Today in Physics 217: electric potential

 Finish Friday’s discussion
of the field from a
uniformly-charged sphere,
and the gravitational
analogue of Gauss’ Law.

4 Electric potential

d Example: a field and its
potential

4 Poisson’s and Laplace’s
equations
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Electric potential

BecauseV x E = 0 in electrostatics, we can express E as the
gradient of a scalar function:

E=-VV

where of course V is called the electric scalar potential. By the

gradient theorem, we can write
b

b

~[E-dl=[(VV)-dl=V(b)-V(a)
a a

Suppose we have agreed upon a standard reference point,

O; then b b O
~[E-dl=[(VV)-dl+ [(VV)-dl
a O a
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Electric potential (continued)

This leads us to an integral definition of V:

D
V(P):—jE-dl
@

Properties of the electric potential:

 Arbitrariness. An arbitrary constant can be added to the
potential without changing the field (which, after all, is
the fundamental quantity). To each constant corresponds
a potential reference point. Thus there is always a large
selection of appropriate reference points in any
electrostatics problem.
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Electric potential (continued)

d Convention: take O to lie at infinity, unless the charge
distribution itself extends to infinity. Just remember that
you can actually put the reference point anywhere that
doesn’t lead to an infinite result for the potential;
sometimes you will find reference points not at infinity
that will be more convenient for your calculation.

d Significance. The magnitude of the electric potential
therefore has no physical significance; only differences in
potential do.

d Superposition. The electric potential superposes. If E =
Ei+Ey +..., then 5

P
Ve—[Ey-dl-[Ey-dl—..=Vi+Vp+...
@, @,
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Electric potential (continued)

Thus at a given point P, one could compute Vs due to

different parts of a charge distribution, and add the
results to get the real thing. This may seem trivial until we
find, later this week, that the closely-related electrostatic
potential energy does not superpose.

From point charges and superposition we can induce the
potential from a continuous charge distribution:

Vi :—?E'dl 5o >—jEdr’:&
O

r

N P ' '
<« Q \ p(r')dt
=1 O

23 September 2002 Physics 217, Fall 2002 5



Electric potential (continued)

1 Units. In CGS, it’s the statvolt:

dvnecm er
statvolt = Y _ 18

esu esu
In MKS, it’s the volt:

volt =

Ntm joule

coul coul
d Correspondence: 1 statvolt <> 299.792458 volts

23 September 2002 Physics 217, Fall 2002



Electric potential (continued)

J What it’s good for. It's often easier to calculate V, and
take its gradient to find E, than to calculate E directly.
Reasons:

* Vis a scalar; no vector addition to get it.

* There are many situations in nature in which V can be
regarded as constant over a region in space near where
one would like to know E. The solution of V for space
between the constant-V (“equipotential”) locations and
the reference point - the process of which is called a
boundary-value problem - can be shown to be unique.
Finding V by boundary-value solution, and then
calculating E, is in these cases usually much easier
than calculating E directly.
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Example

Griffiths problem 2.20
One of these is an impossible electrostatic field. Which one?

a. E :k[(xy)fc+(2yz)ﬁ+(3xz)2}
b. E = k[(yz)fc+(2xy+zz)3}+(2yz)2}

Here, k is a constant with the appropriate units. For the
possible one, find the potential, using the origin as your
reference point. Check your answer by computing-VV.

First take the curl of each function:
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Example (continued)

0 0 ~ 0 0 ~
: E = 2 — ——(3
a. Vx k[ y(3xz) ( yz)]x+k(az(xy) 6x( xz)jy
(i 2yz) - )]izk(—nyc—?)zyf—xi);tO
Ox

b. VXE = k(% Zyz —— 2xy+z )jfc+k(§(y2)_i(2yz)jy

ox
[ax(zwzz) (7)o

The first one can’t, but the second one can.
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Example (continued)

Integrate E to get V: choose path for convenience since the
result is path-independent.

(0,0,0) > (x,0,0) > (x,y,O) - (x,y,z)

E.dlzkyzdxzo E-dl:Zk(yz)dz
(x,0,0) (y.2) 0 [ Z 142
-[(0,0,0) E.-dl =0 j(x,y,O) E-dl = IO 2k(yz)dz = kyz

E-dl = k(2xy ¥ zz)dy = 2kxydy

j(x,y,O)

(Y _ 2
oo El= jo 2kxydy = kxy
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Example (continued)

Thus
V(x,y,z)= O—kxy2 —ky22 = —k(xy2 + yzz)
Check
VY :—%&—%yf—%z = k(i (20 + 22 )i+ (22)2)

=FE
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Differential equations for the electric potential

To get V without referring first to E:

V-E =4np
V.(-VV)=
V2V = —4np

Poisson’s equation

In regions where there are no electric charges,

V2V =0

Laplace’s equation

These equations, plus boundary conditions, provide the
boundary-value-problem way to calculate V.
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