
Lecture 9

1. COMPACT LIE ALGEBRAS

1.1. An inner product on a real vector space is a positive bilinear func-
tion 〈., .〉 : V ×V → R. That is

< u,v >=< v,u >

< u,u >≥ 0, < u,u >= 0 =⇒ u = 0.

< α1u1 +α2u2,v >= α1 < u1,v > +α2 < u2,v >

1.2. A Lie algebra is said to be compact if it has an invariant inner
product. Invariant means that

< [u,v],w > + < v, [u,w] >= 0.

This is the infinitesimal version of the condition that the inner product be
invariant under the action of a group.

Example 1. Recall that o(3) is the Lie algebra of vectors in R3 under the
cross product. Then the dot product is an invariant inner product

(u×v) ·w+v · (u×w) = 0.

Thus o(3)is an invariant inner product.

Example 2. More generally, o(n) (the space of antisymmetric real matrices
under commutator) is a compact Lie algebra. There is an invariant inner
product

< a,b >=−tr ab

The negative sign makes it positive −tra2 = traT a≥ 0. Also

tr[a,b]c+ trb[a,c] = tr[a,bc] = 0.

Exercise 3. u(n) is a compact Lie algebra as well. Recall that it is the space
of anti-hermitean matrices. What is the inner product?

Example 4. su(n) is a compact Lie algebra.
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2. IDEALS

2.1. The Direct Sum of two vector space V1 and V2 is the set of ordered
pairs with pairwise addition and multiplication.

(u1,u2)+(v1,v2) = (u1 + v1,u2 + v2)

α(u1,u2) = (αu1,αu2)

2.2. The Direct Sum of two Lie algebras has commutators defined through
each component as well.

[(u1,u2),(v1,v2)] = ([u1,v1], [u2,v2])

2.3. The Direct Sum of Lie algebras correspond to the Direct Product
of Lie Groups.

(g1,g2)(h1,h2) = (g1h1,g2h2)

etc. Roughly speaking a Lie group is the exponential of its Lie algebra.
That is why one operation is called sum and the other the product.

2.4. A subalgebra of a Lie algebra is a subspace that is closed under
the Lie bracket.

2.5. If H ⊆ G is a subspace such that u ∈ H,v ∈ G =⇒ [u,v] ∈ H then
H is an ideal of G. Note that an ideal is a special kind of subalgebra.

Exercise 5. su(n) (traceless matrices) is a Lie subalgebra of u(n). Is it an
ideal?

2.6. A Lie Algebra is said to be simple if it has no proper ideal. Proper
means that the ideal is not either the trivial subspace or the whole space:
these cases are uninteresting, of course. Simple here does not mean easy
to understand. It means indvisible. In hindsight a name like “Prime Lie
Algebra” would have been better than “Simple Lie Algebra”.

2.7. A Lie Algebra is semi-simple if its proper ideals are abelian. Thus
u(n) is not semi-simple: the multiples of the identity are an abelian ideal.

2.8. Any compact Lie algebra is the semi-direct sum of a semi-simple
Lie algebra with an abelian Lie algebra. If the Lie algebra G has a rep-
resentation on a vector space V , the semidirect sum is the Lie algebra with
bracket

[(a,v),(a′,v′)] = ([a,a′],av′−a′v)
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2.9. Any compact semi-simple Lie algebra is the direct sum of simple
Lie algebras. The orthogonal complement of an ideal in such a Lie algebra
is also an ideal: so we can split it as a sum. We can iterate this until we run
out of ideals.

2.10. su(n),o(n) are simple Lie algebras. There is a similar sequence of
algebras called sp(n) made of matrices with quaternionic entries.

2.11. This is almost a complete list of compact simple algebras: there is
just a finite number of exceptional algebras in addition to these. These
have names like G2,F2,E6,E7,E8 and are related to octonions ( a number
system whose multiplication not associative, but whose commutator still
satisfies the Jacobi identity.) Despite many valiant attempts these have not
been found to be very useful in physics.

2.12. It looks like physics prefers ordinariness rather than exception-
ality.

2.13. Compact Simple Lie algebras and U(1) are the building blocks of
fundamental theories of physics. The structure theory of compact sim-
ple Lie groups due to Cartan is one of the gems of mathematics. It is
beautiful looked at from any angle. These groups show up in physics
over and over: first in nuclear physics(SU(2) : Heisenberg and Wigner)
then particle physics (su(3): Gell-Mann, Okubo) then in unified theories
(SU(2)×U(1) Glashow, Salam, Weinberg), attempts at Grand Unification
(SU(4):Pati,Salam, SU(5) Georgi, Glashow) and string theory (E8 Gross,Witten).
This theory is the toolkit of model builders: the phenemenologists who try
to fit observations into a unified theory. See the book by Georgi for much
more on this.

Example 6. u(n) is not simple: the subalgebra of matrices that are propor-
tional to the identity is an ideal.

2.14. Any compact Lie algebra is the direct sum of simple and abelian
Lie algebras.

Exercise 7. u(n) = R⊕ su(n).
Thus we can get a complete list of all compact Lie algebras if we can

find all the compact simple algebras. Mathematicians (like botanists or li-
brarians) love to organize things into lists and classify them. Cartan gave
the complete list of compact Lie algebras, and in particular discovered the
exceptional Lie algebras.
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2.15. The rank of a Lie algebra is the largest number of linearly inde-
pendent commuting elements.

Exercise 8. The rank of u(n) is n. The rank of su(n) is n−1.

Exercise 9. The rank of o(2k) is k and that of o(2k +1) is k as well.

