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1. Lie Derivatives

1.1. A vector field is an infinitesimal transformation of points. Given a

vector field, from each point x we can move to a nearby point x
�
in the direction

determined by it:

x
µ �→ x

�µ ≡ x
µ + �v

µ(x)

A scalar field transforms as

φ(x�) ≈ φ(x) + �v
µ
∂µφ

Thus the infinitesimal transformation of a scalar under a vector field is just

Lvφ = v
µ
∂µφ.

This is called the Lie derivative of φ by v .

The infinitesimal transformation Lvω of a covariant vector field ωµ can be found

from the invariance of the combination ωµdx
µ

ω(x�)dx�µ = ωµ(x)dx
µ + � [vν∂νωµdx

µ + ωµ∂νv
µ
dx

ν ]

so that its Lie derivative is

[Lvω]µ = v
ν
∂νωµ + ων∂µv

ν

A covariant symmetric tensor (like the metric) has a Lie derivative that can be

calculated similarly:

[Lvg]µν = v
ρ
∂ρgµν + gρν∂µv

ρ + gµρ∂νv
ρ

It is interesting to rewrite this in terms of the covariant form of the vector field

vµ = gµρv
ρ

[Lvg]µν = v
ρ
∂ρgµν − v

ρ
∂µgρν − v

ρ
∂νgµρ + ∂µvν + ∂νvµ

Recalling the formula for the covariant derivative of a vector field we see that

the Lie derivative of the metric can be written as

[Lvg]µν = Dµvν +Dνvµ.

1.2. If the Lie derivative of the metric by a vector field is zero, it is a

Killing vector. Killing vectors describe infinitesimal symmetries of the metric.
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2. Killing Vectors

2.1. Translations and rotations are the symmetries of the Euclidean met-

ric. Infinitesimally, a symmetry of the Euclidean metric is a vector field that leaves

its metric unchanged under the transformation x
i �→ x

i + �v
i
.

∂ivj + ∂jvi = 0

A constant is a solution: translation. a linear function vi(x) = rijx
j

is a solution if

rij + rji = 0

These are infinitesimal rotations. For example a rotation through an angle θ in

the x
1
x
2
plane has the effect

x
1 �→ cos θx1 + sin θx2

x
2 �→ − sin θx1 + cos θx2

If the angle is infinitesimally small

�
x
1

x
2

�
�→

�
x
1

x
2

�
+ θ

�
0 1
−1 0

��
x
1

x
2

�

Any anti-symmetrc tensor can be written as the sum of infinitesimal rotations

in planes such as this.

There are no other solutions to the conditions above.

2.2. Translations and Lorentz transformations are the symmetries of the

Minkowski metric. The Killing vectors satisfy

∂µvν + ∂νvµ = 0

The solutions are

vµ = aµ + λµνx
ν

where

λµν = −λνµ

These ten independent solutions can be thought of as translations aµ, rotations

λij and Lorentz boosts λ0i.

2.3. Killing vectors are infinitesimal symmetries of the geodesic varia-

tional principle. Recall

S =
1

2

ˆ
gµν

dx
µ

dτ

dx
ν

dτ
dτ

Under an infinitesimal transformation x
µ �→ x

µ+ �v
µ

the change in the action is

δvS =
1

2

ˆ �
v
ρ
∂ρgµν

dx
µ

dτ

dx
ν

dτ
+ gµν

dv
µ

dτ

dx
ν

dτ
+ gµν

dx
µ

dτ

dv
ν

dτ

�
dτ

=
1

2

ˆ �
v
ρ
∂ρgµν

dx
µ

dτ

dx
ν

dτ
+ gµν∂ρv

µ dx
ρ

dτ

dx
ν

dτ
+ gµν∂ρv

ν dx
µ

dτ

dx
ρ

dτ

�
dτ
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=
1

2

ˆ
[Lvgµν ]

dx
µ

dτ

dx
ν

dτ
dτ

Thus a Killing vector leads to a symmetry of the geodesic equation.

2.4. To each Killing vector there corresponds a conserved quantity of

the geodesic equation. This is a special case of a much more general theorem of

Noether: symmetries in a variational principle lead to conservaton laws.

We have

d

dτ

�
gµνv

µ dx
ν

dτ

�
= v

µ d

dτ

�
gµν

dx
ν

dτ

�
+ gµν∂ρv

µ dx
ν

dτ

dx
ρ

dτ

For a geodesic

d

dτ

�
gµν

dx
ν

dτ

�
=

1

2
∂µgρν

dx
ρ

dτ

dx
ν

dτ

so that

d

dτ

�
gµνv

µ dx
ν

dτ

�
= v

µ 1

2
∂µgρν

dx
ρ

dτ

dx
ν

dτ
+ gµν∂ρv

µ dx
ν

dτ

dx
ρ

dτ

d

dτ

�
gµνv

µ dx
ν

dτ

�
=

1

2
[Lvg]ρν

dx
ρ

dτ

dx
ν

dτ

Thus if v is a Killing vector field and x is a geodesic we have the conservation

law

d

dτ

�
gµνv

µ dx
ν

dτ

�
= 0.

2.5. Since the tangent vector to the geodesic has constant length we

always have one conservation law. We don’t even need a Killing vector for

this. This follows from the fact that τ does not appear explictly in the action

principle. In the language of mechanics, the Hamiltonian is conserved when the

Lagrangian is independent of the evolution parameter (τ in our case).

gµν
dx

µ

dτ

dx
ν

dτ
= H = constant.

This parameter has the physical meaning of the square of the mass.

For a time-like geodesic this constant is positive: the mass is real and non-zero.

It is convenient to choose the unit of τ that this is unity; in this case τ is proper

time. For null geodesics H will vanish: the mass is zero. Space-like geodesics have

H < 0 but they don’t have a meaning as the path of any particle. They can be of

mathematical interest, however.


