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Chapter 1

Complex Numbers

1 Mathematics originated in the construction of altars for religious
ceremonies in pre-historic times.

1.1 Among the first discoveries where properties of triangles and methods
for construction of various geometric shapes using a rope and a stick. Later,
the architecture of temples, the study of the heavens, the development of
calendars, the need for standard weights and measures, keeping of financial
accounts, classification of musical scales, grammatical formulation of lan-
guages, all led to mathematical developments.

2 We begin with the natural numbers 1,2,3---.

2.1 They form an ordered set: for every pair of numbers «a,b , either a < b
or b <a or a=>b. Thus natural numbers form an increasing sequence
starting with the smallest, 1 , then its successor 2 , and its successor 3
and so on. This is the basis of counting, the most basic of all mathematical
operations.

3 Natural numbers can be added and multiplied to get others.

3.1 The product of any number with 1 is itself. By analogy we introduce
a new number zero 0, which when added to any number gives itself.

4 To solve linear equations, enlarge the set of numbers to the
rational numbers.
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4.1 Linear equations are of the form cx+b = a , where x is the unknown.
When a,b,c are integers, sometimes this equation has a natural number
as solution; e.g., 3z + 1 =7 = z = 2 .But in general there is no natural
number solution: 6x + 4 = 1. To solve these equations we must introduce
the notion of rational numbers; in the above example z = —% . The word
rational comes from ratio. Even when the parameters a,b,c are rational,
the linear equation ax + b = ¢ has a rational solution.

5 Rational numbers form an ordered field.

5.1 A field is any set on which the operations of addition, multliplication
and division ( except by zero) are defined. These must satisfy the axioms

1. a+b=0b+a ; addition is commutative
2. a+ (b+c¢) = (a+b) + c; addition is associative
3. a+0=a; 0 isthe additive identity

4. For every rational number « there is another, —a such that a+(—a) =
0 ; existence of an additive inverse

5. ab = ba ; multiplication is commutative
6. a(bc) = (ab)c ; multiplication is associative
7. la=a; 1 is the multiplicative identity

8. For every a # 0 there is another, - such that a(f) =1 ; existence
of a multiplicative inverse

9. a(b+ ¢) = ab+ ac ;multiplication is distributive over addition

6 There are lengths in geometry not measurable by rational num-
bers.

6.1 Numbers can be thought of as measuring lengths of straight line seg-
ments in some units. But not all line segments constructed by simple ge-
ometric methods correspond to rational lengths: the hypotenuse of a right
angle triangle with whose base and altitude are both 1 is not a rational
number.
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6.2 Think of a straight line extending in both directions without limit.
Choose a point on it, the origin. We can regard positive rational numbers
as the distances ( in some standard unit) of points to the right of the origin
and negative numbers as representing points to the left. It is now easy to
see that there are points not represented by rational numbers- there would
be many ‘holes’ in the line if we only allowed rational distances. And yet, in
between any two rational numbers there would be another rational number;
e.g., “TJ"’ is in between a and b . Thus these holes are of vanishingly small
size. Any point on the line can be approximated with arbitrary accuracy
by rational number- as the accuracy increases, we need larger and larger
denominators or more and more decimal places. Thus we can think of points
on the line as represented by such convergent sequences of rational numbers.
This is a very intricate construction. See Chapter 11 Introduction to Metric

and Topological Spaces by Sutherland, for details.
7 Real numbers correspond to points on a straight line.

7.1 For now, we will accept the notion of real numbers as given: the intu-
ition based on thinking of the real numbers as points on the real line will be
enough.

8 They form a complete ordered field.

8.1 We already know about an ordered field: the rational numbers form
one. The new notion is that of completeness. To make it precise we need the
notion of convergence, which we postpone to the next chapter. But we give
here the basic notion of metric and norm.

8.2 There is a norm on the set of real numbers: the magnitude |z| of a
real number is equal to itself if it is positive and otherwise is —a . It satisfies
|ab| = |al[b] .

8.3 The set of real numbers is a metric space. That is, there is a notion of
distance or metric on the space of real numbers: d(a,b) = |b — a| . This is
simply the distance between the points representing the numbers on the real
line. The distance satisfies the triangle inequality d(a,c) < d(a,b) + d(b,c)
for any three numbers «,b, ¢ . Moreover d(a,b) =0 if and only if a=15.

9 There are quadratic equations that cannot solved by real num-
bers.
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9.1 The most obvious one is z? + 1 = 0 . This forces us to expand our
notion of numbers even further.

10 A complex number in an ordered pair of real numbers z = (z,y)

10.1 We define addition and multiplication of complex numbers as follows:

(a,0) + (z,y) = (a+=z,b+y), (a,b)(z,y)= (ax —by,ay + bx).
These satisty all the familiar properties. That is,
11 The complex numbers form a field.

11.1 We see that (z,y)(1,0) = (z,y) so that we can identify (1,0) =1 .
Moreover, (0,1)? = —1 . This number is special and is denoted by = (0, 1)
. Thus any complex number can be written uniquely as (z,y) = = + iy ,
where z and y are real numbers. For historical reasons the first component
z is called the real part and the second the imaginary part.

11.2 Complex numbers can be visualized as points on the plane. The mag-
nitude of a complex number is its distance from the origin: |z| = \/[2* + ¥?] ;
its argument is its angle in the polar co-ordinate system: Arg z = arctan ?
I |zl =rAtgz =60, z2=re? .

11.3 The set of complex numbers is also a metric space. The distance
between two complex numbers is just the distance between the points on
the plane representing them: d(z.2') = |z — 2’| . It obviously satisfies the
triangle inequality.

12 The set of complex numbers is algebraically closed.

12.1 An algebraic equation of order 7 is a,2"+a, 12" '+ -a;z2+ag =0
with a, # 0 . We know that even if the coefficients ag,a,---a, are
real, the real solutions for z do not always exist. But there is always
a complex number that solves this equation: we dont need to expand the
notion of number any further. We will not prove this statement-known as
the Fundamental Theorem of Algebra- here.
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13 Quantum mechanics is based on the notion of a complex vector
space.

13.1 Complex numbers are merely useful mathematical gadgets in classical
physics. However, the very basic axioms of quantum mechanics involve com-
plex numbers. Hence they are as ‘physical’ as as any of the other numbers
we described above.

13.2 There are other number systems which are algebraically complete and
even complete with respect to a different notion of metric-the p -adic num-
bers. But they dont appear in physics so we don’t discuss them in this course.

14 By including the point at infinity, complex numbers describe
the points on a sphere.

14.1 Imagine a sphere that touches the plane at exactly one point. Call this
point the South pole. From its antipode (North Pole) draw a straightline to
another point on the sphere. If this line is extended it will meet a point on
the plane.

14.2 This establishes a one-one correspondence ( stereographic projection)
between the points on the sphere (minus the North pole) and the points on
the sphere. As we approach the north pole, the point corresponding to it on
the plane moves away to infinity. In fact it is as if the North pole corresponds
to the (unique) ‘point at infinity’. We will see that this geometric picture is
useful in analysis.



Chapter 2

Convergence

15 The notion of a convergent sequence is central to analysis.

15.1 Let us begin by attempting to solve the equation z? = 2 . There is
clearly no solution in terms of rational numbers. Yet we can find a sequence
of rational numbers that approach the solution arbitrarily closely. It is clear
that the answer lies between one and two. Let us change variablesto = = 1+y
so that ¢ is smaller than one. Then the equation can be rewritten as
Yy = # . Since vy is smaller than one, 7> will be even smaller so we can
think of the nonlinear term on the rhs as a ‘small correction’. Thus z; = %
is our next approximation.

15.2 This method can now be iterated, giving the following recursion rela-

tion 7,1 = # and the sequence of approximations z, =1+ y, :

3 11 183 46127 3042762591

2 = 1l.—. —. —
v .25 198" 32768 2147483648
= {1.,1.5,1.375,1.42969, 1.40768, 1.4169, 1.4131,1.41467, 1.41402,1.41429, 1.41418,

1.41423,1.41421,1.41422, 1.41421,1.41421, - - -}

We see that these numbers are getting closer and closer so that the interval
between two successive terms becomes smaller and smaller. It is then intu-
itively obvious that this sequence tends to a limit: then this limit will be a
solution of our equation.

15.3 Many problems of analysis are solved in this way by successive ap-
proximations. We can apply them to functions rather than numbers.
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16 A sequence is a function from the set of natural numbers to
any set

16.1 The n th element of the sequence s is usually written as s, .

17 A metric on any set X is a function d: X x X — R such
that

d(z,y) = d(y,z), d(z,y) 20, d(z,y)=0 <= z=y, d=z,y) <d(z,2)+d(zy)
A set along with a metric is called a metric space.

