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1. Maxwell’s Equations in Curved Space-Time

1.1. Recall that Maxwell equations in Lorentz covariant form are.

∂µF
µν = jν , Fµν = ∂µAν − ∂νAµ.

1.2. They follow from the variational principle.

S =
1

4

ˆ
FµνFµνdx+

ˆ
jµAµdx

First,

δS =

ˆ
Fµν∂µδAνdx+

ˆ
jνδAνdx

Now integrate by parts the first term.

1.3. This leads to a wave equation with source for the electromagnetic

potential.

∂µ∂
µAν − ∂ν [∂µA

µ] = jν

It is common to impose the condition ∂µAµ = 0,(the Lorentz gauge) taking
advantage of the gauge invariance Aµ �→ Aµ + ∂µΛ. Then each component of Aµ

satisfies the wave equation

∂µ∂
µAν = jν

1.4. The generally covariant form of Maxwel’s equations is.

DµF
µν = jν , Fµν = ∂µAν − ∂νAµ

Recall that the Christoffel symbols cancel out in the antisymmetric derivative of
a covariant vector.

1.5. In terms of potentials.

DµD
µAν −DµD

νAµ = jµ

We cannot interchange the derivatives in the second term without introducing
some terms involving curvature.

1.6. An equivalent form of the curved space Maxwell’s equations is.

1√
− det g

∂µ
��

− det ggµρgνσFρσ

�
= jν

1



GRAVITATION F10 2

1.7. This follows from the covariant variational principle.

S =
1

4

ˆ
FµνFρσg

µρgνσ
�
− det gdx+

ˆ
jµAµ

�
− det gdx

1.8. These equations tell us how the gravitational field affects the propa-

gation of light. For example it can tell us how light is diffracted and refracted by
a gravitational field. Spectacular phenomena such as gravitational lensing follow
from this. More later.

2. Conservation Laws

2.1. The electric current is a Lorentz vector field jµ satisfying.

Dνj
ν = 0

2.1.1. This follows from Maxwel’s equations.

DµF
µν = jν

First,

DνDµF
µν = Dνj

ν

By antisymmetry, l.h.s.

[Dν , Dµ]F
µν = Rµ

νµρF
ρν +Rν

νµρF
µρ = RνρF

ρν +RµρF
µρ

The contraction

Rνρ = Rµ
νµρ

is called the Ricci tensor. It plays an important role in GR. For now, we just
need that it is symmetric (consequence of the symmetries of the Riemann tensor).

2.2. An equivalent form of the divergence of a vector field is.

Dµj
µ = ∂µ

��
− det gjµ

�

This follows as for the wave equation

2.3. The conservation of electric charge follows. Consider a region in space-
time bounded by two space-like surfaces x0 = T1, x0 = T2, with T2 > T1. The
integral of Dµjµ in this region can (using Gauss’s theorem)

ˆ
T1

j0
�

− det gdx1dx2dx3 =

ˆ
T2

j0
�
− det gdx1dx2dx3

(We are assuming that the electric current vanishes at spatial infinity.) Thus j0

integrated with respect to the invariant volume measure is a conserved quantity.
Such conservation laws are very important and we should understand them in
several different ways.
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2.4. Charge conservation follows from gauge invariance. Under the gauge
transformation

Aµ �→ Aµ + ∂µΛ

the change in the Maxwell action is
ˆ

jµ
�
− det g∂µΛdx = −

ˆ �
∂µ

��
− det gjµ

��
Λdx

When the equation of motion is satisfied the action should be unchanged under
all infinitesimal transformations. Gauge transformations produce a change that
does not involve the electromagnetic field, only its source. Hence the source must
satisfy the identity

∂µ
��

− det gjµ
�
= 0

if the action is to be extremal.

