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Today in Physics 217: electric potential

� Finish Friday’s discussion 
of the field from a 
uniformly-charged sphere, 
and the gravitational 
analogue of Gauss’ Law.

� Electric potential
� Example: a field and its 

potential
� Poisson’s and Laplace’s 

equations
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Electric potential

Because                in electrostatics, we can express E as the 
gradient of a scalar function:

where of course V is called the electric scalar potential. By the 
gradient theorem, we can write

Suppose we have agreed upon a standard reference point, 
O; then

0× =E—

V= −E —

( ) ( ) ( )d V d V b V a− ⋅ = ⋅ = −∫ ∫
b b

a a
E l l—

( ) ( )d V dl V dl− ⋅ = ⋅ + ⋅∫ ∫ ∫
b b

a a
E l — —

O

O
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Electric potential (continued)

This leads us to an integral definition of V:

Properties of the electric potential:
� Arbitrariness. An arbitrary constant can be added to the 

potential without changing the field (which, after all, is 
the fundamental quantity). To each constant corresponds 
a potential reference point. Thus there is always a large 
selection of appropriate reference points in any 
electrostatics problem. 

( )V d= − ⋅∫ E l
P

O

P
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Electric potential (continued)

� Convention: take O to lie at infinity, unless the charge 
distribution itself extends to infinity. Just remember that 
you can actually put the reference point anywhere that 
doesn’t lead to an infinite result for the potential; 
sometimes you will find reference points not at infinity 
that will be more convenient for your calculation. 

� Significance. The magnitude of the electric potential 
therefore has no physical significance; only differences in 
potential do. 

� Superposition. The electric potential superposes. If E =

1 2 1 2V d d V V= − ⋅ − ⋅ − = + +∫ ∫E l E l … …
P P

O O

1 2 ,  then+ +E E …
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Electric potential (continued)

 Thus at a given point P, one could compute Vs due to 
different parts of a charge distribution, and add the 
results to get the real thing. This may seem trivial until we 
find, later this week, that the closely-related electrostatic 
potential energy does not superpose. 

 From point charges and superposition we can induce the 
potential from a continuous charge distribution:

( ) ( )
1

r
i

i

N
i

Nii

QV d Edr
r

dQV
ρ τ

→∞
∞

→∞
=

′= − ⋅ →− =

′ ′
= →

∫ ∫

∑ ∫

E l

r

P

O
O

P

O

P
r r
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� Units. In CGS, it’s the statvolt:

In MKS, it’s the volt:

� Correspondence: 

Electric potential (continued)

dyne cm erg
statvolt

esu esu
= =

jouleNt mvolt
coul coul

= =

1 statvolt 299.792458 volts↔
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Electric potential (continued)

�What it’s good for. It’s often easier to calculate V, and 
take its gradient to find E, than to calculate E directly. 
Reasons:
• V is a scalar; no vector addition to get it. 
• There are many situations in nature in which V can be 

regarded as constant over a region in space near where 
one would like to know E. The solution of V for space 
between the constant-V (“equipotential”) locations and 
the reference point – the process of which is called a 
boundary-value problem – can be shown to be unique. 
Finding V by boundary-value solution, and then 
calculating E, is in these cases usually much easier 
than calculating E directly.  
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Example

Griffiths problem 2.20
One of these is an impossible electrostatic field.  Which one?

Here, k is a constant with the appropriate units. For the 
possible one, find the potential, using the origin as your 
reference point.  Check your answer by computing 

First take the curl of each function:

( ) ( ) ( )

( ) ( ) ( )2 2

ˆ ˆ ˆa.  2 3

ˆ ˆ ˆb.  2 2

k xy yz xz

k y xy z yz

 = + + 
 = + + +  

E x y z

E x y z

.V−—
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Example (continued)

The first one can’t, but the second one can.

( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ ˆa.  3 2 3

ˆ ˆ ˆ ˆ2 2 3 0

k xz yz k xy xz
y z z x

k yz xy k y z x
x y

 ∂ ∂ ∂ ∂ × = − + −   ∂ ∂ ∂ ∂  
 ∂ ∂

+ − = − − − ≠ 
∂ ∂ 

E x y

z x y z

—

( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

ˆ ˆb.  2 2 2

ˆ2 0

k yz xy z k y yz
y z z x

k xy z y
x y

 ∂ ∂ ∂ ∂ × = − + + −   ∂ ∂ ∂ ∂  
 ∂ ∂

+ + − = 
∂ ∂ 

E x y

z

—
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Example (continued)

Integrate E to get V: choose path for convenience since the 
result is path-independent.

( )
( )

2

,0,0

0,0,0

0

0
x

d ky dx

d

⋅ = =

⋅ =∫

E l

E l

( )2

( , ,0) 2
( ,0,0) 0

2 2

2
x y y

x

d k xy z dy kxydy

d kxydy kxy

⋅ = + =

⋅ = =∫ ∫

E l

E l

( )

( )( , , ) 2
( , ,0) 0

2

2
x y z z

x y

d k yz dz

d k yz dz kyz

⋅ =

⋅ = =∫ ∫

E l

E l

( ) ( ) ( ) ( )0,0,0 ,0,0 , ,0 , ,x x y x y z→ → →
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Example (continued)

Thus

Check:

( ) ( )2 2 2 2, , 0V x y z kxy kyz k xy yz= − − = − +

( ) ( )( )2 2ˆ ˆ ˆ ˆ ˆ ˆ2 2V V VV k y xy z yz
x y z

∂ ∂ ∂
− = − − − = + + +

∂ ∂ ∂
=

x y z x y z

E

—
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Differential equations for the electric potential

To get V without referring first to E:

In regions where there are no electric charges,

These equations, plus boundary conditions, provide the 
boundary-value-problem way to calculate V. 

( )
2

4

4

V

V

πρ

πρ

⋅ =

⋅ − =

∇ = −

E—
— —

Poisson’s equation

2 0V∇ = Laplace’s equation