17.1 The obvious notion of distance between complex numbers
2= =V[@e—2)V+y—v)?], z=z+iy, =2 +iy

satisfies these conditions. There are other notions of metric on the set of
complex numbers as well. For example we can regard the complex numbers
are points on a sphere (instead of the plane) and take the distance between
points along great circles that connect them. We will return to this idea
later.

18 A sequence s, on a metric space X converges to a point
x € X if, for any ¢ >0, there is an N such that d(s,,z) <e for
all » > N . We will write lim, ., s, =z or s, — x for short.

18.1 In other words the distance between the points in the sequence and
the point = can be made as small as we want by choosing 7 big enough.

19 A sequence can converge at most to one point.

20 A sequence of complex numbers is bounded if there exists a
number B (the bound ) such that |s,| < B .

20.1 There are many bounded sequences which are not convergent. For
example think of a sequence the even terms of which are approximations to
/2 while the odd terms are approximations to /3 . This doesn’t converge
to either point.



8 PHY401 S. G. Rajeev

21 A subset S of the real line is bounded above if there is a
number B such that all elements of S are less than or equal to
B . The smallest such upper bound is called the supremum or sup
for short.

21.1 The notion of infimum or inf is defined analogously for sequences
that are bounded below, as the greatest lower bound.

22 A bounded sequence of real numbers will have a well-defined
sup and inf even if it is not convergent.

22.1 For example the sequence 3, = 2, 25,,1 = 3 , is not convergent and
has supz, = 3,infz, =2 .

23 z is a limait point of a sequence «, if every circle centered at
z contains an infinite number of points of the sequence.

23.1 A convergent sequence will have only a single limit point. But a
bounded sequence may have many limit points. Indeed it can even have an
infinite number of them.

24 The Ulimit supremum ( limsup ) of a real sequence that is
bounded above is the supremum of its limit points. Similarly we
define liminf .

24.1 What is the difference between sup,, a,, and limsup, a, of asequence
of real numbers?. The limsup is sensitive only to the limit points, so a finite
number of large entries will not affect its value; but the supremum will depend
on these as well.

24.2 For example ,consider the sequence
r, =0,1,2,3,1.0,1.5,1.375,1.42969, 1.40768,1.4169,1.4131, 1.41467,1.41402, 1.41429,1.41418

which is a finite sequence 0, 1,2, 3, followed by the successive approximations
to /2. The sup of this sequence is 3 while the limsup is /2.

25 A sequence s, is a Cauchy sequence if for every ¢ there is
an N such that d(s,,s,) <e¢ for every m,n >N .
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25.1 What this means is that we can make the distance between two terms
as small as we wish by moving far enough down the sequence.

26 Every Cauchy sequence of complex numbers has a limit. A
metric space on which every Cauchy sequence has a limit within
itself is complete.

26.1 The set of rational numbers is not a complete metric space. Show that
the sequence of approximations to /2 defined above is a Cauchy sequence.
It doesn’t have a rational limit.

26.2 Which of the following are Cauchy sequences?

Sn:logna S":Zﬁ’ S”:ZE

27 If the partial sums S, =)} s, form a convergent sequence,
we say that the sum is convergent. We denote lim, . >} s, =
2120:1 Sk -

27.1 Show that >7° % is convergent. What is the most rapidly converging

series (with rational terms) for 7 that you can come up with?

28 A series Y ;° a; is absolutely convergent if > ;°, |a;| is con-
vergent.

28.1 Absolute convergence is a stronger condition than convergence; a series
may converge because of cancellations among terms, but the sum of the
magnitudes may not converge; e.g., 1— 3+ 3 — ;- is convergent but not

i
absolutely convergent.

28.2 We are allowed to rearrange terms of an absolutely convergent series;
in general that is not allowed: the cancellations required to make a series
converge may be lost if it is rearranged. We are not allowed, in the above
example, to sum all the even terms then all the odd terms.

29 A series ) ,a, converges absolutely if limsup\an\% <13 it
diverges if limsup|a,|+ > 1.
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29.1 This is known as the Cauchy test. The point is that if lim sup |an\% <
1, for all except a finite number of values of n , |a,| < R" for some R <1
. Then the series converges by comparison with the geometric series.

29.2 Similarly if R > 1, the series will diverge.

29.3 The borderline cases where limsup \an\% = 1 require much more
sophisticated analysis to decide convergence; in fact there is as yet no sure-
fire test of convergence for an arbitrary sequence.

29.4 The series >.°°, %; converges when |z| < 1 and diverges when

SI=

= |2|limsup e~ 18" = |z| .

z| > 1 since, limsup, %
30 If all except a finite number of elements of the sequence 1-+a,
are non-zero, and the partial products Py = [[." [l +a,] form a
convergent sequence, we define [[°,[1 +a,| =limy ,o Py .

31 The infinite product [];°,[l+a,| converges if the series Y, |a,|
converges

31.1 This is based on the fact that if 3" |a,| converges, 3 |a,|* converges
as well for any £ > 1 . We can bound the product by such series. See
Whittaker and Watson for proof.

31.2 We regard a product with an infinite number of zero factors as diver-
gent although in some sense its value is just zero. The point is that it is a
kind of ‘essential zero’, and behaves in a singular manner.

32 A function f: R — R is continuous at z, € R iffor all ¢ >0,
there is a ¢ such that |f(z)— f(xo)| <e€, for all z with |[z—xz¢ <6

32.1 In other words a continuous function can be made to change as little
needed by changing its argument by a small enough amount.

32.2 The function ( sign function), sgn () =+1 for © >0, sgn (0) =0
, sgn (z) =—1 for = <0 is continuous everywhere except at the origin.
The function which is equal to one for rational numbers and equal to 0 for
irrational numbers is continuous nowhere.
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32.3 Is sin% a continuous function at x = 0 ?What about xsini ?
33 The space of bounded continuous functions f : [a,0] — C is
itself a metric space, with the distance

d(f,9) = sup [f(z) = g(z)|.

z€[a,b

33.1 In fact this is a complete metric space. This now allows us to think
of convergent sequences of functions: all Cauchy sequences of continuous
functions tend to a limit that is also continuous .

33.2 The distance between a pair of functions is the largest difference be-
tween their values at a common point.

34 We can now define a convergent sequence of functions using
the above metric.

34.1 In more detail, we say that a sequence of functions f, : [a,b] — R is
uniformly convergent to a function f if, for every ¢ > 0, there isan N, (
that may depend on ¢ but not on z ) such that

[fu(z) = f(2)] <e
for all n > N, .

34.2 This is stronger than mere convergence of the sequence of real numbers
fn(z) tothe number f(z) ateach x : the rate of convergence must also be
the same for all z , so that N, is independent of x . That is the meaning
of the word wuniform.

34.3 Uniform convergence is the same as the convergence in the sup norm
defined earlier; for, if the largest difference between the values is less than ¢
that is the same as saying that the difference at all points is less than ¢ .

35 The space of continuous functions is a complete metric space
under the sup norm.

35.1 Thus Cauchy sequences of continuous functions in this norm will con-
verge to continuous functions. The set of polynomials form a dense subset:
any continuous function can be approximated as close as we want by poly-
nomials. There are other classes of dense sets; e.g., Fourier series.

35.2 This allows us to make sense of infinite sums of continous functions.



Chapter 3

Power Series

36 A power series is a series of the form >, a,2" , where a,
are a sequence of complex numbers independent of = .

36.1 We might occasionally consider power series centered at a point other
than the origin, >°7° a,(z — z)" . Series with negative powers will not be
called power series; they are called Laurent series instead. We will study
them later.

37 The Cauchy test ( comparison with geometric series) shows
that a power series converges if limsup, |a, ||z <1 .

37.1 That is, it converges in the circle of radius R = [limsup, |a,|+] " .
This is the radius of convergence.

37.2 Of course there are power series that have zero radius of convergence;
e.g., > on!z” . They are still useful in physics, but we will need more
sophisticated methods to study them. We will return to them later.

37.3 The standard of comparison is the geometric series 7% 2" = -
which converges in the unit circle. The series e = >°° . has infinite

n=0 p!
radius of convergence: it converges for any =z .
38 A function [ :C — C is analytic at the point 2z, ifit is equal

to some power series f(z) = >°° a,(z — 2)" within the circle of
convergence.

12
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38.1 The series must have non-zero radius of convergence for this to make
sense.

38.2 This idea of an analytic function is the single most important concept
in complex analysis. Therefore it is useful to have several different points
of view on it. Later on we will see that a function is analytic if and only
if it satisfies a partial differential equation (Cauchy-Riemann equation); or
a certain integral equation (Cauchy’s integral formula.) Thus we will find
three equivalent criteria for analyticity. If we choose one as the definition (as
above), the others can be derived as theorems.

38.3 The definition we give in terms of power series is more elementary
than that found in many textbooks such as the one of Copson. It is also
the one that generalizes easily to the case of several complex variable and to
algebraic geometry. See for example the classic text of Shafarevitch.

