ETM
IT™™
ETM
RM
BS
RM
BS
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A(3,1,:)
A(3,4,:)
A(4,6,:)
A(5,3,:)
A(6,8,:)
A(6,16,:)
A(7,5,:)
A(8,10,:)
A(9,7,:)
A(10,9,:)
A(10,12,:)
A(11,9,:)
A(11,12,:)
A(12,14,:)
A(13,11,:)
A(14,13,:)
A(15,5,:)
A(16,18,:
A(17,15,:
A(18,17,:
A(18,20,:
A(19,17,:
A(19,20,:
A(20,22,:
A(21,19,:

A N N N L A N g

A(22,21,:

APPENDIX B. MATLAB FUNCTIONS AND SCRIPTS

—i*xtrm;

-rrm;
-exp(-ixpin);
-exp(-ixpin);
-ixtbs;

-rbs;

-ixtbs;
-exp(-i*px);
-exp(-i*px);
-ritm;
—i*xtitm;
-i*titm;

-ritm;

= —exp(-i*Px);

-exp(-i*Px) ;
-retm;

-rbs;
—i*exp(-i*py);
—i*exp(-i*py);
-ritm;
—i*titm;
—i*xtitm;
-ritm;
-exp(-i*Py);
-exp(-i*Py) ;

-retm;
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A(23,8,:)
A(23,16,:)

-rbs;

-i*tbs;

% input vector
y = [1;zeros(22,1)]; % default SB injection
if nargin > 1 % if other injection point specified
if length(varargin{1}) == length(y)
y = varargin{1};’ use it
else % if specified, but incorrectly

display(’Invalid input matrix’);

tw2 = 0; % assign some value
return % and return on error
end;
end;
for k = 1:n % Do the Matrix Inversion

tmp = A(C:,:,kK)\y;
Ebi(:,k) = tmp;

end;

if nargin > 5 % if specific output(s) specified
for k = 1:length(varargin{5}) 7% use them
tw2(k,:) = Ebi(varargin{5}(k),:);
end;
else

tw2 = Ebi(23,:); % otherwise give AS port output
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end;

return;

B.4.5 AS Demodulation Parameters

Again I calculate both the o and the v parameter in the same function. Also I
enlarged the function so as to eliminate the need for separately calculating the

o/ and 7' parameters.

function [A,G] = ag2(f,rf,varargin)
% alpha gamma ouput [A;G] = ag2(f,rf,varargin)
% £ = frequency range of interest (in form of an array)
% rf = rf frequency
% nominaly rf = 24481674.998;
% varargin parameters specifying SB injection of mirror
% excitation and further parameters to pass on to tw2
yrf = [1;zeros(22,1)];
if (nargin == 2) | (varargin{i} == yrf)
% Code Modified to minimize calls to tw2 subroutine
car = tw2(0,varargin{:});
prf = tw2(rf,varargin{:});
mrf = tw2(-rf,varargin{:});
pf = tw2(f,varargin{:});
mf = tw2(-f,varargin{:});
pa = tw2(rf+f,varargin{:});
ma = tw2(-rf-f,varargin{:});

pb = tw2(rf-f,varargin{:});
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mb = tw2(-rf+f,varargin{:});

G

elseif length(varargin{1}) == length(yrf)

y

if length(varargin) > 1

el

= conj(car) .*pa. ..
+ car.*conj(ma) ...
- pf.*xconj(mrf) ...
- conj(mf) .*prf...
- conj(car) .*mb. ..
- car.*conj(pb)...

+ pf.*conj(prf)...

+ conj(mf) . *mrf;

= conj(car) .*pa...
+ car.*conj(ma)...
- pf.*conj(mrf)...
- conj(mf) .*prf...
+ conj(car) .*mb. ..
+ car.*conj(pb)...

- pf.*conj(prf)...