2.4.1. The electric current can be defined as the variation of the ‘source’ action
w.r.t. the potential.

jµ
�
− det g =

δS1

δAµ
, S1 =

ˆ
Aµj

µ
�
− det gdx

2.5. The electric charge is the integral of electric current over a space-like

surface. A surface is space-like if its normal vector is time-like. The integral

Q =

ˆ
jν
�
− det gdSν

is a scalar quantity equal to the total electric charge in that region of space. The
integral of the electric current on a surface whose normal is space-like has another
meaning: it is the flux of electric charge through that surface.

3. The Stress Tensor

3.1. There is a tensor field Tµν
whose integral over a space-like surface

is energy-momentum.

Pµ =

ˆ
Tµν

�
− det gdSν

Thus T 00 is energy density and T i0 is momentum density. Of course, energy
density includes mass as well as all other forms of energy. What is the meaning of
the remaining components?

3.2. The integral over a surface with space-like normal is the total flux

of energy or momentum across that surface. If an electromagnetic wave is
propagating through a region, it carries some energy and momentum across such
a surface. The component T ij is the amount of the ith component of momentum
carried across a small surface whose normal is pointed in the jth direction. This
can also be thought of the force felt on that surface per unit area (stress) . Also
T 0j is the energy carried across this surface, or the work being done by moving
that surface an infinitesimal amount in the jth direction.

Thus the tensor Tµν combines the mechanical notions of energy density, momen-
tum density, stress into a single entity.
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3.3. The stress tensor is the variation of matter action w.r.t. the metric

tensor. The energy and momentum denisty of matter, including the e.m. field is
the source of gravity. So the variation w.r.t. gµν will give the stress tensor.

Tµν
�

− det g =
δSm

δgµν

It follows that

3.4. The tensor field Tµν
is symmetric.

3.5. The stress tensor of a massless scalar field follows from its action.

Sφ =
1

2

ˆ
gµν

�
− det g∂µφ∂νφdx

Recall that

δ log det g = δtr log g = gµνδgµν

It is actually a bit more convenient to vary w.r.t. the inverse matrix gµν

δ log det g = −gµνδg
µν , =⇒ δ

�
− det g = −1

2

�
− det ggµνδg

µν

Thus

δSφ =
1

2

ˆ
δgµν

�
∂µφ∂νφ− 1

2
gµνg

ρσ∂ρφ∂σφ

��
− det gdx

and

Tµν = ∂µφ∂νφ− 1

2
gµνg

ρσ∂ρφ∂σφ

3.5.1. The energy density is positive in Minkowski space.

T00 =
1

2

�
[∂0φ]

2 + [∂iφ]
2
�

3.6. The field equations imply that the stress tensor is conserved.

DµT
µν = 0

Dµ

�
∂µφ∂νφ− 1

2
gµνg

ρσ∂ρφ∂σφ

�
= ∂µφD

µ∂νφ− 1

2
gµνg

ρσDµ [∂ρφ∂σφ]

But

gρσDν [∂ρφ∂σφ] = 2gρσ [DρDνφ] ∂σφ = 2 [Dµ∂νφ] ∂µφ

so that the two terms cancel.
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3.7. The stress-tensor of the electromagnetic field also can be computed

from its action. Ignoring sources for now,

S =
1

4

ˆ
FµνFρσg

µρgνσ
�

− det gdx

δS =
1

2

ˆ
FµνFρσg

µρδgνσ
�
− det gdx− 1

8

ˆ
FµνFρσg

µρgνσ
�
− det ggαβδg

αβdx

so that

Tµν =
1

2
FµρFνσg

ρσ − 1

8
gµνg

ρσgβFραFσβ

3.7.1. The energy density T00 and momentum density T0i in flat space are familiar
special caes.

1

2

ˆ �
E2 +B2

�
d3x,

ˆ
E×Bd3x

3.8. Conservation of the stress tensor follows from Maxwell’s equations.

DµT
µν = 0

3.8.1. The stress tensor of the electromagnetic field is also traceless.
gµνTµν = 0


