Chapter 1

Formal Power Series

1 Given a sequence of complex numbers (a_0, a_1, a_2, \cdots) , with only a finite number of non-zero entries, we have a polynomial with these numbers as coefficients:

$$a(z) = \sum_{n=0}^{\infty} a_n z^n.$$

Although the notation makes it look like an infinite series, there are only a finite number of terms. The *order* of the polynomial is the largest n such that $a_n \neq 0$. We will also define the *degree* of the polynomial to be the *smallest* n such that $a_n \neq 0$.

2 Multiplication and addition of polynomials are really operations on their coefficients:

$$a+b(z)=\sum_n[a_n+b_n]z^n,\quad ab(z)=\sum_{n=0}^\infty\left[\sum_{\substack{k+l=n\k,l\geq0}}a_kb_l
ight]z^n$$

- 3 Under these operations the set of polynomials is a *commutative ring*, denoted by C[z]. In fact it is an *integral domain*; i.e., ab=0 implies that either a=0 or b=0.
- **3.1** This can be proved by contradiction. Suppose a and b are both non-zero and ab = 0. Let k be the degree of a and b the degree of b

; then the ab has coefficient a_kb_l for z^{k+l} which is non-zero; this cannot be, since ab=0.

4 The quotient field of an integral domain A is the space of ordered pairs $(a, b), b \neq 0$ with the equivalence relation

$$(a,b) = (c,d) \iff ad - bc = 0.$$

The equivalence class is denoted by ab^{-1} or a/b. With the definitions $(a/b) + (c/d) = ((ad + bc/bd), (a/b)(c/d) = (ac/bd) (a/b)^{-1} = b/a$ this is indeed a field. The standard example is: the quotient field of the integers is the field of rational numbers.

- 5 The quotient field of the ring of polynomials is the field of *rational functions*.
- 6 The *derivative* of a polynomial is defined to be

$$Da(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} z^n.$$

Clearly D[ab] = [Da]b + a[Db].

7 A formal power series is a generalization of a polynomial where we allow (a_0,a_1,\cdots) to be any sequence of complex numbers: with a possibly an infinite number of non-zero terms. It may no longer makes sense to evaluate the series $\sum_{n=0}^{\infty}a_nz^n$ for any number z. But since the operations on polynomials have a meaning directly in terms of the coefficients, we can define the sum, product and derivative of formal power series.

$$[a+b]_n = a_n + b_n, \quad [ab]_n = \sum_{\substack{k+l=n\\k,l \ge 0}} a_k b_l.$$

The set of formal power series is a ring, indeed even an integral domain. (The proof is the same as above.) It is denoted by C[[z]].

8 The derivative of a formal power series is

$$[Da]_n = (n+1)a_{n+1}.$$

- 9 Although the series $\sum_{n=0}^{\infty} a_n z^n$ may not converge, it is still a useful notation to encode the sequence as it explains the motivation for the above definitions.
- 10 It is useful to have a notion of distance in the space of formal power series. Define the *degree* of a to be the smallest n such that $a_n \neq 0$; if a=0 identically, we define its degree to be $+\infty$. Then define the distance between two series to be

$$d(a,b) = 2^{-\deg(a-b)}.$$

This is a metric:

$$d(a,b) \le d(a,c) + d(c,b).$$

In fact $d(a, b) = \max\{d(a, c), d(c, b)\}$ so that is a non-archimediean metric or *ultrametric*. The space of formal power series is the completion of the space of polynomials under this metric.

- **10.1** To see $d(a, b) = \max \{d(a, c), d(c, b)\}$, suppose $d(a, c) = 2^{-n_1}, d(c, b) = 2^{-n_2}$ with $n_1 \ge n_2$. Then c agrees with a upto n_1 , and with b upto n_2 . So a agrees with b upto n_2 .
- 11 The *reciprocal* of a formal series a of degree zero (i.e., $a_0 \neq 0$) is the unique power series $\frac{1}{a}(z)$ such that $a(z)\frac{1}{a}(z)=1$. Its coefficients are determined by solving the linear system

$$\begin{pmatrix} a_0 & 0 & 0 & \cdots \\ a_1 & a_0 & 0 & \cdots \\ a_2 & a_1 & a_0 & \cdots \\ \vdots & \vdots & \vdots & \cdots \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}.$$