- conj(mf) .*mrf;

= varargin{1};

other = {varargin{2:length(varargin)}};

Se

{3;

other

end;

% Code modified to minimize calls to tw2 subroutine
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mrf = tw2(-rf,yrf,other{:});
prf = tw2(rf,yrf,other{:});
pf = tw2(f,y,other{:});
nf = tw2(-f,y,other{:});

A = mrf.*xconj(mf)...
+ pf .*conj(prf)...
- pf .*conj(mrf)...
- prf.*conj(mf) ;

G = mrf.xconj(mf)...
+ pf .*conj(prf)...
+ pf .*conj(mrf)...
+ prf.*conj(mf) ;

else
display(’Error input vector length incorrect’);

end;

return;

B.4.6 AS Demodulation Functions

At this point calculation of the in-phase and quadrature demodulation outputs
is rather simple. As by the time I wrote this routine I was running sufficiently
detailed simulations that computation time was becoming something of an an-
noyance I merged routines of the two phases of demodulation into one function.
As this does not increase the computation necessary for a single demodulated

output and cuts in half the computation necessary for two demodulated outputs,
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it seemed a prudent step.

function [ASI,ASQ] = asiq(f,phi,varargin)

% [ASI,ASQ] = asiq(f,phi,varargin)

% ASI sin demodulation with mixing angle phi

% ASQ cos demodulation with mixing angle phi

% rf = set in this file

% lengths and other parameters set in tw.m

% £ = frequency for analysis

% phi = mixing angle (degrees) between optimum I and Q
% varargin = parameters passed on to tw2.m

% note when calling for demodulated outputs you can only
% request one output field at a time.

% To study Simple FP call functions fpi and fpq

% To study Full LHO4k call functions asi and asq

rf = 24481323;

p = (pi / 180) * phi;
[alpha,gamma] = ag2(f,rf,varargin{:});
ASI = alpha.*sin(p) + gamma.*(ixcos(p));

ASQ = alpha.*cos(p) - gamma.*(i*sin(p));

return;

B.5 Frame Data Analysis

Frame data from the S3 run was obtained for the channel H1:LSC-AS_1FSR

during a long lock stretch. This data was stored locally on the hard drive and
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analyzed.

B.5.1 Reading in the Data

The time series was converted into frequency representation by use of the MAT-
LAB digital Fourier transform function as implemented in the routine “datamas-
sage.m”. As the data was in frame format (specific to LIGO) a LIGO specific
tool was used to read out the data. This was a compiled mexglx file obtained
from the LIGO-Tools repository for specifically this purpose, reading frame file
data into MATLAB. The help header of that routine is included here:

% FREXTRACT - Read time-series data from a frame file

% by B. Mours LAPP Oct 22, 2002

b

% This Matlab mex file extract from a frame file the data for
% one ADC channel (this is for Matlab version 5 and later)

b

% The input arguments are:

% 1) file name

% 2) ADC or PROC name

% 3) (optional) first frame (default= first frame in the file)
% 4) (optional) number of frame (default = 1 Frames)

yA

% Returned matlab data:

% 1) ADC or PROC data (time serie)

% 2) (optional) time values relative to the first data point
% 3) (optional) frequency values (for FFT’s)

% 4) (optional) GPS starting time (in second.nanosec)
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% 5) (optional) starting time as a string
% 6) (optional) ADC comment as a string
% 7) (optional) ADC unit as a string

% 8) (optional) additional info: it is a 9 words vector which

% content:crate #, channel#, nBits#, bias, slope,
% sampleRate, timeOffset(S.N), fShift, overRange
% A1l this values are stored as double

And here is my routine for reading in and manipulating the data as requested

prior to analysis.

function varargout = datamassage(varargin)

% datamassage -- read data from a local repository on the HD
b uses standard LIGOTools Fr package tool ’frextract’

% by William Butler, Jan 15th, 2004.

b

% The input arguments are:

% 1) (optional) number of averages to get, default is 1

% 2) (optional) starting frame, default is 1 (first file in the
A directory)

% 3) (optional) number of frames per average, default is 1

% 4) (optional) baddata threshold, default -1e9 (i.e. none)
% 5) (optional) array of frames to skip must be of