39 A series with an infinite radius of convergence defines an entire
Junction.

39.1 Polynomials are entire functions; the exponential is another example.

40 The sin and cos functions are defined by the infinite series
of Madhava'

x4

sinz = $_§+E_ﬁ
'Madhava ( 1340-1425) is the founder of a school of mathematics that flourished for
about two hundred years. This school ( Parameswara, Jyeshtadeva, Neelakanta Somayayji,
Achyutha Pisharody...) laid the foundations of real analysis: the notion of convergence,
infinite series, expansions for trigonometric functions, evaluation of area by quadrature,
term by term differentiation of infinite power series, iterative solution of nonlinear equa-
tions are all due to them. Most of these results are attributed often to Newton. In the
process of solving trigonometric equations by iteration Madhava even discovered some
chaotic phenomena. Madhava also discovered the series

1 3 1 5
m:ta,nx—gtan m—l—gtan xr—---

called often the Gregory series. Ironically, Madhava is most famous for the addition
formula for sin , a result not original to him. Complex analysis is primarily due to the
European school of mathematicians starting with Euler ( Cauchy, Weierstrass, Riemann

).
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2 ozt a8

cosr = 1—§+E—E+---

40.1 Prove addition formula for sin using the binomial expansion:

sin[z + y] = sinz cosy + cos T sin y.

The periodicity of the trigonometric functions is not obvious from their series
expansions. How would you establish periodicity?

41 The exponential function is defined by the power series

o0 T

exp(z) =Y =

|
r=0 T

42 sin, cos,exp are examples of entire functions.

42.1 Using n! =n"[[}=; [1—%] we get log[n!]" = logn+1 Y h=1 log[1—£]
. In the limit of large n the Euler-Maclaurin approximation formula for
integrals gives a finite answer for the last sum:

1! k 1
lim — ) log[l — —] = / dzlog[l — z]dx = —1.
0

N

Thus [n!]* = O(n) . That is why the sum for the exponential has infinite
radius of convergence.

42.2 The exponential function satisfies the identity
exp(z) exp(z') = exp(z + 2)

which can be proved by resumming the double series using the binomial
theorem

7!
Z 7anlr—n — (Z + ZI)T.
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The rearrangement of terms in this power series is justified because the series
converges uniformly. Hence

exp(z) = €*
where
1 1 1 1
e=1d ot g tg+oo

43 Now it is clear that

e =cosx +isinz

43.1 Prove this by comparing the series expansions. In particular we have
the formual

e +1=0.

44 Interesting power series can be obtained by differentiation or
integration of familar series.

44.1 For example,

M- 22= an 11— :Z (n+1)( n—lEkQ)_--l-)!(n-i-k—l)Zn'

0

These are special cases of the binomial theorem.

45 The logarithm is defined by the series

22 28

“logll — 2] = 2.
og[ z] z+2+3
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45.1 Differentiation ( and change of variables z — 1 — 2z ) gives

1 1
—logz =~
dz & 2

46 The exponential of an entire function is also entire.

46.1 Let f(z) =>,°, fu?" have radius of convergence I . We note first
that (by collecting terms with the same power of 2z ),

fQ(Z) = 2 Z fn1fnzzn1+n2 = Z zN Z Jra Jra-
N=0

n1=0n2=0 ni+n2=N

More generally,

FEO=3 S fudueefu

N=0 ni+ns--n.=N

1
r!

Now summing both sides after multiplying by

o o
= 33
N=07r=0

1
]

Z fmfnz"'fnr-

ni+ng-n,=N

Now, since the series > > f,2" is convergent with radius of convergence R
, limsup,, | fn\% = R . Thus the coefficients |f,| grow at most as R™" as
n — oo. Then |f,, - [, | grows at most like R~" where N = n;+ny---n,
Thus

Y fu fal = OR(N)RTY)

ni+na--n,=N
where P,(N) is the number of solutions to the equation 7 +---n, = N .
This is at most (N +1)" since each part has to be less than or equal to the
whole. Thus we can estimate the sum over r to give

S S S Sl = OBV,

r=0 """ ni+ns--n,=N

So the sum over N itself can thus be bounded by a geometric series with
radius of convergence e 'R .
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46.2 If f(z) is entire, its series converges for any R ; then the series for
e/(?) converges for any radius as well.

46.3 We can show by expanding around the point z =1 that ¢'%8% = z |
at least within a circle of radius one around 1 .

47 A series with negative powers of 2, >, _ ya,2" isa Laurent
Series if the power series contained in it, } 7" a,z" has a non-zero
radius of convergence.

47.1 Thus a Laurent series is a polynomial in % plus a power series in 2

with positive radius of convergence.
47.2 The simplest examples are %, z% + 2z etc.

47.3 If there is only one negative power of z (i.e., N = 1) we say that
the function has a simple pole at the point z =0. If ay #0 and a, =0
for n < N , we say that the function has a pole of order N . The coefficeint
of £, (ie, a_i)is called the residue.

47.4 Thus % + Z% has a pole of order 3 at the origin, with a residue equal
to 2.

47.5 We can expand around a point other than the origin by using a change
of variable; > >° v a,(z — 2)".

48 The function ;- has a convergent power series expansion
around any point z; # 1 .

48.1 Thus it is analytic everywhere except at 1, where it has a simple pole
of residue —1 .

48.2 For 2z, # 0,

1 1 1 1 & 1 .
1—z_1—zol—ﬁ_1—,20712:0(1—2’0)”(2_20) '

This series converges around a circle centered at z, with radius |1 — zo| .

48.3 When Fk is a positive integer, we see that (1 — 2)™* is analytic
everywhere except for a pole of order £ at z=1.
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48.4 Now consider the series

1 %[%_1]2 %
g(z):1+§z+Tz+ 3 LA SRR

This series also converges in the circle [z| < 1 . We can expect that it is
equal to (1 + z)% by comparison with the binomial theorem for integer
powers. It is possible to show by collecting together terms with the same
power of z that ¢%(z) = 1 + 2 confirming this suspicion. However,the
square root is not a single-vlaued function: there are two solutions to the
equation ¢?(z) = 1+ z .The solution we pick is the one that assigns positive
roots to positive real numbers: the principal branch. This rule will break
down as we aproache the negative real axis: there is a branch cut along the
negative real axis where the square root changes sign.

48.5 Another example of such a function, with an infinite number of branches
is the logarithm. Since e’ = 1, the logarithm is ambiguous by an integer
multiple of 277 . Our definition

[z -1 [ —1]

logz=log[ll—(1—2)]=[z—1] - 5 + ; 4.

resolves this ambiguity by pricking the principal branch: the logarithm of
a positive real numver is real. But along the negative real axis in z is a
branch cut; crossing this line will make the logarithm jump by a multiple of
2mi . We could have placed the cut along any line connecting the origin to
infinity, but by convention we place it along the negative real axis.



Chapter 4

Cauchy-Riemann Equations

49 A function [ : C — C may be thought of as a function of
two real variables, since a complex number is just a pair of real
numbers: z = (z,y) =z + 1y .

49.1 If it is differentiable as a function of these real variables, we can define
the operators 0,0 by

af ,8f] 5f:1laf .8f]
) 2 -

1

49.2 It is as if we differentiate with respect to z and Z rather than z,y

df = gdm + ﬁdy = 0fdz+ 0fdz
ox oy

where dz = dx + idy,dz = dx — idy .

49.3 We can check easily that 0z = 1,0z = 0 and more generally that,
02" = nz" ' 02" =0 for a natural number n =1,2,3---. Also, 07" =
nz" 1, 0z" = 0 . Thus we can pretend that z and Z are independent
variables and that 0,0 are partial derivatives with respect to them.

50 An analytic function satisfies the Cauchy-Riemann equations:

of =0

19
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50.1 An analytic function is a power series in z alone without involving
Z . The Cauchy-Riemann equations simply assert this independence on Z .

50.2 Thus the function 2z = 22 + 42 is not analytic: it invloves z . It
does not satisfy the Cauchy-Riemann equations either.

50.3 An archaic point of view (found for example in Copson) is that the
Cauchy-Riemann equations describe the independence of the derivative on
the direction in which dz — 0 . This confuses analyticity with differentia-
bility, so we will not use it here.Also it does not generalize to the case of
functions of several complex variables. However the Cauchy-Riemann equa-
tions do have a natural generalization: that df is a differential form of type
(1,0) .

50.4 The Cauchy-Riemann equation is an example of a partial differential
equation. We will see that it can be solved in terms of the boundary value
on any closed curve. This is known as the Cauchy integral formula.

50.5 An anti-analytic function is a power series (with non-zero radius of
convergence ) in Z alone: it is the complex conjugate of an analytic function.
It satisfies O0f =0 .

50.6 A = 00 is known as the Laplace operator; Af = % + giy.’; . A
function satisfying Laplace’s equation Af =0 in a region () is said to be
harmonic in ) .

