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1 Introduction

In order to more fully understand the response of the power recycled interferometer I have
derived the equations for the electric field inside the interferometer. With these equations
and some simplifying assumptions one can investigate the response of the interferometer to
various stimuli.

When dealing with reflection and transmission from real mirrors there can be some con-
fusion on how to deal with relative phases acquired during the light/mirror interaction. In
some of the LIGO related documents (e.g. [1], [2], [3]) the convention used is to give reflec-
tion from one side of the mirror as a negative coefficient and reflection from the other as
a positive coefficient. However, most optics documentation (e.g. [4], [5]) use a convention
where the reflection is the same from either side of the optic as is the transmission, but the
transmission is given an additional factor if i. Siegman [5] has a nice discussion about the
two conventions in Chapter 11, page 405-6 of his book.

For all future analysis of laser cavities and interferometers in this book, how-
ever, we will arbitrarily choose the complex symmetric form S = [r,it,it, r],
with r and ¢ purely real, as the scattering matrix form to describe all mirrors
and beam-splitters. This arbitrary choice will make no difference in any of the
physical conclusions we reach about laser devices. It seems easier, however, to
remember that transmission coefficients always have a factor of ¢ associated with
them than to remember which side of each mirror in a laser system is the +r and
which is the -r side. [Siegman [5] page 406]

I will also use the Siegman convention as its use of symmetry does tend to make the math
easier to follow. The physics is the same independent of convention. In fact the LIGO Length
Sensing and Control design [6] is convention independent. I also use the convention that a
propagation phase is given by e~ and not €%, this is arbitrary but consistency is necessary.

2 Simple Fabry-Perot
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Figure 1: Simple Fabry-Perot Cavity



In the case of a generic two mirror Fabry-Perot Cavity as shown in Fig. 1 the circulating
field can be represented as an infinite summation.

Eeir = it1 Eg + riroe™ ity Bo + rirse”* it By + rirde”*?it, B + - -- (1)
This equals:
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where ¢ is the phase collected in one round trip through the cavity (nominally “2L with L
= length of the cavity).

NOTE: The circulating field is given in terms of the E field traveling in the direction of
the incident beam at mirror 1. There is a counter propagating field given by rqe *?E,;, at
mirror 1. This field is not used in these calculations.

So the cavity field equations are:

Er = TlE() + itlrze_i¢Ecir
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which combine to give the field equations for a Fabry-Perot cavity in terms of the incident
field E()I
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and the power built up in the cavity can be obtained by taking the absolute magnitude
squared of E_;.. Thus the “power build up factor” is:
ECZ"I” 2 _ t% (6)
Ey | 1—2rrycos(¢) +rir3
A cavity is said to be “resonant” when the phase of the light obtained while traveling through
the cavity interferes constructively with the phase of the light incident on the cavity. That is
to say, a cavity is resonant when ¢ is a value providing equation 6 with the lowest denominator
and thus the highest build up factor. Thus a Fabry-Perot cavity is resonant when cos(¢) = 1
and:

Ecz'r 2 _ t% (7)
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A cavity is said to be “anti-resonant” when the phase is such that the denominator is largest,
giving the smallest build up factor.
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3 Interferometer with Fabry-Perot Arms
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Figure 2: Simple Michelson Interferometer with Fabry-Perot Arms

Figure 2 can be simplified to Fig. 3 by treating the arm cavities as mirrors with complex
reflectance given by Eq.(3) and transmission given by Eq.(5) divided by i as per the decided
convention. Thus the Fabry-Perot arms X and Y are replaced with mirrors X and Y with
complex reflectance r, and ry.

Here the input light is specified as F;, with the phase defined as 0 at the Beam-Splitter
(BS). The light will be split at the beam-splitter and reflect off the mirrors X and Y, return
and interfere at the beam-splitter. If we define the distance between the beam-splitter and
the Y mirror as [, and the distance from the beam-splitter and the X mirror as [, then the
phases picked up during one round trip are e “c%s or e “c% respectively. Therefore the



Figure 3: Simple Michelson Interferometer

fields for the light returning to the BS from the X,Y mirrors are:

from Y ryrbse_i%% FE;,
from X ryitpse Ve 2= By,
The fields will interfere, sending some light back toward the input beam in the symmetric

direction (the “reflected beam” E,) and some in the anti-symmetric direction (the “dark
port” Ep).
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Note: Special attention has and will be paid to keeping the reflection and transmission
coefficients in the proper order so that the general equations which result may be used with
matrix coefficients (useful when mixing fields of different frequencies).