A length = argument 1

% default is zeros(l,number of frames to get)
% 6) (optional) array of output strings characterizing data
b

% The output arguments are:
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% 1) time series data

% 2) (optional) time values relative to the first data point
% 3) (optional) frequency values (for FFT’s)

% 4) (optional) FFT1

% 5) (optional) phase

directory = ’/home/butler/RDS/’;

channel = ’H1:LSC-AS_1FSR’;
start =1;

num =1;

NumPerFFT = 1;

Thresh = -1e9;

massaged = 0;

total = 0;

% default values set, now read in the optional parameters
if nargin > 0
num = varargin{1i};
if nargin > 1
start = varargin{2};
if nargin > 2
NumPerFFT = varargin{3};
if nargin > 3
Thresh = varargin{4};
end;
end;
end;

end;
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if nargin > 4

skip = varargin{5};

else

skip = zeros(1,num);

end;

% list all the files in the directory, assume all frame files
files = dir(directory);

% win is a parameter used to downsample the time series info to
% avoid buffer overflow from too many data points

win = num - start + 1;

stop = num + start - 1;

data = [];
time = [];
fftd = 0;
fftl = 0;
phase = 0;

disp(’starting ’);
for k = start:stop
% start averaging
if skip(k-start+1)

continue; % unless it’s a skipped frame

end;

tmpl = [1;
tmp2 = [1;
tmp3 = [1;

for 1 = 1:NumPerFFT
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% read in as many files as needed per FFT
s = sprintf(’%sis’,directory,files(k+1+1) .name) ;

[tmpa,tmpb,tmpc] = frextract(s,channel);

tmpl = [tmpl;tmpal;
tmp2 = [tmp2;tmpb+(16*(1-1))];
tmp3 = [tmp3;

(tmpc + (1-1)*(tmpc(2)+tmpc(length(tmpc)))) ./NumPerFFT];

end;
avg = mean(tmpl);
while min(tmpl) < Thresh

% set points below threshold to the average value

massaged = massaged + 1;

[m,i] = min(tmpl);

tmpl(i) = avg;

avg = mean(tmpl);

end;

tmp = tmpl .* (0.5 * (l-cos(2*pi*tmp2./16)));
% Hanning window, no overlap

fftd = fft(tmp);

fft1 = fftl + abs(fftd);

phase = phase + angle(fftd);

total total + length(tmp2);
if (win > 1)
% if downsampling is necessary, do it

filtfilt(ones(1,win)/win,1,tmpl);

tmpl

tmpl = downsample(tmpl,win);
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data = [data;tmpl];

time [time;downsample (tmp2+ (k-1) *NumPerFFT*16 ,win)];
else

% if not, don’t

data = [data;tmpl];

time [time;tmp2+(k-1) *16*NumPerFFT] ;
end;
if rem(k*100,stop) ==
% display a progress report to the screen
s = sprintf (’\b\b\b\b\b\b\b\b\b\b\b%3d %% done’,
k*100/stop) ;
disp(s);
% put up a progress plot
hfigure(9) ;semilogy (tmp3,fft1(1:1length(tmp3))./k);grid;
%s = sprintf(’%d Averages’,k - start + 1); title(s);

end;

% average complete, continue as desired

end;
freq = tmp3;
fft1 = £fft1 ./ (num - sum(skip));

phase = phase ./ (num - sum(skip));

% place output in output arguments

varargout{1} = data;
varargout{2} = time;
varargout{3} = freq;
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varargout{4} = fft1(l:length(freq));

varargout{5} = phase(1l:length(freq));

% display a summary on the screen

s = sprintf (’\b\b\b\b\b\b\b\b\b\b\b
Number of Averages Taken = %d \n
Number of Frames Per Average = %d’,
num - sum(skip) ,NumPerFFT);

disp(s);

% record input parameters for optional output

string0 = sprintf(’Number of Averages Taken = %d’,

num - sum(skip));

stringl = sprintf(’Starting Frame = %d’,start);

string2 = sprintf(’Number of Frames Per Average = %d’,NumPerFFT);

string3 = sprintf(’Threshold Level = %d’,Thresh);

