GRAVITATION F10

S. G. RAJEEV

Lecture 11
1. THE WAVE EQUATION

1.1. The amplitude of a small wave propagating with speed c satisfies.
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1.1.1. Plane waves are solutions
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1.2. In Lorentz invariant form the wave equation is.
" 0,0,¢0 =0

Remember that all wave equations are invariant under Lorentz transformations;
even sound. But there is something special about light: the speed is the same for all
observers. Relativity is much more than invariance under Lorentz transformations.

1.3. The wave equation follows from a variational principle.
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1.3.1. Here dz stands for the volume measure of space-time dx’dxtdx?dx®. Just
like in mechanics, except that the function depends on several variables.

08 = /n‘t”aﬂqbau(wdx: /81, (" 0,0 )] dx—/[n””(“),,auﬂ dpdx

By using Gauss’ theorem (that the integral of the divergence of a vector field is
equal to flux through the boundary) the first term depends only on the boundary.
We assume that the variation d¢ = 0 at the boundary; this is analogous to requiring
that the variation should vanish at the initial and final points in mechanics. Thus
the condition that 45 = 0 is the wave equation.
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1.4. Under nonlinear change of co-ordinates the volume measure changes
by the Jacobian determinant. Recall that the Jacobi matrix appears in the
infinitesimal change of co-ordinates

o'V
v o__
dz'’ = Dk
and that the change in volume measure involves the Jacobian

dzt = JZd:E”

dz’ = dada da?da® = det Jdz

1.5. The determinant of the metric tensor transforms with the square of

the Jacobian.
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det[g'] = [det J] % det g

1.5.1. The metric tensor of space-time has negative determinant. There are three
negative eigenvalues (space) and one positive eigenvalue (time).

1.6. The combination /— det gdz is invariant under co-ordinate transfor-
mations. The determinants cancel out. If the metric is positive we would not put
in the negative sign.

1.6.1. In spherical polar co-ordinates.

ds® = dr? +r? [d92 + sin? Hd(bﬂ

Vgdz = r? sin 0drdfde

1.7. The generally covariant version of the action for the wave equation

is.
1
S = 3 /g“”aﬂqﬁayq’) \/—detg dx

The combination g#*0,¢0,¢ is a scalar: is invariant under co-ordinate changes.
The last part v/— det g dx is invariant as well.

1.8. The generally covariant version of the wave equation is.
Oy [ —det gg””@,,d)} =0

As above

59 = / 9" 8,60,6¢ \/— det g dz = / 8, [g"l’@uqﬁdaﬁ /—det g} da— / 8, [gwam /= det g] Soda
Again the first term is zero because d¢ = 0 on the boundary.

1.8.1. But we could have obtained a generally covariant wave equation by replacing
partial derivatives by covariant derivatives.

guVD;LDuQ/) =0
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1.8.2. This happens to be equivalent to the one above.
1

0, [/~ detgg""9,0] = ¢ D,D,

T " et 99" 00| = ¢"" D, Dy

Proof. First, recall that the covariant derivative and partial derivative are the same
for a scalar. Thus

9" Dy Dy¢ = g" 0,0, — g"' 1,0,

Now,
HY TP ! HY PO
g F;u/ = 59 g [81/90'/1, + ap,gaz/ - aag;u/}

1
= guuaﬂgmjgpo - igpo [guyaag,uu]

Next, recall that the infinitesimal variation of the inverse of a matrix is related
to its own variation by

d[A™] = —AdA]A™!
Thus

9" 00950 9"" = —0ag"”’
and

gﬂyaugaugpo = - ugup
On the other hand the variation of the determinant of a matrix can be calculated
using

logdet A = trlog A

OpdetA
m = tI'A 8”‘4

Thus

9" 05 g = 0, log[— det g]
(Switching the sign only shifts the log by a constant.) and

1 Ou/—det g
Z [aMV — 1 _ —rv I
5 (9" 05 9p] = Oy log v/ — det —Tors

Pulling all this together

LV v L 1
9" DDy, = g""0,0,¢ + [0,9""] 0,0 + /—detyg [au\/ —det 9} g""0,9.
The r.h.s. is the same as
1

v—detg

expanded out. (I

Oy [ —det gg“”apq’)}
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1.9. The wave equation in curved space time is.
9" D, D,y =0
For calculations the equivalent form ﬁau [\/ —det gg“’”@p(ﬂ =0 is more con-
venient.
2. MAXWELL'S EQUATIONS IN CURVED SPACE-TIME
2.1. Recall that Maxwell equations in Lorentz covariant form are.
0, F" =3V, Fu =0,A, —0,A,.

2.2. They follow from the variational principle.

1
S=1 / FMF,dx + / " A, dx

First,

58 = / Fr,5 A, da + / V5 A, dx
Now integrate by parts the first term.

2.3. This leads to a wave equation with source for the electromagnetic
potential.

0,0t A” — 0" [0, AH] = 5"
It is common to impose the condition 9, A" = 0,(the Lorentz gauge) taking

advantage of the gauge invariance A4, — A, + d,A. Then each component of A4,
satisfies the wave equation

0 ot AY = j¥
2.4. The generally covariant form of Maxwel’s equations is.
D, F" =3¥,  F,, =0,A, —0,A,

Recall that the Christoffel symbols cancel out in the antisymmetric derivative of
a covariant vector.

2.5. In terms of potentials.
D,D"AY — D,D"A, = j*

We cannot interchange the derivatives in the second term without introducing
some terms involving curvature.

2.6. An equivalent form of the curved space Maxwell’s equations is.

1 »
T [V A Fue =

2.7. This follows from the covariant variational principle.

1 .
S = Z/Fuquag“ngU\/Tetgdx‘F/]#Au\/Tetgdz
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2.8. These equations tell us how the gravitational field affects the propa-
gation of light. For example it can tell us how light is diffracted and refracted by
a gravitational field. Spectacular phenomena such as gravitational lensing follow
from this. More later.