- 12 The quotient field of the ring of formal power series is the field of sequences $a:Z\to C$ labelled by the integers such that, there exists a d with $a_n=0$ whenever n< d. (This is the space of formal Laurent series.) To see this, notice that a/b can be identified with $z^{-k}a(z)\frac{1}{z^{-k}b(z)}$ where k is the degree of b.
- 13 The translation of a series by a constant, $[T_{\alpha}a]_n = \sum_{m=0}^{\infty} a_{m+n} \binom{m+n}{n} \alpha^m$ is defined whenever this infinite series converges; e.g., when a(z) is an entire function.

14 The *substitution* of b into a (also called the *composition*) $a \circ b$ is defined if either $b_0 = 0$ or if a is a polynomial:

$$[a \circ b]_n = \sum_{k=0}^{\infty} a_k \sum_{\substack{l_1 + \dots + l_k = n \\ l_1, l_2 \dots > 0}} b_{l_1} b_{l_2} \dots b_{l_k}.$$

The point is that, for each n there are only a finite number of such l 's so that the series on the rhs is really a finite series.

14.1 It is actually sufficient that a is entire for $a \circ b$ to exist; i.e., that $\sum_{n=0} a_n z^n$ converge for any z. For, we can split $b(z) = b_0 + \tilde{b}(z)$ with $\tilde{b}_0 = 0$; then $a \circ b = T_{b_0} a \circ \tilde{b}$ is defined for a entire. The composition of power series is not always defined. Consider for example,

$$a(z) = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \quad b(z) = 1.$$

We will mostly use composition $a \circ b$ when $b_0 = 0$.

15 The set of formal power series

$$\mathcal{G} = \{ \sum_{n=0}^{\infty} \phi_n z^n | \phi_0 = 0; \phi_1 \neq 0 \}$$

is a group under composition: the group of *formal diffeomorphisms* or *formeo-morphisms*. The composition is

$$[\psi \circ \phi]_n = \sum_{k=1}^n \psi_k \sum_{l_1 + l_2 \cdots + l_k = n} \phi_{l_1} \cdots \phi_{l_k}$$

The inverse of ϕ (say ψ) is determined by the recursion relations

$$\psi_1 \phi_1 = 1, \quad \psi_n = -\frac{1}{\phi_1^n} \sum_{k=1}^{n-1} \psi_k \sum_{l_1 + \dots + l_k = n} \phi_{l_1} \cdots \phi_{l_k}.$$

15.1 The group \mathcal{G} has a representation (the *defining representation*) on the space of formal power series:

$$[\phi^* a]_n = [a \circ \phi]_n = \sum_{k=1}^n a_k \sum_{l_1 + l_2 + \dots + l_k = n} \phi_{l_1} \cdots \phi_{l_k}.$$

Just as a formal power series are a generalization of the notion of a polynomial or smooth function, a formeomorphism is a generalization of the notion of a change of independent variable or diffeomorphism.

- 15.2 \mathcal{G} is a topological group with respect to the ultrametric topology described above. The subset of polynomials with $\phi_0 = 0, \phi_1 \neq 0$ is not a group, only a monoid; the inverse of a polynomial is not usually a polynomial.
- 16 An infinitesimal formeomorphism (formal vector field) is a derivation of the algebra of formal power series. They form the Lie algebra $\underline{\mathcal{G}}$ of the group of formeomorphisms; it is a topological Lie algebra with the ultrametric d. A basis is

$$L_n = x^{n+1}D, n = 1, 2, \cdots$$

satisfying the commutation relations

$$[L_m, L_n] = (n-m)L_{m+n}.$$

This is also called the *Virasoro* algebra by some physicists and the *Witt* algebra by some mathematicians.

17 The left action of this Lie algebra on the group \mathcal{G} is given by

$$[L_n \phi]_k = \sum_{l_1 + l_2 \cdots l_n = k} \phi_{l_1} \cdots \phi_{l_n}$$

or equivalently $\, L_n \phi(x) = \phi(x)^n \,$. The right action is given by

$$R_n\phi(x) = x^{n+1}D\phi(x).$$