% continue the summary on the screen

s = sprintf(’Total Data Points = %d\n
Massaged Data Points = %d\n
Fraction of points lost = %3.2g %%’,
total,massaged, 100*massaged/total) ;

disp(s)

% record the statistics for optional output

string4 = sprintf(’Total Data Points = %d’,total);

stringd = sprintf(’Massaged Data Points = %d’,massaged);

string6 = sprintf(’Fraction of points lost = %3.2g %%’,

100*massaged/total) ;

% move recorded parameters and statistics to optional
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% output argument
varargout{6} = {string0;stringl;string2;string3;
string4;string5;string6};

return;

B.5.2 Pre-analysis Manipulation

Line noise at multiples of 60 Hz was anticipated and observed, so these lines
were removed. This was done with two routines. The first takes a frequency
array as an input (and an optional second input) and locates the multiples of 60
Hz (or of the second input) which are located in the frequency array. The second
function takes a data set and its corresponding frequency array and masks out

data spikes at multiples of 60 Hz.

function linemask = linemask(f,varargin)

% linemask = linemask(f,varargin)

% linemask(f,f0) returns frequencies of all multiples of
% £0 in the frequency range f.

% Usefull for creation of a frequency mask

% £O0 is an OPTIONAL argument, default is just 60 Hz,

% optionally an array of frequencys (eg [16;60])

% filter = 1 - gauss(f,linemask);

% filterdata = data .* filter

if nargin > 1

f0 = varargin{i};
else

£0

60;
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end;

temp = [];
for kk = 1:length(£0)
bottom = fix(f(1) / f0(kk));
top = fix(f(length(f)) / f0(kk));

donethat = [];
for jj = bottom:top
if length(temp) > 0
donethat = find(temp == fO(kk)*jj);
end;
if length(donethat) > 0
continue;
end;
temp = [temp;f0(kk)*jjl;
end;
end;

temp = sort(temp);

linemask = temp;

return;

This function calls the last function as well as making use of the Gaussian

function defined previously.

function maskdata = maskdata(f,d,varargin)

% maskdata(f,d,varargin)
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% remove the 60 Hz multiple line noise and replace
% with data mean value optional input is fO an array
% of the base frequencies for which you

% wish to remove the multiples (eg [16;60])

if nargin > 2

mfreq = linemask(f,varargin{1});

else

mfreq = linemask(f);
end;

mask = gauss(f,mfreq,0.2);
maskdata = d.*(1-mask);
avg = mean(maskdata);

maskdata = maskdata + avg.*mask;

return;

B.5.3 Data Analysis

Primarily the data fitting is done with the use of the MATLAB Isqcurvefit rou-
tine. This function is used as the first parameter for Isqcurvefit. The section
for hard coding specific values was used for changing which parameters were fit
with a relative phase and for hard coding specific magnitude values to generate

x? plots.

function varargout = FSR_datafit(varargin)

% FSR_datafit (theory for H1:LSC-AS_1FSR channel data):
% Alxexp(i*Alphi*pi/180) + A2xexp(i*A2phi*pi/180)*f

% + A3xexp(i*A3phixpi/180)*theory(f)
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% + Adxexp(i*A4phix*pi/180)*theory2(f)

% = A + Bxf + Cstheory(f) + D*theory2(f) + ...

% inputs:

% 1) [[A1,A1phil;[A2,A2phi]; [A3,A3phil; [A4,Adphil;...]

