
Lecture 11

1. RELATIVITY

1.1. It is an astonishing physical fact that the speed of light is the same
for all observers. This is not true of other waves. For example, the speed
of sound measured by someone on standing on Earth is different from that
measured by someone in an airplane. This is because sound is the vibration
of molecules of air while light is the oscillation of electric and magnetic
fields: there is no medium (ether) needed for its propagation. If an observer
is moving with velocity v1 relative to air, the speed of sound measured by
him/her would be

v = v1 + cs

where cs is the speed of sound measured by a static observer.

1.2. The law of addition of velocities has to be modified to take account
of this fact. The usual law (Galeleo) for addition of velocities (considering
only one component for simplicty)

u+ v

would lead to velocities greater than or less than c , the speed of light.
The correct law is

u+ v
1+ uv

c2

.

1.3. Rapidity is a more convenient variable than velocity in relativistic
mechanics. If either u or v is of magntitude c, the sum is also of magnitude
c. If we make the change of variables (considering only one component for
simplicity)

v = c tanhθ

this formula becomes simple addition:

tanh[θ1 +θ2] =
tanhθ1 + tanhθ2

1+ tanhθ1 tanhθ2
.

The variable θ is called rapidity. Although velocities cannot exceed
c,rapidity can be as big as you want. As θ → ∞, v→ c. This also sug-
gests that a boost (change of velocity) is some kind of rotation, through an
imaginary angle. Remember that tan iθ = i tanhθ .
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1.4. The wavefront of light has the same shape for all observers. Imag-
ine that you turn on and off quickly a light bulb at t = 0,at the position x = 0.
Light propagates along cone

c2t2− x2
1− x2

2− x2
3 = 0,

1.5. The laws of physics must be the same for all observers. This is the
principle of relativity. It is not a discovery of Einstein: what is new is really
how he reconciled this principle with the fact that the velocity of light is the
same for all observers. Einstein realized that Newton’s laws of mechanics
need to be modified to fit with the new law for the addition of velocities.
Minkowski realized that the theory of relativity can be understood geomet-
rically: it says that the square of the distance between two events (points in
space-time) is

c2(t− t ′)2− (x1− x′1)
2− (x2− x′2)

2− (x3− x′3)
2

Lorentz transformations (changes of velocities) are like rotations in the
x− t plane. Because of the relative sign difference between the time and
space components, these rotations are through an imaginary angle; this an-
gle is rapidity. More generally

1.6. The Minkowski inner product of four-vectors is.

u · v = u0v0−u1v1−u2v2−u3v3

It is useful to write this as

u · v = uT
ηv

where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is called the Minkowski metric.

Remark 1. Be warned that all physicists except particle physicists, use the
opposite convention, with three positive and one negative sign. Even some
particle physicists use the opposite convention (e.g., S. Weinberg).

The points of space time are four vectors with components ct,x1,x2,x3.
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1.7. Rapidity can be thought of as an angle in the x t plane. Again con-
sider just one direction for space. Supose x t and x′ t ′ are space and time as
measured by two observers. Since they must agree that the velocity of light
is the same, the shape of the wave front must be the same as well:

c2t2− x2 = c2t ′2− x′2

This means that

x′ = coshθx− sinhθct

ct ′ = coshθct− sinhθx

for some real number θ . Similar to the way a rotation in the plane leaves
the square of the distance x2 + y2 unchanged. We can identify this angle
with rapidity. Along x′= 0 (the position of one of the observers) the relation
between xand t is

x
t

= c tanhθ .

In other words v = c tanhθ . The above is an example of a Lorentz trans-
formation. More generally,

1.8. A Lorentz transformation is a 4×4 matrix that leaves the Minkowski
distance unchanged. Thus a Lorentz transformations is much like a rota-
tion, except that the matrices must satisfy the condition

Λ
T

ηΛ = η .

1.9. The products and inverses of Lorentz transformations are also
Lorentz transformations. This means that the set of Lorentz transforma-
tions forms a group. It is denoted by O(1,3) : orthogonal matrices with
respect to a metric ηwith 1 positive sign and three negative signs.

1.9.1. O(3) is contained as a special case of O(1,3). A matrix that does not
mix space and time 

1 0 0 0
0
0
0

R


is a Lorentz transformation if R is orthogonal.
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1.9.2. We can split Lorentz transformations into four types using the signs
of detΛ and Λ00.. If Λ00 < 0 the transformation includes a time reversal. If
Λ00 > 0 and detΛ < 0, it includes a space reversal (Parity). The subgroup
with

detL > 0, Λ00 > 0
is called the set of proper Lorentz transformations SO(1,3). Although

at first all four types of Lorentz transformations appeared to be at he same
footing, it turned out neither Parity nor time reversal is an exact symmetry
of nature.