51 A harmonic function is the sum of an analytic and an anti-
analytic function.

51.1 We will return to the topic of partial differential equations later. For
now we will be content with the theory of the Cauchy-Riemann equation.



Chapter 5

Cauchy’s Integral Theorems

52 A curve on the complex plane is a continuous function ~ :
la,b] = C .

52.1 It is piece-wise smooth if there are sub-intervals in each of which the
function has continuous derivatives of arbitrary order.

53 The integral of a function [ :(C — C along a smooth curve
v :la,b] > R is

[ saz= [ s

53.1 On a piece-wise smooth curve it is defined as the sum over each of the
segments on which it is smooth.

53.2 This is a special case of a more general notion of the [line integral of a
differential 1-form. A = A,dx + Aydy 1is a differential 1-form on the plane
where A,, A, are a pair of complex valued smooth functions. Its integral
along a curve 7 :[a,b] — R* is

[ 4= [T + a0 2D

53.3 If we integrate a differential form along two different curves connecting
the same endpoints, the value can be different in general.

21
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53.4 If there is a function U such that A, = ‘Z—g and A, = ‘Z—g , the

differential form A is said to be ezact: it can be written as A = dU . Then

LA:wm—m@

The integral of an exact differential form depends only on the endpoints of
the curve.

53.5 The derivative of a differential 1-form is

1[04, 0A
A== | T
d 2 [ dy ox

] dxzdy

53.6 Stokes Theorem: The integral of the derivative of a 1-form on a region
D is equal to its integral on the boundary curve < of the region:

LJA:AA

53.7 This can be proved for a rectangular region by explicit calculation;
more general regions can be broken into rectangular regions and the bound-
aries can be seen to combine in the required form.

53.8 Suppose that 7, and v, are to curves with the same endpoints lying
within a disc where dA = 0 .Then

(AA—LA:AAZO

Here + is the closed curve obtained by going along <, first then along ~»
in the reverse direction.

53.9 In particular, d[f(z)dz] = 0fdzdz ; the exterior derivative of the 1-
form f(z)dz is zero whenever [ satisfies Cauchy-Riemann equations. For
example whenever f(z) is analytic.

54 The integral of a function along a closed curve, [, fdz vanishes
if 0f =0 within the region bounded by the curve.
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54.1 More generally, [, 0fdxdy = J, fdz it v is the bounding curve of
the region D .

54.2 For example, when n = 0,1,2,3,---, [ 2"dz = N 'y(t)"dz—(:)dt =
[ (b) ="' (a)] vanishes for closed curves.

54.3 The Cauchy integral theorem allows us to deform contours of inte-
gration without changing the integral, provided that the endpoints are un-
changed and 0f = 0 in the region between the two curves.

54.4 Let S' be the wunit circle; i.e, a circle of unit radius with the origin
as the center. Then

1 2w . i
/ —dz :/ e~ Yie?dh = 2.

St z 0

This true in fact for a circle of any radius surrounding the origin.

54.5 More generally, along any curve that can be continuosly deformed to
unit the circle without crossing the origin the answer is the same.

54.6 The integral [ —-dz vanishes if the curve does not enclose the point
a: 5ﬁ = 0 1in the interior.

54.7 Now consider a curve that goes around the point several times: v(#) =

¢ n € Z . Then, [ tdz=2min . In general [ -2 isan integer, the

z—a 2m
winding number of the curve around the point « .

54.8 If a closed curve (assumed to be anti-clockwise) ~ bounds a region
D , it has winding number one with respect to point in D and zero with
respect to any point outside.

54.9 Suppose [ is analytic in the region D enlosed by a closed curve v

. If a € D, the function W is also analytic: there is no singularity
at a because the numerator also vanishes. Then

JLEE T

We can re write this result to get a new result.
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55 Cauchy’s Integral formula:If a function f satisfies 0f =0 in
the region ) bounded by a curve v,

LZ)ﬁzf(a) if a € D.

v Z—a2m

55.1 This formula gives the solution to the partial differential equation
0f = 0 in the region D , in terms of the boundary values of the function
on 7.



Chapter 6

Residue Calculus

56 A main application of the Cauchy Integral theorem is to eval-
uate integrals.

56.1 The integral of a rational function f (whose poles are not on the real
line) over the real line is possible by completing the contour on the upper
half plane. We assume that he function vanishes at infinity faster than % ,
so that, the integral converges. We get

/_oo f(x)dz =21 Y Res.f =—2m Y Res,f.

Ima>0 Ima<0

56.2 For example,
/00 dz
— =T
—00 1 + l’2

57 The same idea applies to meromorphic functions, except that
the sum over residues might be an infinite sum.

57.1 The integral of a meromorphic function around a closed contour is
2mi times the sum of the residues inside the contour.

57.2 For example,

®© CcOST T
/ dr = —.

o 14227 e

25
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57.3 As another example, for a natural number 7 ,

-
/ e’z "dz = 2miRes,—pe* 27" = m
2|=1 [n—1]!

58 Integrals of a periodic function over its period can often be
converted into integrals over a circle of a meromorphic function,
and then evaluated as above.

58.1 With z = ¢

’

27 de

2./ 1 d 2T
— = =24 ———dz = —.
0 24 cosd Z=14z+ 22 +1 V3

58.2 If the integrand has a simple pole on the contour of integration, the
usual definition of the integral will not suffice. Let f be a function which

has a simple pole at ¢, and let a < ¢ <b. Then Cauchy Principal Value
integral is defined as the symmetric limit

b c—0 b
7>/a f(w)dz = lim V f(m)d:c+/c+6f(m)d$],

58.3 The idea is that the negative infinity from integrating the left side of

¢ 1is cancelled by the positive infinity from the other side. This idea will not
work for higher order poles on the contour of integration.

59 Sums can often be evaluated using residue calculus.

59.1 Let f(z) be a rational function that decays at infinity faster than =
. (That is, the polynomial in the denominator is of degree at least two more

than that in the numerator.) Let a; be the positions of the poles of f and
rr are the residues at these poles. If the poles are not integers,

i f(n) ==> rpmcot may

n—=—oo
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59.2 To prove this, we consider a rectangle C, with vertices at +[n+ 1]+
iln+ %] . The function 7 cot 7z is bounded on this contour. For big enough
z , the function f(z) will be less than a constant times |z[~% . Thus

lim f(z)mcotmzdz = 0.
n—oo Chn

Evaluating the integral by residue calculus, we get the required result. Recall
that 7 cot7z has simple poles at the integers, each with residue one.

59.3 For example, if a > 0,b >0,

> 1 0
2 v~ ayay et v/



Chapter 7

The Gamma Function

59.4 Recall that the factorial of a natural number is defined as

nl=n(n-1)---1.

60 The factorial can be expressed in an integral form

o0
n! :/ e 'thdt.
0

60.1 To prove this, define
o0
I, = / et dt.
0
It is elementary that /, = 1 . Integration by parts gives the relation
In - nln_l.

Together they give the required answer. We can even see that the analytical
point of view allows us to define

28
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60.2 The integral converges even for complex values of n as long as the
real part is positive. This allows us to define a notion of ‘factorial’ even for
complex numbers.

61 We follow the notation of Euler and define
I'(z) = / e~ '*~1dt, for Re z > 0.

0

61.1 The integral converges absolutely in the right half plane. Also it con-
verges uniformly on bounded subsets. This means that the integral defines an
analytic function. (We just quote this general result about integrals without
proof.)

62 For a natural number

I'(n+1)=nl

62.1 Again, for Rez > 0 , integration by parts gives
[(z+1) =2[(2).

This formula allows us to extend the definition to the left half-plane where
the original integral does not converge.

62.2 Thus for example,
1 1 ,
I'(z) = ;F(z +1) = s I'(1) + O(#).
Thus the [' -function has a simple pole at the origin with residue one. By

repeating this argument we get for n=10,1,2,---

_ 1 _=nmr (=0mra)
F(Z_n)_(z—n)(z—n+1)-~-zr(z+1)_ a oz n! +0().

Thus at each negative integer —n there is a simple pole of residue (T



30 PHY401 S. G. Rajeev

62.3 At other values of the argument the function is regular; using

1
(z—n)(z—n+1)---2

['(z—n) = ['(z+1)

we can bring the argument to the right half plane. Unless 2z is a negative in-
teger or zero, the denominator doesnot vanish. Thus I'(z) is a meromorphic
function.

63 We have the product relation

¥4

. nln
S P ) B e

63.1 This can be viewed as the limit as n — oo of the above recursion re-
lations; however a proof along those lines requires us to know the asymptotic
behaviour of I'(z) for large z . A more elementary but indirect argument
is to note first that

/on [1 a ﬁ]ntz_ldt: z(z+1)(2 ng(zﬁ-n)

and then take the limit as n — oo .