% 2) [frequency;theory;theory2;...] must be 1 x N arrays,
% theory, theory2, ... are optional
% input data is formatted strangely to allow for easy use in
% matlab function lsqcurvefit

% The first parameters are Magnitude and Phase (in degrees)
h of theory arguments (formatted this way to allow for

% real input parameters to generate complex data)

% The second parameters are the theory arguments themselves
% If the length of input #1 < 1 + length input #2 then the
b extra theories are fit with Magnitude 1 and Phase 0

% outputs:

% 1) absolute magnitude of the resulting function

%»if nargin "= 2
% error (’Incorrect number of inputs’);

%end;

A = varargin{1}(:,1);

B

A(2:1ength(A));
A

A(1);

Aphi = varargin{1}(:,2) .x (i*pi/180);

Bphi = Aphi(2:length(Aphi));

Aphi = Aphi(1);
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theory = varargin{2}(:,:);

B = [B;ones(size(theory,1) - length(B),1)];

Bphi = [Bphi;zeros(size(theory,1) - length(Bphi),1)];
%[A,Aphi.*(180/(i*pi))] % debug output
%[B,Bphi.*(180/(i*pi))] % debug output

Tt oo oo o oo o T o o Jo o Jo T o T o T T o T o o oo o oo o o o o o o oo o o o o T T o T o 1o o o o

% hard code specific values here

Aphi = 0;
Bphi(1) = 0;
Bphi(3) = 0;
Bphi(4) = 0;
if nargin == 3

B(3) = varargin{3}(1);
B(4) = varargin{3}(2);

end;
%B(3) = 1.5;
%B(4) = 0.5;

Tt oo oo oo o o o o oo o o o o o Jo o T o T T T T o oo o oo o oo o o o oo o Jo o Jo o T T o o

result = Axexp(Aphi) + transpose(B.*exp(Bphi))x*theory;

result = abs(result);
varargout{1} = result;

return;

Here is a routine written simply to calculate the cross correlation between

two different fit parameters. It uses the previous routine as written (specifically
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passing the hard coded values as optional parameters to the FSR_datafit func-
tion). This is particularly useful in the context of a contour plot:
[xx,yy,2z] = test(f,ntsbi,ntdmi,mi,d2,200);

contour(xx,yy,zz);

function [xx,yy,zz] = test(f,ntsbi,ntdmi,mi,d2,varargin)

if nargin > 6

n = varargin{1};
else
n = 20;
end;
x = 0:2/n:2;
y = 0:2/n:2;
for ii=1:n
xx(1+ii,:) = x(1,:);
yy(1+ii, ) = y(1,:);

end;
yy = transpose(yy);

clear ii

sig = 5.9433;

z2 = [[400,0];[0,0];[40,113];[0,0];[1,0]1];
options = optimset;

1b = [1;

ub = [];
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for ii = 1:n+1
for jj = 1:n+1
[x,resnorm,resid] =
1sqcurvefit (@FSR_datafit,
z2,
[f;ntsbi;abs(ntdmi) ;mil],d2,
(,0,
options,
[xx(ii,jj),yy(ii,jj)1);
chi2 = sum(abs(resid.*resid))/(sig) "2;
zz(ii,jj) = chi2;
end;

end;

return;

B.5.4 Example Data Analysis

Here is an example of data analysis from reading in through fitting. Comments

in command line MATLAB are distinguished the same way as in m-files.

% start in the frame analysis directory

[d,t,fq,fd,phase,str] = datamassage(2800,1,1,-900);

clear d t phase

fq = transpose(fq);fd = transpose(fd);
il = index(fq,200);
i2 = index(£fq,800);
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f

fq(il:i2);
£fd(i1:i2);

d
dl = maskdata(f,d);
% switch to the matrix method directory
cd ../matrix_method_dir
tsbi = asiq(f+37e3,0,[1;zero0s(22,1)],0.1,0.110,0);
% modify parameters as needed
ntsbi = tsbi ./ max(abs(tsbi));
% continue as necessary to obtain whatever theory curves
% are needed for the fit
% return to frame analysis directory
cd ../frame_analysis_dir
x0 = [[477,0];[-0.07,0];[40,113]1];
[x,rn,resid] = 1lsqcurvefit(@FSR_datafit,x0, [f;ntsbi],dl);
d2 = abs(dl - x(2,1) .xf - x(3,1)*exp(i*pi*x(3,2)/180) .*ntsbi);
sig = std(d2);

chi2 = sum(abs(resid.*resid))/(sig) "2