4 Power Recycled Interferometer

Now, for the Power Recycled Interferometer, a mirror is placed at the symmetric port to
reflect most of the light being sent toward the laser, Eq.(10), back into the interferometer.
This can be thought of as a simple Fabry-Perot cavity with a complex back mirror formed
from the interferometer with reflection coefficient given by Eq.(10) and transmission coeffi-
cient given by Eq.(9) divided by i. Fields of interest are the built up field incident upon the
beam-splitter (Epgrys) and the field exiting the “dark” port (Ep). The field inside the cavity
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Figure 4: Power Recycled Michelson Interferometer

(Epru) is given by using Eq.(4) with 7y specified by Eq.(10) and r; given by the recycling
mirror with the “cavity” length specified as the distance between the recycling mirror and
the beam-splitter (I;;,)!. The “dark” port field (Ep) is given by combining Egs.(5, 9) in a
similar fashion. Thus:

Eprv 1trm,
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Now we do a simple variable redefinition. Since the [;, distance is common to both arms
of the interferometer we add it to [, and [/, and redefine the [, [, distances.
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The formulas now become:

Eprv 1 (11)
- W W
EO 1— Trm(rbsryrbse_zzmy - tbsrwtbse_zzﬂx)
— ¥ ) jW .
Ep (_trm) (tbsryrbs6 ey + ThsTrlps€ ‘e 2L )GZ clin (12)
= e e
EO 1-— Trm(rbsryrbse e Ay tbsrwtbse be 2lm)
and for completeness I also give the field returning to the laser:
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!The distance between the Recycling Mirror (RM) and the Beam-Splitter (BS) is actually the same for
both Epgy and the counter propagating beam.



At this point one can define a Power Recycled Michelson Interferometer with Fabry-Perot
Arms by using Eq.(3) for 7, and r,. I will not do this substitution in general form as it
provides ample opportunity for error, makes the equations even less understandable and
provides no further insight into the operation of the interferometer.

5 A Perfect Interferometer

5.1 Common and Differential cavity lengths of the PRM

In order to obtain a feel for how the interferometer is locked some simplifying assumptions
are needed. This will allow us to check that the calculations performed in sections 2 through
4 are correct as well as help us to understand how certain feedback signals are obtained and
how to best feed them back to the interferometer. In sections 2 through 4 I took special
care to maintain the proper order of operations for reflection and transmission through the
optics. In this section I will assume that the mode matching from cavity to cavity is perfect
and therefore will not consider scattering into higher order modes. Thus the reflection and
transmission coefficients are scalars and therefore commute. Also for simplification I will
consider the beam-splitter to be a perfect optic (i.e. 7y = tps = %) and that the arms are
identical (i.e. r, =1y = r,). Thus Eqgs.( 11, 12) become:
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At this point the almost sinusoidal form of these equations becomes obvious, the complication
being that I, # [,. Defining the new variables |, = [, + [, and [, = [, — [, and performing
the algebra gives:

e | TSy = =il (pmi%ln | =i%ln)

- e_i%lf’(Zcos(%lm)) (17)
e i _ =iy = =il (emi%in _ omi%in)

- e_i%lf’(—%sin(%lm)) (18)



This allows for the description of the fields in terms of the Common (l,) and Differential®
() cavity lengths. Combining Eq.(14) with Eq.(18) as well as combining Eq.(15) with
Eqs.(17, 18) gives:

Eprm _ 1rm (19)
E, 1+ irpmree e sin(2l,)
Ep —tymrae tep—lin) cos(2lm)

Ty — 20
E, 1+ irpmrae e sin(2y,) (20)

Which can be multiplied by their corresponding complex conjugate to give the power at that
location as a fraction of the incident power on the cavity.

E 2 2
‘ PRM|" _ z o)
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Epl _ e ) -
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5.2 Resonance Conditions

In this section I look at the resonance conditions for the whole interferometer for both the
carrier and the first order phase modulated sidebands used to mix with the carrier to give the
feedback to keep the arms locked. Since the Pound-Drever-Hall locking technique requires
that the carrier be resonant in the cavity while the sidebands are not, this is the desired
resonance condition for the arm cavities. Referencing section 2 these conditions are specified
in Eqs.(4 - 8). Thus for resonance we let e™* — 1 or cos(¢) — 1. However we want the
sidebands to be almost anti-resonant® which means that e=* — —1. This means that r,
from Eq.(3) can be approximated as -1 for a resonant carrier and 1 for the sidebands when
numerical values from Table 1 are used. Giving us the arm resonance approximations:

