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Today in Physics 217: multipole expansion

Multipole expansions
Electric multipoles and their moments
• Monopole and dipole, in detail
• Quadrupole, octupole, …

Example use of multipole expansion as approximate 
solution to potential from a charge distribution (Griffiths 
problem 3.26)
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Solving the Laplace and Poisson equations by 
sleight of hand

The guaranteed uniqueness of solutions has spawned several creative 
ways to solve the Laplace and Poisson equations for the electric potential. 
We will treat three of them in this class:

Method of images (9 October).
Very powerful technique for solving electrostatics problems involving 
charges and conductors.
Separation of variables (11-18 October) 
Perhaps the most useful technique for solving partial differential 
equations. You’ll be using it frequently in quantum mechanics too. 
Multipole expansion (today)
Fermi used to say, “When in doubt, expand in a power series.” This 
provides another fruitful way to approach problems not immediately 
accessible by other means. 
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Multipole expansions

Suppose we have a known charge distribution for which we 
want to know the potential or field outside the region where 
the charges are. If the distribution were symmetrical enough 
we could find the answer by several means:

direct calculation using Gauss’ Law;
direct calculation Coulomb’s Law;
solution of the Laplace equation, using the charge 
distribution for boundary conditions.

But even when ρ is symmetrical this can be a lot of work. 
Moreover, it may give more precise information on the 
potential or field than is actually needed. 
Consider instead a direct calculation combined with a series 
expansion…
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Multipole expansions (continued)

If the reference point for potential is 
(and can be) at infinity, then

If point P is far away from the charge 
distribution, then 
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Multipole expansions (continued)

So consider                          But first recall this infinite series:

where            and s is any real number. (This is one form of the 
binomial theorem.) Then
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Multipole expansions (continued)
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Multipole expansions (continued)

Collect terms with the same powers of          and ignore 
higher powers than               for now:  
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Multipole expansions (continued)

Thus, ( )
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Electric multipoles

This is a useful approximation scheme, the more useful the 
further away point P is from the charges within V, because 
one can neglect the higher-order terms in the series after the 
desired accuracy is achieved.

The monopole term:

If a charge distribution has a net total charge, it will tend 
to look like a monopole (point charge) from large 
distances.
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Electric multipoles

The dipole term:

where                             is called the dipole moment.

As usual, for surface, line and point charges, we have

The simplest dipole has two point charges,
separated by a displacement vector d that points from –q
to +q.  
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The dipole potential and field

Dipole moment is defined the same way in cgs and MKS. 
Expressions for potential and field still need a factor of
to convert from cgs to MKS. 

-q

q
d

θ r

P
dipole 2 2

dipole dipole

dipole dipole

3 3 3

cos cos

1 ˆˆ

2 cos sin 1ˆˆ

qd p
V

r r
V

V V
r r

p p
r r r

θ θ

θ

θ θ

= =

= −

∂ ∂ 
= − +  ∂ ∂ 

= + ∝

E

r θ

r θ

—

01 4πε



21 October 2002 Physics 217, Fall 2002 12

Quadrupole, octupole,…

A simple way to envision what the higher-order multipoles 
“look like” is to construct them from the lower-order ones: 
take two of the lower-order ones, invert one, and place the 
two in close proximity. 

The monopole moment (charge) is a scalar. The dipole 
moment is a vector. Higher order multipole moments are 
represented by higher-order tensors: the quadrupole moment 
is a second-rank tensor, etc.
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Example of the use of multipole expansions

Griffiths problem 3.26: A sphere of radius R, centered at the 
origin, carries charge density 

where k is a constant and r and θ are the usual spherical 
coordinates. Find the approximate potential for points on the 
z axis, far from the sphere. 
Scheme: start by calculating the monopole term. If it’s not 
zero, then it’s a good approximation to the potential, since it’s 
larger by r/r’ than the dipole term. If it is zero, move on to 
the dipole term. And so on…

( ) ( )2, 2 sin ,Rr k R r
r

ρ θ θ= −



21 October 2002 Physics 217, Fall 2002 14

Example (continued)

Monopole moment (charge):

No net charge, so move on to the dipole term.
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Example (continued)

Dipole moment, or lack thereof:
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Example (continued)

Quadrupole “moment” (simple only because this is 
spherical):
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Example (continued)

Thus, for a point way up the z axis, 
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