2.16. A Cartan subalgebra of a Lie algebra is an abelian subalgebra
of maximal dimension. The rank of a Lie algebra is the dimension of a
Cartan subalgebra.

2.17. It is convenient to use an orthonormal basis of the invariant inner
product.

[ea,eb] = fabcec

2.18. The invariance of the inner prodct implies that the structure con-
stants fabc are completely anti-symmetric. That

fabc =− fbac

follows from the anti-symmetry of the Lie bracket. The additional anti-
symmetry

fabc + facb = 0
follows from invariance of the inner product. (Prove this!)

3. SU(3)

3.0.1. The group SU(3) is of much interest in particle physics.

3.1. K± are pseudo-scalar , isospin 1
2 particles of mass 494 Mev that

only decay by weak interactions. They were called “strange particles”
when they were discovered. What was strange about them is that they
were unusually long lived (10−8s): suggesting that they carry a quantum
number that is approximately conserved. This number was called “strange-
ness” (Gell-Mann). They are each other’s anti-particles. K+ was assigned
strangenesss S = +1and therefore K− would have S = −1. Unlike π± the
K± have form an isospin 1

2 doublet.

3.2. K0, K̄0 is another pair of pseudo-scalar , isospin 1
2 particles of mass

498 MeV that are also stable under strong interactions. K0 has I3 =
−1

2 ,S = 1 and K̄0has I3 = 1
2 ,S = −1 .The charges of all the K-mesons can

be fit by changing the formula for electric charge (Gell-Mann-Nihijima)

Q = I3 +
B+S

2
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3.3. The new quantum number is counts the net number of a new kind
quark, the strange quark. By a twist of fate, the strange quark has S =−1
and the strange anti-quark hs S = +1. It has baryon number 1

3 like the u and
d quarks. From the above formula we see that its electric charge is −1

3 .
That is the same charge as the d quark. Thus we have the constituents of
the Kaons:

K+ = s̄u, K− = ūs, K0 = s̄d K̄0 = d̄s

3.4. There is also a neutral pseudoscalar meson that has strangeness
zero and isospin zero.

η
0 = s̄s

with a mass ≈ 548MeV. It decays mostly into 2γ which can be thought
of as the strange quark and anti-quark annihilating each other. A more
accurate description of the η0 includes mixing with ūu and d̄d . More on
mixing later.

3.5. The s quark is heavier than the uand d quarks. which explains why
particles that contain it as a few hundred MeV heavier than corresponding
particles made from u and dquarks alone.For example, mK+ −mπ+ ≈ 350
MeV.Recall that the d quark is slightly heavier (by a few MeV) than the
u quark to explain the neutron-proton mass difference. For strong interac-
tions, the three quarks behave the same way. If we also ignore their mass
differences, the isospin symmetry is enlarged to a symmetry that rotates
three quarks into each other. Since these transformations can involve com-
plex matrices, the symmetry must involve 3× 3 complex matrices. One
natural choice is to generalize the SU(2) of isospin to SU(3). This is not
the only possibility: there several rank two Lie groups (with two commut-
ing quantum numbers such as I3 and S) to choose from. But SU(3) is what
worked.

3.6. The 8 pseudo-scalar mesons form a representation of SU(3). Anal-
ogous to the way the pions form a three dimensional representation of
SU(2).

3.7. A basis for su(2) is provided by the Pauli matrices.

3.7.1. More precisely any traceless hermitean 2× 2 matrix can be written
as.

A = a1
σ1

2
+a2

σ2

2
+a3

σ3

2

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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The coefficients ai are real. The factor of i is needed to make the term
anti-hermitean. the factor of 1

2 is a convention, which assures that

tr A†A = a2
1 +a2

2 +a2
3.

Thus the Pauli matrices provide an orthonormal basis of the invariant
inner product in su(2) .

3.7.2. We can think of the up and down quarks as eigenstates of σ3with
eigenvalues ±1.

3.7.3. As more quarks were added, the approximate symmetry of isospin
came to be enlarged to larger groups. The up, down and strange quarks
correspond to su(3).

3.8. The number of linearly independent elements of u(n) is n2. A her-
mitean mtrix has n2 independent components: there are n real entries along
the diagonal and n(n−1)

2 complex numbers above the diagonal. The entries
below the diagonal are not independent because they are just complex con-
jugates of the ones above, so the total is n + 2n(n−1)

2 = n2. Since an anti-
hermitean matrix is simply i times a hermitean one, its number of indepen-
dent components is also n2.This is called the dimension of u(n).

3.8.1. The dimension of su(n) is n2− 1. The condition of being traceless
imposes one condition among the diagonal entries, so the number of inde-
pendent components of su(n) is n2−1.

3.8.2. The dimension of su(3) is 8. Its rank is 2.

3.9. The Gell-Mann matrices provide a basis for su(3).

A = a1
λ1

2
+a2

λ2

2
+a3

λ3

2
+a4

λ4

2
+a5

λ5

2
+a6

λ6

2
+a7

λ7

2
+a8

λ8

2

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0


λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0


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λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


These are normalized such that

tr λαλβ = 2δαβ .

3.9.1. λ3 and λ8 are diagonal. They span a Cartan subalgebra of su(3).

Exercise 10. Derive the commutation relations of su(3)in the Gell-Mann
basis. That is, write the commutators

[
λα ,λβ

]
= i fαβγλγ as linear combi-

nations ofthe Gell-Mann matrices. Identify subsets of generators that are
transformed among each other by the basis of the Cartan subalgebra..


