Due in P142 homework locker 4pm, Friday, October 4, 2013

Feel free to discuss the problems with me and/or each other. Each student must write up his/her own solutions separately.

Unless otherwise indicated, problems are from Ohanian and Markert, Third Edition, Volume 2.

- 1. Calculate the curl of \vec{v} , $(\vec{\nabla} \times \vec{v})$ for the following vector functions:
 - (a) $\overrightarrow{v} = x^2 \hat{x} + 3xz^2 \hat{y} 2xz\hat{z}$
 - (b) $\overrightarrow{v} = xy\hat{x} + 2yz^2\hat{y} + 3xz\hat{z}$
 - $\begin{array}{cccc} (c) \overrightarrow{v} &=& y^2 \hat{x} &+& (2xy+z^2)\hat{y} &-& 2yz\hat{z} \end{array}$
- 2. The electric field \vec{E} has zero curl. We will see that \vec{E} can be written as the gradient of a scalar function called the electrostatic potential; from this follows automatically that curl of \vec{E} is zero. Show that the gradient of any scalar function has zero curl. That is, use the definitions of gradient and curl to show that

$$\vec{\nabla} \times (\vec{\nabla} f) = 0$$

for a scalar function $f(\vec{r})$.

3. (20 points) Demonstrate the path independence of the gradient integral for the function $f(x) = xy^2$ by computing

$$\int_a^b \vec{\nabla} f \cdot \vec{dl}$$

for paths I and II described below. Take a=(0,0,0) and b=(2,1,0).

Path I: $a \to (2,0,0)$ along the x axis, then $(2,0,0) \to b$ parallel to the y axis. Path II: Straight line path from a to b. (Hint: There is a relation between dx and dy on this path.)

- 4. O&M chapter 23, problem 31.
- 5. O&M chapter 23, problem 32.