1.9.3. Only the proper Lorentz transformtions are exact symmeties of na-
ture. Parity is violated by the weak interactions: essentially the fact that
neutrinos are left handed. Time reversal is violated by the phase in the mass
matrix (Kobayashi-Mazkawa matrix) of quarks.

1.9.4. Infinitesimal Lorentz transformations form a six dimensional Lie al-
gebra. If Λ = 1 + λ for some small matrix λ , the Lorentz condition be-
comes

λ
T

η +ηλ = 0
This means that ηλ is anti-symmetric. A four by four antis-symmetric

matrix has six independent components. Three of them represent infinites-
imal rotations. The remaining three are boosts (changes of velocity) in the
three co-ordinate directions. Any infinitesimal Lorentz transformation can
be written as the sum of the six independent matrices:

L12 =


0 0 0 0
0
0
0

0 −1 0
1 0 0
0 0 0

 , L23 =


0 0 0 0
0
0
0

0 0 0
0 0 −1
0 1 0

 , L13 =


0 0 0 0
0
0
0

0 0 −1
0 0 0
1 0 0

 ,

(1.1)

L01 =


0 1 0 0
1
0
0

0 0 0
0 0 0
0 0 0

 , L02 =


0 0 1 0
0
1
0

0 0 0
0 0 0
0 0 0

 , L03 =


0 0 0 1
0
0
1

0 0 0
0 0 0
0 0 0


They satisfy the commutation relations

[L12,L23] =−L13

[L12,L01] = L02
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[L01,L02] =−L12

and their cyclic permutations. These commutation relations define the
Lorentz Lie algebra. They can also be written as

[Lµν ,Lρσ ] = ηνρLµσ −ηµρLνσ −ηνσ Lµρ +ηµσ Lνρ

1.9.5. In addition to Lorentz transformations, translations are also sym-
metries. Together they form a ten dimensional algebra of symmetries, the
Poincare’ algebra.

[Lµν ,Lρσ ] = ηνρLµσ −ηµρLνσ −ηνσ Lµρ +ηµσ Lνρ

[Lµν ,Pρ ] = ηνρPµ −ηµρPν

(1.2) [Pµ ,Pν ] = 0.

1.10. Invariance under translations leads to the conservation of energy
and momentum.

1.11. Energy and momentum transform together as a four-vector un-
der Lorentz transformations.

p = (E,cp1,cp2,cp3).

1.12. The relation between energy and momentum is.

p · p = m2c4, E > 0

Geometically, this one sheet of a hyperboloid in four-dimensional space,
called the mass shell.

E =
√

m2c4 + c2p2

In particular, even a particle at rest has energy

E = mc2.

For velocities small compared to c,

E ≈ mc2 +
p2

2m
The second term is the Newtonian formula for kinetic energy. Since the

mass of particles usually do not change,in most situations we do can ignore
the first term. But in nuclear reactions, this energy can be released with
spectacular results.
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1.13. For massless particles the momentum vector is null. The inner
product of momentum with itself is zero

p · p = 0.

Geometrically, the set of null momenta is a cone in four-dimensional
space.

The relation of energy to momentum is

E = c|p|

1.14. Free particles move along straight lines in Minkowski space. Mas-
sive particles move along time-like straight lines: the tangent vector has
positive inner product with itself. Massless particles move along null lines.

1.15. Conservation of energy-momentum places important restrictions
on decays and scattering of elementary particles.

2. THE SCHRODINGER EQUATION HAS TO BE CHANGED TO TAKE
ACCOUNT OF RELATIVITY

Recall that in quantum mechanics

p =−ih̄
∂

∂x
, E = ih̄

∂

∂ t
.

The relation

E =
p2

2m
of non-relativistic mechanics gives the Schrodinger equation for a free

particle:

ih̄
∂ψ

∂ t
=− h̄2

2m
∂ 2ψ

∂x2 .

For a relativistic particle instead

E2 = c2p2 +m2c4

leading to
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2.1. The Klein Gordon Equation.

1
c2

∂ 2ψ

∂ t2 =
∂ 2ψ

∂x2 −
(mc

h̄

)2
ψ.

