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1. The Schwarschild Solution

1.1. Now we can calculate the components of the Ricci tensor of a cen-

trally symmetric metric. We don’t need the full Riemann tensor for now. Of
more immediate interest to us are the components of the Ricci tensor. It is best to
use the explicit formula
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We leave it as an exercise to calculate these components. Setting them to zero
will yield the vaccum Einstein equations.

1.1.1.

1.2. The centrally symmetric vacuum Einstein equations reduce to a sys-

tem of ordinary differential equations.
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There is one more equation but it is not independent of these. So we see that λ

is independent of time. This is the first half of Birkhoff’s theorem. But adding the
other two equations give

λr + νr = 0

so that

λ+ ν = f(t)

for some function of t alone. Now we pull out the fact that we still have a freedom
to make the change of variables

t �→ T (t)

This will change the metric coefficients

ν �→ ν + 2 log Ṫ , λ �→ λ+ 2 log Ṫ

So by choosing T appropriately we can set f(t) �→ 0.
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1.2.1. All time dependence can be transformed away. This is Birkhoff’s theorem.
Now we just have one independent variable that only depends on r. The equations
is easily solved with the b.c. that eλ → 1 as r → ∞.
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Here r0 is a constant of integration with the dimensionsof length, called the
Schwarschild radius.

1.2.2. The constant can be fixed by comparison to Newton’s theory. Recall that
g00 ≈ 1 + 2φ inthe Newtonian approximation and that φ = −km

r where k in
Newton’s constant, where m is the total mass of the centrally symmetric body.
Comparing, we get

rS = km

Putting in factors of c explictly (recall that km
r has dimensions of the square of

velocity)

rS =
km

c2
.

For the Sun, this is about 10 km. For the Earth, 5 cm.

1.3. Thus we are led to the Schwarschild solution to vaccum Einstein

equations.
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Far from the center this is the metric of a star or mass m. As we get closer the
departure from Newtonian gravity becomes larger. Soon we will solve the geodesic
equation to get the corrections to Kepler’s laws.

1.4. Something goes wrong as we approach the Schwarschild radius. The
metric tensor is a diagonal matrix one of whose entries diverges as r → rS . For a
long time this was a source of confusion. Upon careful examination we see that in
fact the geometry itself is smooth; it is just that the co-ordinate system is breaking
down at r = rS . This is similar to the Euclidean metric of the plane in spherical
polar co-ordinates at the origin:

ds
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2 + r
2
dθ

2

There is nothing special at r = 0, we see by transforming to Cartesian co-
ordinates.

2. Painleve Co-ordinates

2.1. We can make a change of co-ordinates that removes the divergent

term at r = rS. We change just the time co-ordinate, a way that can depend on
radius t �→ f(T, r):

dt = fT dT + frdr
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We can choose fsuch that the potential divergent term cancels:
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Then we would have
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We can also choose fT = 1 so that there are minimal changes to the other terms
in the metric.
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It turns out that the negative sign corresponds to the blackhole.We get

2.2. The Schwarschild geometry in Painleve co-ordinate is smooth at

r = rS.
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Expanding,
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Thus the metric is not diagonal near the Schwarschild radius; but it is perfectly
smooth. For example, it remains invertible. At infinity, the metric reduces to
Minkowski metric in spherical co-ordinates.

2.3. There is still a singularity at r = 0. This cannot be removed by any change
of co-ordinates. For example, curvature scalars such as RµνρσR

µνρσ diverge there.
There is a point-like source located at that point.


