
Lecture 10

1. RANDOM MATRICES

The main reference is the book “Random Matrices” by M. L. Mehta.
More modern developents are in the book by D. Gioev and P. Deift.

1.1. A matrix whose entries are random variables is a random matrix.

Example 1. This idea was first pursued by Wigner in Nuclear Physics: the
thousands of energy levels of nuclei defied any simple dynamical descrip-
tion. The hamiltonian was modelled as a hermitean or real symmetric ma-
trix. Although the actual nuclear eigenvalues are not well described by this
model, the level spacing (energy difference between two successive energy
levels) fits with those of a random real symmetric matrix. (This happens
when the spin-dependent part of the nuclear hamiltonian is important.) Part
of the reason for the success is the universality of the spacing: it is the
same for a large class of random matrices. This may be viewed as analo-
gous to the central limit theorem, which says that the sum of a large number
of random variables is Gaussian for more or less any collection of random
variables.

Random matrix theory has turned out to have applications in many other
branched of physics and mathematics: zeros of the Riemann zeta funcion
of number theory, resistances of wires, statistical inference using Principal
Component Analysis and so on. For example let ξi for i = 1, · · ·N be a
sequence of random variables: prices of stocks in the S&P 500, rain falls in
the counties of NY state etc.

Example 2. Imagine we make p measurements of these quantities (e.g.,
closing stock prices on successive days, rainfalls on successive months).
We can arange these into an n× p rectangular matrix xia. By subtracting the
means values we get another vector:

yia = xia−
1
p

p

∑
b=1

xib

The covariance matrix is

Σi j =
1
p ∑

b
yiay ja

This is a positive symmetric matrix of random variables. The eigenvector
of the largest eigenvalue of this matrix is important in statistics: it captures
most of the random variation (Principal Component Analysis). What is the
distribution of this eigenvalue? This answer turns out to be universal (the
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same for a large class of random variables) and was found by Tracy and
Widom.

1.2. The simplest model of a random matrix is Gaussian. Here we as-
sume that the matrix elements are independent Gaussians.

1.3. The Gaussian Unitary Ensemble (GUE) is a random hermitean
matrix whose elements have the joint probability distribution function.

1
Z

e−trA2
dA

Here Z is a normalization constant. We assume that the mean of each
matrix element is zero. There are N2 independent real variables in A once
the condition of hermiticity is imposed. The p.d.f. is invariant under the
action of the unitary group

A→UAU†, A ∈U(N)
which explains the name.

1.3.1. The Gaussian Orthogonal Ensemble (GOE) is a random real sym-
metric matrix with the analogous p.d.f. This time it is invariant under the
orthogonal group action

A→ gAgT , g ∈ O(N)

1.4. Although the matrix elements are independent variables, the eigen-
values are not. In particular the eigenvalues exhibit the phenomenon of
level repulsion: two eigenvalues of a matrix are unlikely to be close to each
other. We can prove this by considering the special case of 2×2 hermitean
matrices. Any such matrix can be expanded in terms of the Pauli matrices:

A = a01+a1σ1 +a2σ2 +a3σ3 := a0 +a ·σ
The eigenvalues are

λ1,2 = a0±a, a = |a|
The joint pdf of the matrices elements is

e−[a
2
0+|a|2]da0d3a

Z
In polar co-ordinates

e−[a
2
0+a2]a2 da0da

Z
Thus joint of p.d.f. , (a = λ2−λ1

2 )
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e−[λ
2
1 +λ 2

2 ]|λ1−λ2|2
dλ1dλ2

Z
The extra factor |λ1−λ2|2 is the Jacobian of the change of variables from

the matrix elements to the eigenvalues.

1.5. The joint p.d.f. of the eigenvalues of the GUE is.

P(λ1, · · · ,λN) = e−∑i λ 2
i ∏

i< j
|λi−λi|2

dλ1 · · ·dλN

Z

The tricky part is to compute tha Jacobian ∏i< j |λi−λi|2: the transfor-
mation to eigenvalues is analogous to that to polar co-ordinates. This factor
can be thought of the volume of the set of all matrices of a given spectrum
{λ1, · · ·λN}.

A = Udiag(λ1, · · ·λN)U†

dA = Udiag(dλ1, · · ·dλN)U† +[dUU†,A]

tr dA2 = ∑
i

dλ
2
i +2 ∑

i,<i
(λi−λ j)2|

[
U†dU

]
i j
|2

This is similar to the formula of the metric of Euclidean space in polar
co-ordinates. The formula for the p.d.f. above follows.

1.6. Of special interest is the probability density of a single eigenvalue
obtained by integrating all the others out:

R(λ1) =
ˆ

e−∑i λ 2
i ∏

i< j
|λi−λi|2

dλ2 · · ·dλN

Z

Remarkably, this approaches a limit as N→ ∞. More precisely,

1.7. The p.d.f. of the normalized variable x = λ√
N

tends to the semi-
circular distribution.

ρ(x) =
1
π

√
2− x2

In particular, the probability for |x|>
√

2 is zero.

1.8. Also of interest is the correlation function of a pair of eigenvalues
T2 defined by.

R2(λ1,λ2) =
ˆ

e−∑i λ 2
i ∏

i< j
|λi−λi|2

dλ23 · · ·dλN

Z

T2(λ2,λ2) = R2(λ1,λ2)−R(λ1)R(λ2)
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1.9. This tends, as N → ∞ to a universal function of the normalized
difference r =

√
2N|λ2−λ1|.

1−
[

sinπr
πr

]2

Although the formula is originally derived for Gaussians, the correlation
turns out to be true for more or less any ensemble of hermitean random
matrices.

1.10. Amazingly, computations show that the zeros of the Riemann zeta
function ζ (1

2 + iλ ) have the same correlation function. Perhaps this is
because the zerosλi are the eigenvalues of some hermitean matrix. This
gives some strategies for proving the most famous problem in mathematics,
the Riemann hypothesis.

1.11. Tracy and Widom also obtained a universal p.d.f. for the largest
eigenvale of a hermitean matrix in terms of the Painleve transcendent of
type II. The Painleve transcendents are a class of six functions that satisfy
certain “integrable” ordinary differental equations. Mathematical physicists
love them as they interpolate between Airy functions and elliptic functions
and have many other beautiful properties.