The quantity h̄
mc has the dimension of length; it is a fundamental property

of a particle determined by its mass, called its Compton wavelength. It is
called that because this combination first appeared in Compton’s explana-
tion of the scattering of gamma rays by elecrons. Now we know that this
equation only describes spin zero particles. Dirac discovered the correct
equation for spin one half particles like the electron.

2.2. For a massless particle this becomes the wave equation.

1
c2

∂ 2ψ

∂ t2 =
∂ 2ψ

∂x2

2.3. Mass and spin define the transformation properties of an elemen-
tary particle. Mass is defined by the norm of the momentum four-vector.

p · p = m2

Spin s is defined in a similar way by

W ·W = m2s(s+1)
where

W µ = ε
µνρσ pνLρσ

is the Pauli-Lubanski vector. Its time component is the dot-product of
angular momentum and momentum. Thus it picks out the intrisic or spin
component of angular momentum: orbital angular momentum has zero dot
product with momentum.

2.4. In the quantum theory, infinitesimal translations and Lorentz trans-
formations are represented by hermitean operators on the Hilbert space.

2.5. An elementary particle is such an irreducible representation of the
Poincare Lie algebra. Irreducible means that every state in the Hilbert
space can be turned into any other state by some Poincare transformation.
If the representation is not irreducible, there would be some subset of states
that only mix with each other (form an invariant subspace) and then the
system can be broken up into two pieces (the invariant subspace and its
complement). So it would not be elementary or indivisible.This mathemat-
ical realization of the physical concept of an elementary particle is due to
Wigner.
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3. A DIGRESSION INTO DE SITTER GEOMETRY

3.1. Gravity modifies the geometry of space-time. Particles move along
geodesics (lines of least length) instead of straight lines. The departure of
the geomery from Minkowski space manifests itself as the bending of the
paths of particles (and light) by gravity.

3.2. Far away from all sources of gravity, space-time will tend to Minkowski
space.

3.3. Recent observations suggest that even afar away from all galaxies,
space-time is curved. The source of gravity at these distances is not mat-
ter: it is a mysterious new entity we call dark energy. It could well be a
positive cosmological constant. Asymptotically (far away from all matter)
space-time appears to have de Sitter rather than Minkowski geomery.

3.4. de Sitter space can be thought of as the hyperboloid (pseudo-sphere).

y2
0− y2

1− y2
2− y2

3− y2
4 =−ρ

2

Just the sphere of radius r can be thought of as the set of points in three
dimensional Euclidean space satisfying the condition

x2
1 + x2

2 + x2
3 = r2.

The extra co-ordinate does not necessarily have a physical meaning: it
is only the directions within the four-dimensional subspace that describe
space-time. In the limit r→ ∞ the sphere tends to the plane; in the limit
ρ → ∞ de Sitter space tends to Minkowski space. The distance ρ is several
billion light years. Therefore for small distances of the size of elementary
particles, we can treat space-time as if it has Minkowski geometry. Still,
it is possible that the dark energy that supports de Sitter geometry has its
origin in the vacuum energy of elementary particles.

3.5. The symmetry of de Sitter space is SO(1,4). In the limit ρ → ∞ it
reduces to Lorentz transformations and translations. The basis of infinites-
imal de Sitter transformations can be thought of as 10 five by five matrices
analogous to (1.1) above. Momentum and energy are no longer conserved,
as translations are not any more a symmetry of space. Still, an elementary
particle would still be described by two numbers analogous to mass and
spin:

LabLab, WaW a

where

W a = ε
abcdeLbcLde.
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One important consequence is the energy will not be positive. Polyakov
has suggested that this makes de Sitter space unstable with respect to decay
by creation of particle-antiparticle pairs. This could explain why the cos-
mological constant is so small: most of it is removed by the decay process.
Why a tiny amount of dark energyremains would still be a mystery. Ex-
plaining dark energy is one of the most important problems in theoretical
physics today.

3.6. The de Sitter metric is.
ds2 = dt2− e−2t(dx2

1 +dx2
2 +dx2

3)

3.6.1. The vectors e0 = ∂

∂ t , ei = et ∂

∂xi satisfy.

[e0,ei] = ei, [ei,e j] = 0

This is a solvable Lie algebra; the de Sitter space is its Lie group. The
metric is induced by the quadratic form e2

0 − e2
1 − e2

2 − e3
3 through left-

translations. In this point of view, energy and momentum do not commute
unlike in Minkowski space. Instead, energy generates scale transformations
in momentum.