Carrier: r,~ —1

Sideband : 7, &1 (23)

Now of course in order for the sidebands to be incident upon the arm cavities at all, they
must be resonant in the power recycled Michelson. However, in order to provide maximum
signal for the feedback to the arms we want the maximum amount of sideband light to leak
out of the dark port. Thus taking a look at section 3 along with the assumptions for this
section we can see that:

E 1 e _iw
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2A small [ is used to denote PRM lengths as a large L is reserved for the arm cavity lengths, which is
not dealt with at this time.
31f the first order sidebands are exactly anti-resonant then all the even order sidebands are resonant.



so as r, — 1 for the sidebands
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Now for maximum transmission of sideband light we want ‘g—ﬂ — trm- This gives a restric-
tion on the static differential PRM length [,,, which is commonly referred to as the PRM
“asymmetry”. Giving us our dark port resonance condition of

W

Carrier :  sin(2l,) =1  cos(—ln) =0
c
Sideband :  sin(%ly,) = Trm cos(%lm) & b (24)

This leaves the resonance condition for the power recycled Michelson itself which are
obvious by combining Eqgs.(19 or 21) with Eqgs.(23 and 24).

Carrier : sin(%lp) ~ 1 Sideband : sin(“l,) ~ —1 With Arms Resonant

Carrier : sin(ﬂlp) ~ —1 Sideband : sin(“l,) ~ —1 With Arms NOT Resonant (25)
c

Note the 180° phase change in Power Recycled Michelson resonance condition when the arms
are unlocked vs. when they are locked. As locking the Full IFO requires first locking the
PRM without the arms (so that light is then incident upon the arms) and THEN locking
the arms this requires inverting the [/, feedback signal the moment the arms resonate. This
creates a need for some good electronics and some excellent programming on the part of
those working on getting the instrument functioning.

5.3 Buildup Factors

When I take the nominal parameters for the LIGO Washington 2k interferometer specified
in Table 1 and use them in Eqs.(6, 21 and 22) along with the resonance conditions specified
in section 5.2 I get the buildup factors shown in Table 2.



| Parameter | Value |

Laser Power in TE00 Mode 6 (W)
Resonant SB frequency 29.50588 (MHz)
Resonant SB modulation depth 0.45
Distance RM to BS 3.022 (m)
Distance RM to in-line ITM 9.528 (m)
Distance RM to off-line ITM 9.828 (m)

Note: The dark port resonance conditions were used
instead of these distances and frequencies
due to the extreme length sensitivity involved

BS Reflectance 0.5
BS Transmittance 0.5
RM Reflectance 0.969
RM Transmittance 0.028
RM Loss le-3
ITM Reflectance 0.971825
ITM Transmittance 0.0281
ITM Loss 75e-6
ETM Reflectance 0.999925
ETM Transmittance 5e-6
ETM Loss '70e-6

Note: These are Power coefficients
for the amplitude coefficients take the square root

Table 1: Nominal Parameters for WA 2k Interferometer

H Field Frequency ‘ Field ‘ Build-up H
Arms: carrier %”;: ? 138.9
sideband %Z 0.007

Remembering that the buildup factor for the arm cavities
is with respect to the field incident upon the arm cavity

Bl = 2 | Eprut

PRM: carrier ‘E%% ’ 114.7
sideband E—’]’;(’;M ‘2 29.1
Dark Port: carrier | [22[° 0.000
sideband g—f}’ ? 0.816

Table 2: Build-up Factors for Carrier and Resonant Sidebands in a Perfect Recycled Inter-
ferometer



References

1]

2]

Peter Kurt Fritschel. Techniques for Laser Interferometer Gravitational Wave Detectors.
PhD thesis, Massachusetts Institute of Technology, 1992.

Joseph Michael Kovalik. A Study of Thermal Noise. PhD thesis, Massachusetts Institute
of Technology, 1994.

Martin W. Regehr. Signal Extraction and Control for an Interferometric Gravitational
Wave Detector. PhD thesis, California Institute of Technology, 1995.

Baha E.A. Saleh and M.C. Teich. Fundamentals of Photonics. Wiley-Interscience, John
Wiley & Sons, INC., 1991. ISBN = 0-471-83965-5.

Anthony E. Siegman. LASERS. University Science Books, 55D Gate Five Road Sausalito,
California 94965, 1986.

ISC team. Length sensing & control subsystem final design. Technical report, Caltech,
July 1998. LIGO Internal #: T980068-00-D.

11