63.2 In more detail, let f(n,z) =n"~* [ [1 — %]ntz_ldt . Integration by
parts followed by the change of variable ¢ = " u gives

f(n,z) = n_z/ [1 - f] ! dt
0

n z

1 241 pn—1 n—1
= -n”* [ n ] / [1 ~ U ] w1y = Ef(n —1,z+1).
z n—1 0 n—1 z
It follows from the elementary integral f(1,z) = ﬁ and this recursion
relation that n~* [ [1 — %]ntz_ldt = Z(Z+1)(ZJ’:!2)___(Z+”) . Now, we take the

limit 7 — co and use e ! = lim, ,o (1 — %

64 The Fuler constant ~ is defined as
"1
v = lim lz P logn] ~ 0.577.

n—00
k=1
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64.1 The harmonic series Y.},  is divergent as can be seeen comparing
with the integral [ df = logn . The difference between the sum and the
integral can be written as

n

1 n dx 1 ! el gy
IR o o

k=1 L r - k=1 z
1 ! 1 1
- + kgl og {1+ P p

Now, log (1+ L) — L is bounded by a constant times -5 ; hence the sum
g % y

k k2
on the rhs has a limit as n — oo . Thus

Sl

exists.

65 Thus, —- is an entire function with the product representa-

. I'(z)
tion
—1 = ze"* ﬁ [(1 + E> e%] .
['(2) Pt} k

65.1 The product [[;2, [(1 + %) e_%] converges but not []3°, (1 + %) ,
since ;7 % diverges. When the extra factor e % is put in the large &

behavior is improved: (1 + %) et l— [%]2

65.2 To prove the result above, we use the product formula:

! = 2z lim (z+1)(z+2)---(2+n)
['(z) n—oo nln?
= zhm(1+z) (1+E>...(1+E>6—210gn
= zlim(1+2z2)e”? (1 + E) e 7. (1 + E) P 62[(1+%+---%)—10gn]

66 Also, we have the refiection formula

™

()1 -2)=

sin7mz
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66.1 For this we need the product formula for the trigonometric function

el

k=1

The various exponentials cancel out when we mutiply the product represen-
tations of ﬁ and ﬁ . To complete the proof of the reflection formula
we also use ['(1 —z) = —z['(—2) .

66.2 The logarithmic derivative of a meromorphic function is also mero-
morphic. In our case this is the function (again in the notation of Euler)

This is also called the digamma function. The logarithmic derivative of the
recursion formula for I'(z) gives

v(z+1) = % + (2).

f'(z)
f(2)
simple pole of residue equal to the (negative) of the order of the zero ( or

pole). Thus (z) has poles at negative integers or zero with residue —1 .
This is evident by repeatedly using the recursion formula above.

66.3 Recall that wherever f(z) has a zero (or pole), will have a

67 Many physical problems require us to know the behaviour of
the Gamma function for large values of its argument.



Chapter 8

Asymptotic expansion of
Integrals

68 We will now study the behavior of

zZ0 = |

1
e 3@y,

for small ).

68.1 Here, S(x) is given as a function of z ; in many interesting cases it
is a polynomial.

68.2 The classics Priciples of Optics by M. Born and E. Wolf and Op-
tical Coherence and Quantum Optics by L. Mandel and E. Wolf are good
references-but they consider the subtler case of imaginary A . See also Chap-
ter six of the book by Bender and Orszag for another point of view. The
discussion below does not follow either book.

68.3 Such problems arise in every branch of physics: the geometrical limit

of wave optics, the classical limit of quantum mechanics, the mean field
limit of statistical mechanics, the Feynman-Dyson expansion of quantum
field theory, the Stirling formula for the Gamma function, are all examples
of this problem.

68.4 We will study here only the case of an integral in one variable; more-
over we will assume for simplicity that S is real-valued , and has a unique
minimum within the interval [a,b] These are not essential assumptions; it
is possible to generalize the method much further.

33
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68.5 The basic idea is that when A is real positive and small, only the
smallest values of S matter. Then we expand the it around the minimum
of S in a power series. We isolate a piece that has an essential singularity
at A = 0. (This is the tricky part.) Then we expand the rest as a power
series in A\ .

68.6 Let a < zy < b be the minimum:

S'(zo) =0, S"(z9) >0,= S(x) = S(xg) + %(x — 10)28" (o) + %S”’(xo)(x — ) 4 - -

Then,

20 = e 3 / " e S" (o) l—z0]*+ gy " (ao)lo o]+
a

68.7 Making the change of variables

a—xQg

; m nn
Z(\) ze—ism)[ 2mA r / T gye BB +es" @0+ g™ (z0)y*+O0(e?)

g

68.8 As A — 0", the limits tend to +oc ; the error in replacing the
. . . . . =1
integrals with integrals over +o0o is of relative order e~

_Llg(g [ A 12 o0 11,2 %S”’w 3%251111z 11.0(g3
Z(A) ~ ex (zo) el lwdye (292 + 395" (z0)y®+ %92 S"" (z0)y*+0(g°)]
-~ —lS(w)— A _5/00 —1y2 _l " 3_12//// 4
e ° _S"(.’L‘o)_ 7oodye 2 [1 3,95 (.’I?())Z/ 4!9 S (-770)’!} +
1
2(3!)292[5"']2116 +0(g")]

1

[ 27X ]2
5" (0) |

~ e—%S(wo)

1 )
[1 o §925HH($0) + ﬁQQ[SW(mO)F + O(g4)
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68.9 Here we use
/e_%w2x2"dx = /[27][2n — 1)L

This lemma can be proved by an integration by parts leasing to an induction
on n . The case n =0 can be determined by relating the integral to I'(3)

69 An application is to determine the behavior of I'(z) for large
B

69.1 Substituting ¢ = xz in the definiing integral of the Gamma function,

F(z + 1) = / e tdt = / ef[tleogt]dt — Zezlogz/ 6fz[:cflogz]dl,
0 0 0

69.2 The integral is of the form we studied above with 2 =+, S(z) =
xz—logx . The minimum ( in the interval [0,00] ) of S(z) occurs at zp = 1

so that S(zg) =1,5"(xg) = 1,5"(xg) = 2,5 (x¢) = 3! etc. Thus

/oo e—z[m—logac]dm — e % |:2_7T:| ’ [1 + L + - :|

69.3 Putting it all together

1 1 1
r 1) = [27]2 2532 z[l i ]
(z+1) =[27]22""z2e +122+

69.4 For example, 10! = 3628800 . The first term in the above approxima-
tion gives 3598695.6 ; including the second term gives the improved estimate
3628684.7 .

69.5 The above expansion for the factorial is supposed to work for large
values of z . But it is unreasonably effective even for small values of 2z .
For example, the exact value of 2! = 2 while the first term in the above
expansion gives 1.919 ; including the next term gives 1.99896 . This has
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important implications in physics. Many approximation schemes ( such as
the semi-classical expansion in quantum mechanics, the eikonal expansion in
wave optics, the % expansion in Yang-Mills theories ) are more sophisticated
versions of the basic method described in this chapter. These approximations
are ‘unreasonably effective’ as well.

69.6 Carrying this procedure out to higher orders we get the Stirling ez-
pansion

Tz+1 = [2r]22°t2¢ *
L+ n P 139 o71 n 163879 n
12z 28822 5184023 24883202* = 209018880 2°

69.7 There are special tricks that allows us to derive the Stirling expansion
for the Gamma function ( see Ahlfors) itself in a simpler way. The method we
give is generic- it is at the heart of most approximation methods in physics.

Of

1
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Chapter 9

Differential Equations in
Physics

70 Except in Quantum Field Theory, all the laws of physics are
expressed in terms of differential equations. Solving differential
equations is central to physics.

70.1 Quantum Field Theory is the theory of elementary particles and of
systems with an infinite number of particles. It can be formulated as dif-
ferential equations in an infinite number of variables-the Schwinger-Dyson
equations.

71 The laws of classical mechanics are second order ordinary dif-
ferential equations .

71.1 Newton’s Laws state that

d*x .
mﬁ = ]Z-"(X7 X, t)
where x(t) is the position of a particle as a function of time, m its mass
and F(x,x,t) the force as a function of position, velocity and time. This is
usually a system of nonlinear ordinary differential equations. In very simple
cases, the force may depend linearly on the position and velocity and the

equations become linear.
71.2 Another formulation is in terms of Hamilton’s equations

dt ~ op;° dt  Og;

37
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Here ¢; for 7 =1,---n are the position variables and p; the momentum
variables; also, H(q,p,t) is the hamiltonian.

71.3 These are also a system of nonlinear ordinary differential equations.

72 Classical mechanics can also be expressed in terms of first order
partial differential equations.

72.1 These are the Hamilton-Jacobi equations

ow ow
H(g—,t] ="
<Q7 aq ’t> at 7

where W (q,t) is the action.

73 The fundamental laws of classical electromagnetism are partial
differential equations, the Maxwell equations.

73.1

10B
V-E=4mp, VXE = _10B

ir. 10E ¢ ot
V-B=0, VxB=—j+-2"
c c Ot

Here, E is the electric field, B the magnetic field, j the electric current,
and p the charge density.

73.2 Here, c is the velocity of light.

74 Electrostatics is described by the Laplace and Poisson equa-
tions.

74.1 If the electric field is independent of time and the charges are not mov-
ing ( there is no current), the electric field is the gradient of the electrostatic
potential, E = V1V .Then

VQV:p

which is Poisson’s equation. If there are no electric charges, we get the
Laplace equation:

V2V =0.
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74.2 Solving Laplace’s equation in various geometries is one of the joys(??)
of a physics education.

74.3 The Lapace equation is an example of an elliptic PDE; they describe
static ( time independent ) phenomena.

75 The wave equation of optics follows from Maxwell’s equations.

75.1 Every phenomenon of classical optics follows from the wave equation
of the electromagnetic field, which in turn is a consequence of the Maxwell
equations.

75.2 The simplest version of the wave equation is

0’6 _ o

This describes waves of a single polarization propagating in the vacuum.
75.3 We have chosen natural units in which the speed of light is one.

75.4 The wave equation is the prototype of a hyperbolic PDE; they describe
time dependent phenomena, where signals are propagated by some wave.

76 Geometrical optics is the limit of small wavelength. It is de-
scribed by either the etkonal equation (a first order PDE) or the
characteristic equations for light rays (a nonlinear ODE).

77 The basic law of quantum mechanics is a second order lin-
ear partial differential equation: the Schrodinger equation. All of
chemistry ( and perhaps biology) follows from quantum mechanics.

77.1 For a system of particles with hamiltonian H (g, p,t) , the Schrodinger
equation is

h 0 oy
H ; f—7t == h—
(q 1 0q ) Y= ot

(g, t) is the wavefunction, a complex-valued function of position and time.
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77.2 Here, h is Plank’s constant; sometimes h = 27h is called Planck’s
constant instead.

77.3 Only for the very simplest systems can this equation be solved. Most
of physics is about approximation methods. In the classical limit of small
h, 1 ~ exV | the Schrodinger equation reduces to the Hamilton-Jacobi
equation.

78 The equations of a fluid are

0 0
%wLu-V[pu]:—prLWQquf, V-[ﬂll]+a—'§=0-

78.1 Here p is density; the p the pressure is assumed to be known as a
function of the density through an equation of state. Also, 7 is the viscocity
of the fluid.

78.2 If the velocity is small compared to the speed of sound ( subsonic ),
the flow is incompressible: p becomes a constant.

79 Subsonic fluid flow is determined by the Nawvier-Stokes equa-
tions, a system of parabolic PDE.

79.1 They follow from Newton’s laws applied to a system of with a large
number of particles-the molecules of the fluid.

79.2

Ju

§+u-Vu:—Vp+VV2u+f, V-u=0.

u(x, t) is the velocity as a function of position and time; p is the pressure,
v a property of the fluid called kinematic viscosity, and f the external

force that might act on a fluid element.

79.3 Understanding the phenomenon of turbulence, which follows from
these equations is the third deepest problem in all of physics.

79.4 Parabolic equations describe dissipative systems. The dissipation of
velocity gradients due to viscosity prevents the fluid flow from becoming too
turbulent.
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79.5 A simpler example of a parabolic PDE is the diffusion equation

oP
— =V’P.
ot
It describes such dissipative phenomena as diffusion, heat conduction or ran-

dom walks.

79.6 The limit of zero viscosity ( ideal fluid) and no external forces is of
special interest, because then, turbulence is dominant. In this limit the
Navier-Stokes equations reduce to the Fuler equations:

Ou
E%—u-Vu——Vp, V-u=0.

79.7 The Euler equations describe geodesics on the group of volume pre-
serving diffeomorphisms.

80 The three deepest theories of physics are Einstein’s theory of
gravity (general relativity), the Yang-Mills theory of strong inter-
actions ( quantum chromodynamics) and this Euler theory of the
ideal fluid (turbulence).

81 Plasma physics is described by the Vlasov equations.

81.1 Plasma physics is a combination of fluid mechanics and electromagnetism-
the source for the electromagnetic field is a fluid.

82 Discovering the fundamental equations of nature is merely the
beginning of the study of physics.

83 Theoretical physics is the solution of the fundamental equa-
tions of nature in various approximations.

83.1 Only the simplest, most idealized systems, are exactly solvable by
analytic methods.

83.2 The fundamental physical laws are the alphabet in the language of
nature. These laws in various combinations form the literature of natural
phenomena.

83.3 Analytic methods aim to give a qualitative and fundamental under-
standing of physical phenomena.

83.4 Detailed quantitative study of systems is usually based on numerical
simulations on digital computers.



Chapter 10

Linear ODE with Constant
Coeflicients

84 An ordinary differential equation or ODE is a condition on
a function y:C — C and its derivatives F(z,y,y 9", ---y™) =0 .

84.1 If I depends on the first n derivatives of y only, we say that the
equation is of order n .

84.2 All of the following equations arise from various problems in physics:

Y-y =0
y'+y = 0
1 2 1 2
—y 4+ -x%y c
A
y +by +ky = 0
y'+zy = 0.

84.3 Thus the unknown quantity is a function rather than a number; thus
the theory of ODE is a step higher than that of algebraic equations. There
is no general method to solve ODE exactly: only the simplest equations can
be solved analytically.

84.4 There are general methods that solve an ODE with boundary con-
ditions numerically. With the use of digital computers, a whole world has
opened up to these methods in the last fiftly years.

85 An ODE has usually many solutions.

42
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85.1 To determine the solution we need additional information in the form
of boundary conditions: the value of y or its derivatives at some values of
x .

86 If the condition depends linearly on 7y and all its derivatives,
the equation is said to be linear.

87 If y =0 is a solution, an ODE is said to be homogenous.

87.1 The set of solutions of a homogenous linear ODE form a vector space:
the sum of two solutions as well as a constant times a solutions are still
solutions.

88 Homogenous linear ODE with constant coefficients can often
be solved by a finite series of exponential functions.

88.1 For example,
y'+3y=0

has a solution y(z) = ¢“* provided that w? + 3 = 0 ; thus the general
solution is

y(:c) _ Clei\/&’c + 02671\/345.

The constants (C7,C5 are determined from the boundary conditions. For
example, if we are given that y(0) = 1,7/(0) = 0 we have C; + Cy =
1,0, — Cy =0 so that y(z) = cos|y/37] .

88.2 Let us consider the general homogenous linear ODE with constant
coefficients:

n d’l’
Z ard—i{ = O;
r=0 x

if a, #0 thisis of order n . The ansatz y(z) = e“" gives

n
Z a,w" = 0.
T

Thus we have reduced the ODE to an algebraic equation of order 7 . By
the fundamental theorem of algebra, there are n solutions, some of which
may coincide.
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88.3 If there are n distinct solutions, the general solution of the ODE is

y(z) =Y Cre”.
r=1

88.4 To understand the case when the roots coincide, let us look at the
equation

y'+2y +y=0
which yields the associated algebraic equation
W 42w+1=0

with the root w = —1 with multiplicity two. Thus y(z) = e * is a solution.
There is one more solution for the ODE, which our exponential ansatz misses:
y(x) = ze ™.

88.5 Think of the case with a double root as a limit when two roots coincide.
The general solution when w; # wy is

y(x) = Cr1e®t” 4+ Cre”?”.

The constants C',C; are determined by the boundary conditions. For
example, if y(0),7'(0) are given,

y(0) =Ci+ Co,  ¥'(0) = wiCy + wyCs.

Thus, 3'(0) = wyy(0) + [ws — w1|Cy . Thus, in the limit w; — w; , we must
hold C) = |wy — wy|Cy , rather than (5 itself, fixed. Now, expanding in
powers of w, — w; , we get

y(z) = y(0)e + Chae

since the remaining terms vanish in the limit. Thus a basis for the solutions
in the case of coincident roots is given by e“'% xe“'? .

88.6 The same idea shows that if we have a root of multiplicity m ,

e?, rewr, - ™ te" are linearly independent solutions.
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89 A homogenous linear ODE of order n , with constant coeffi-
cients:

n dj
> ajd—gj =0
j=0 T

has n independent solutions. If the associated algebraic equation

n
Z ajwj =0
j=0

has solutions
w17 c e W

of multiplicities m;, my, m; respectively, then the general solution
of the ODE is

k mq—1

y(@)=> Y Cra’e”?.

r=1 s=0

89.1 Since Zle m, = n by the fundamental theorem of algebra, there are
n constants that have to be fixed by boundary conditions.

89.2 In other words, the set of solutions of a homogenous linear equations
is a vector space of dimension n ; a basis for this vector space is given by

S ,WrX
et .

90 The translational symmetry of homogenous linear ODE sug-
gests the exponential ansatz.

90.1 A homogenous linear ODE with constant coefficients is invariant under
the transformation = — = + a for any constant « ; hence, if y(z) is a
solution, so is y(xz-+a) . The simplest way this can happen is that y(z+a) isa
constant times y(z) . This suggests the exponential ansatz: e“l*+? = gwaewe
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90.2 In general, y(z+a) will be a linear combination of solutions. If y;(z)
is a basis of solutions, then each y;(z + a) must be a linear combination:
yj(x+a) =3, T(a)ryk(z) . A matrix can be brought to a Jordan canonical
form by a choice of basis. If it can be made diagonal, the roots are distinct; in
general it can be brought to a block diagonal form, with triangular matrices
for each root.

91 If a homogenous linear equation is invariant under the scale
transformation = — \z the ansatz y(z)~ 2 will reduce it to an
algebraic equation.

91.1 For example,
w2y" — 2xy' + 2y =0
yields, with y(z) = 2* |
ala—1)—2a+2=0=>a=-1,-2
so that y(z) = Ciz~' + Coz=? is the general solution.

91.2 The point is that in terms of the variable ¢ = logx such equations
have constant coefficients.

91.3 If the associated algebraic equation has a double root « , then 2z°
and z“logx both solve the ODE.

92 The ODE

has the associated algebraic equation

n

Zaja(a—l)---(a—j-l—l):o.

If its roots are «; -y with multiplicities m,, - m; , the general
solution of the ODE is

my—1

k
y(z)=>_ Y Cpslloga]® z.
r=1 s=0
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93 A set of functions {f,f,---f,} is Ulnearly independent if
>5-1Cifi(r) =0 for all = implies C, =Cy=---C,=0.

94 A necessary and sufficient condition for linear dependence is
that the Wronskian of the functions,

O

AR e e
be zero for every = .

94.1 Thus if the Wronskian is non-zero at even one point, the functions are
linearly independent.

94.2 For example, {e”, ze”} is a linearly independent set.



Chapter 11

The Hypergeometric Function

95 Solvable problems of physics lead to functions that are special
cases of the hypergeometric function.

95.1 These are the so called Higher Transcendental Functions- the exponen-
tial function,Bessel functions, Error function, Hermite polynomials, Laguerre
polynomials, etc. are examples.

95.2 The vasy majority of differential equations of physics are not solvable;
yet the solvable ones are precious, as they are the starting point of many
approximation methods.

96 Recall the geometric series and the exponential:

1 2 .3
= l+z+2"+2"+---
1—-2
N 2223
A TR TR TR

96.1 The exponential is obtained by inserting an extra factor of # into the
denominator of each term of the geometric series. This is the starting point
of a family of functions called the hypergeometric functions.It will turn out to

be convenient to think of it as the zeroth element of this family: F(z) = e

96.2 We have then %ez = e* .

48
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97 The next member of the hypergeometric family of functions is

Foriz) =144 L = ! z 4
\% %)= y1I y(y+1) 20 y(y+1)(y+2) 3!

for v not equal to a negative integer or zero.

97.1 The Bessel functions are special cases of this function.

97.2 We can regard the exponential as a limiting (or confluent) case:

lim FY(y;72) = Fy (2).

97.3 You can verify by differentiating term by term that

d 1
%FP(% z) = ;FP(V +1; 2).
97.4 Also,that it is one solution to the ODE

2" +yu' —u=0.

97.5 Bessel’s equation

' +zy + [ -1y =0
reduces to

z2f"+ Qv+ 1) f +2f=0

with y(z) = 2”f(z) . This is invariant under z — —z . So there is a solution
in even powers of z , suggesting the substitution # = cz? for some constant
¢ . We will get the above equation for F(v;z) ;i.e., ti+[v+1]i—u=0
with the choice ¢ = —1z% .
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98 The confluent hypergeometric series with two parameters is

azr  oala+1)2?
Fla,y;2) =1+ 22 4 BET T

98.1 The one with a single parameter is a limiting case

Fi(B;t) = lim F11(0475, é)

a—0oQ
because then

t 1 2 3

k—1

ala+1)(a+2) - (a+k—1) Hk:(1+—)(1+5)(1+a)---(1+—)tk—m:k.

« «

98.2 The equation satisfied by Fl(a,v,z) is
zu" + [y — zlu’ — au = 0.

If weset =1
[0

t

Now let « — oo this will reduce to the equation for F(v,t) :

tu 4+ yu —u = 0.

o

98.3 There is a direct connection of Bessel’s equation to the confluent hy-

: : 1.
pergeometric series F| :

- 1
Jy(z) = Cz”e_”Fll(i +v,14 2v,2iz).

The constant C' = —-—27" is needed to match with the usual conventions

T(v+1)
for Bessel’s functions in most textbooks.
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98.4 If we start with Bessel’s equation

2yt + [ -1 ly=0
and make the substitution y = z”e ““f(z) (suggested by the behavior at in-
finity and the origin) we get an ODE for f(z) of the confluent hypergeomeric
form.

99 In fact F! is itself a limiting case of the hypergeometric series

L af z  ala+1)3(B+1) 22
Ff(a,ﬁ,v,z)—1+7ﬂ+ P o1

100 F}? satisfies the ODE

z(1—2)u" +[y— (a+ B+ 1)z]u' — afu=0.

100.1 This can be verified by term by term differentiation.

100.2 By the same argument as above,

. z
Fl(a,v;2) = BlgrgoFf(a,ﬁ; %5>'

100.3 Thus F? is the mother of all such series. We can trace the genealogy
even further: generalizing to the the hypergeometric series with parameters
a; - -0y in the numerator and ¢ such parameters in the denominator. But
you have probably had enough! If not you can read a bit further.

101 The generalized hypergeometric series F} is the formal power
series

P vt - s Vg - - Y 2) = - (al)n(QZ)n"'(Ofp)nﬁ
Fq( 1 P’PYI PYCD ) 7;) (7)1(72>n(7q)n n’
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101.1 Here we use the abbreviation («), = % =a(a+1)--- (a+n-1).
101.2 We are of course assuming that none of the ~,---v, are not equal
to negative integers or zero.

101.3 If p < g+ 1 this series will have non-zero radius of convergence.In
general it may not converge anywhere and should be thought of as a formal
pwer series.

101.4 The ratio of successive coefficients of 2" is a rational function of
n ; conversely, any series whose ratios of successive coefficients are rational
functions of n can be expressed as linear coefficients of the FI .

101.5 More explicity, if we write F?(c;7;2) = Y02 an.2"

Op+1 o P(n)

ap Q(n+1)

we have

Pn)=(ar+n) - (p+tn)(n+n—1)(y+n-1).

Qn+1)=@n+1)m+n)(tn)ar+n-1)-(ap+n-1).

102 The generalized hypergeometric series satisfy the ODE

[2P(0) — Q(0)]y =0
where 0= z% .

102.1 The point is that the effect of z% on ), a,2z" istoreplace a, by
na, . Thus the ODE leads to the recursion relation

Uny1 P(n)

n Qn+1)
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102.2 Any ordinary differential operator can be thought of as a polynomial
in 0= z% with coefficients that are functions of z . If these coefficients
can be chosen to be linear functions of z , the differential equation can be
brought to the hypergeometric form. (Another way to say this is that the
recursion relation for the coefficients be first order.) Even more generally, if
the coefficients of 6 are polynomialsin z , ( so that the recursion relation
may be higher than first order) we can reduce it to a limiting case (letting

some of the «,~ diverge) of some hypergeometric equation.

103 All ODE with rational coefficients can be solved in terms of
hypergeometric series.

103.1 We must express the differential operator as a polynomial in ¢ with
coefficients that are themselves polynomials in z . This is always possible
by multiplying through by some common factor. Then the recursion relation
for the coefficients of 2™ can be derived; the series so obtained can then be
identified as a hypergeometric series (or a limiting case of one).

103.2 For a more complete theory, see Higher Transcendental Functions
by Bateman edited by Erdelyi.



Chapter 12

A Nonlinear ODE

104 There is no general method to solve nonlinear ODE.

105 An active research area called chaos has emerged from the
study of nonlinear ODE.

106 Simple ODE can often be solved by making changes of vari-
ables.

107 An airplane moves at a constant velocity v , at a fixed
altitude h . A heat-seeking missile s launched when the airplane
18 directly overhead. The missile has a constant speed u and
always moves in a direction pointed directly at the airplane. Find
the curve followed by the missile.

108 The geometry of the problem can be translated into an ODE.

108.1 We get the differential equations

. . T ut—zx
m2+y2:U2, - = .
y h-y

Also, we have the initial conditions =y =0=21 at t=0.

109 Autonomous equations—ODE in which the independent vari-
able does not directly appear—are easier to study.

o4
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109.1 If we trade z for the the position as measured by an observer in the
airplane, ¢ = ut —x we can get rid of the explicit time dependence in the
equation:

[u—EP 49" =0%, u—E=ny
where

_ ¢
e

is the inverse of the slope of the curve.

n

110 Sometimes we should use some other variable as the indepen-
dent variable.

110.1 Solving for f,g),
. v é_ u vn
y = fd —_ .
VIL+ 7] VIL+77]

Thus % = 5 can be expressed in terms of 7 alone. So we should use ¥y
as the independent variable instead of ¢ .

110.2 Differentiating the relation 7(h —y) = ¢ gives

dn ¢ u 9
)t == — .
(h y)dy i U\/[-+77] n
In other words
dn u 9
N 2 omn
( yuy U¢[+n]

110.3 This is a separable equation:
/77 dn _u (Y dy
o VI1+n2 wvlo h—y

)]

At this point we have solved the ODE; what remains is to backtrack along
the changes of variables we made to determine the path of the missile.
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110.4 Since 7 = Z—I this can be integrated to determine z as a function
of 7 - now we have the path of the missile:

“2anh+h (<10t (25)7 w0 (£)") ()
2 (—14+a?)

z(y) =

110.5 For the missile to hit the airplane, we need v > u or equivalently
a < 1. The distance the plane travels before it is hit by the missile is the
limiting value as y — h of the above:

ho

12

X

110.6 Here is the path of the missile when « = 0.8 ; we measure the
distances in units of A .

1}t

0.8y

0.67

0.4y

0.2

0.5 1 1.5 2

110.7 You can complete the story by even finding the time dependence of
y .We now know 7 as a function of 3 . So,

v 1 1 ry 9
t=["dy == [" 1+ )y
09y v Jo
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which can be done by mathematica:

hlfi(y) + f2(y) + f3(y)]
2 (=1 4a) (1+a) (1 + (hL_y)“)

t =

where

o= G ) (62
hs)=o (_1+ (ﬁ)) JH )

= (o (85) ) (25) ) e e55) 6

This determines the time dependence of the path parametrically.

111 The key steps where to remove the time dependence by mov-
ing to the reference frame of the airplane; and to regard y as the
independent variable instead of ¢ .



Chapter 13

The Wave Equation

112 All stable mechanical systems oscillate around their equilib-
rium configuration.

112.1 At an equilibrium, the force acting on the system is zero. A small
displacement from equilibrium might cause a force that pushes away from
the equilibrium point- then we have an unstable equilibrium. If every small
displacement leads to a force that acts to reduce the displacement, we have
stable equilibrium point. In this case the system will go back to the equi-
librium point, possibly overshoot it then be pushed back again and so on.
In the absence of dissipation ( friction etc.) these oscillations can go on for
ever. But typically they die down eventually.

112.2 A mechanical system whose configuration at an instant is determined
by a function of space is called a field. Examples are the height of the surface
of a liquid, the pressure of a gas and the eletromagnetic field.

113 The oscillations of a field are waves.

113.1 A small disturbance on the surface of water causes waves ( ripples) to
form; they spread until they are reflected by the boundary. The oscillations
in the pressure of a gas is sound. Oscillations of the electromagnetic field of
certain frequencies is percieved as [light.

114 The wave equation in one spatial dimension is
0? 0?
~Z h——¢=0
ot? 0x?

28
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114.1 If we define the variables v =z + t,v = x — ¢ , this can be brought
to the form

0?9 B
oudv

Thus any function of u alone or v alone will satisfy this equation.

115 The general solution of this wave equation is

o(t,x) = flx +t)+ gz —1).

115.1 If we are given initial conditions ¢(t = 0,2) = ¢(z) and ¢(t =
0,2) = p(z) , we can find the solution for all later times:

f@) +g(z) =q(z), [(z)—-g(z)=px)

so that

x

2/ ')z’ + q( ), 9(z) = ! p(w')d$'+%q(w)

2 Jo
The constant of integration is irrelevant as it will cancel when we add f and
g together to get ¢ :

ala+0)+ale— 0]+ 5 [ pt)de

2

NN

o1, x) =

115.2 This solves the initial value problem for the wave equation.



Chapter 14

Laplace Equation

116 The Laplace equation
0? 0?
—_ — 6=0
0x? o+ 0y?

arises in electrostatics, Newton’s theory of gravity, the theory of
ideal fluids etc.

116.1 If z =241y and 8:%[&—1'3—?!},5:%[%4—2'%] we can write

the Laplace equation as

117 The general solution of the Laplace equation is

o(z,y) = f(2) +g(2).

117.1 Here, [ is an analytic function and ¢ is an anti-analytic function.

117.2 For example, if ¢(z,y = 0) = ¢(z) and %‘S(I,y = 0) = p(z) are
given,

f(@) =q(z) +p(z), if'(z)—ig'(z) = p(z)

which allow us to solve for ¢ .

60
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118 Fourier transforms give another way of solving this boundary
value problem.

118.1 If we take the Fourier transform on the variable z ,

8(e,) = [ (k. u) o
we will get

6_2 b(k,y) = k%o

5720k 9) = (k)
Thus

&(k,y) = a(k) cosh ky + b(k) sinh ky.

Putting in the boundary conditions

a(k) = /q(x)e_“”dx, b(k) = %/p(x)e‘“”dw.

Now we can put back to get the answer needed.



Chapter 15

Initial Value problems

119 Many physical problems involve time evolution: given the
state of the system at an initial time, a differential equation predicts
its state at any future time.

119.1 For the wave equation, the initial state is given by ¢(z) = ¢(t =0, z)
and p(z) =o¢(t=0,x) .

119.2 For the diffusion equation,

on_ o
ot Ox?

the initial state is determined by the value of the function A(t =0,z) .

119.3 Certain properties of the state remain unchanged under time evolu-
tion. For the diffusion equation,

0
— t,x)dx =
8t/h( ,x)dx
For the wave equation,
/2
(%/ z)+ ¢ (t,z)]de = 0.

These are examples of conserved quantities. The latter is the total energy
of the wave.

62
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119.4 Some other properties might be monotonic in time:
S(t) = — / h(t, z) log h(t, z)dx

has positive time derivative in the case of the heat equation:

)
SoS(t) >0

This has the physical meaning of entropy.

120 We can solve the initial value problem of the diffusion and
wave equations by Fourier analysis.

120.1 Let h(t, k) = [ e "@h(t,z)dz ; it satisfies the ODE

Oh(t, k)

— 127
5 = —Kh(t. ).

The solution is

h(t, k) = h(0, k)e *t = ¢ /q(m')e’ikx,dx'.

120.2 Thus
h(t,z) = /q(x')K(t; x —x')dx
where

2
_z_
k2t ikz O e

K(t;x):/e e gzm



Chapter 16

The Method of Characteristics

121 First order PDE can be solved by the method of characteris-
tics.

121.1 Let ¢ : R? — R be the unkown function. Given vi,vy: B2 — R,
consider the first order PDE
5¢ 09

a +U28y 0.

121.2 The change in ¢ due to an infinitesimal change in the position is

0 (/5
5y

Hence, if we move to the point (a’ + vy (x, y)dt, y + vo(x,y)dt) from (z,y)
the function ¢ will not change: that is the meaning of the PDE. Here,
dt is some infinitesimal quantity determining the size of the step; (v, vs)
determine the direction. At this new point, point we can take another small
step determined by the new values of v»; and vy . Again, the value of ¢
will remain unchanged.

dg = 7 du+ ==

121.3 At each point (z,y) there is a vector v(z,y) = vi(z,y)i+ vao(z,y)j
; along a curve which is tangential to this vector at each pint the function ¢
is a constant. This curve is determined by the ODE

T = u0.0). Y = wle).0)

64
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121.4 Through each point there is one such curve; they cannot intersect
each other. These are the characteristic curves of the PDE.

121.5 Example:

96 _0¢ _,
ox 0Oy

The characteristic curves are x(t) = z(0)+¢,y(t) = y(0)—t, so that z+y =
constant. Along these curves, the function ¢ is a constant.

121.6 This idea works in any dimension: given a vector field (vy,---v,) ,
the solution to the equation

09

is constant along the curve determined by the ODE

pr vi(z(1)).

122 The solution of a linear first order PDE is determined by
ODESs: determine the characetristic curve and then determine the
variation along them.

122.1 The most general linear first order PDE is
0
S0l fh+g=0.

The characteristic curves are determined by the part that has derivatives.
Along each characteristic curve, we have the ODE

WD) 4 pav)otae) + o) = 0
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122.2 Example:

0 0
—¢+y—¢+3¢+x2:0.
ox dy

The characteristics are z(t) = z(0) +¢,y(t) = y(0)e' . Along them we have
the ODE

() + 36(t) + ((0) + )2 = 0.

This can be solved and then putting in the formula for the characteristic
curves, we get the solution of the PDE.



