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1. Time-Like Geodesics of the Schwarschild Metric

To solve any mechanical problem we must exploit conservation laws. Often
symmetries provide clues to these conservation laws. We will determine the time-
like geodesics in the Schwarschild metric

ds2 =
(

1− rs
r

)
dt2 − dr2

1− rs
r

− r2
(
d�2 + sin2 �d�2

)
1.1. A time-like geodesic satisfies.(

1− rs
r

)
ṫ2 − ṙ2

1− rs
r

− r2
(
�̇2 + sin2 ��̇2

)
= 1

Here the dot denotes derivatives w.r.t. � .

1.2. Translations in t and rotations are symmetries of the Schwarschild
metric. The angular dependence is the same as for the Minkwoski metric. The
invariance under translations in t is obvious

1.3. Thus the energy and angular momentum of a particle moving this
gravitational field are conserved. The translation in Tgives the conservation
of energy per unit mass

E =
(

1− rs
r

)
ṫ

Rotations in � lead to the conservation of the third component of angular mo-
mentum per unit mass

L = r2�̇.

This is an analogue of Kepler’s law of areas.
The conservation of angular momentum, which is a 3-vector, implies also that

the orbit lies in the plane normal to it.

1.3.1. We can choose co-ordinates such that the geodesic lies in the plane � = �
2 .

By looking at the second component of the geodesic equation

d

d�

[
r2
d�

d�

]
= r2 sin � cos �

[
d�

d�

]2
we can see that � = �

2 is a solution. We can rotate the co-ordinate system so that
any plane passing through the center corresponds to � = �

2 .Thus
1
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(
1− rs

r

)
ṫ2 − ṙ2

1− rs
r

− r2�̇2 = 1

1.4. To determine the shape of the orbit we must detemine r as a func-
tion of �. In the Newtonian limit these are conic sections: ellipse, parabola or
hyperbola. Let u = rs

r .Then

ṙ = r′�̇ =
r′

r2
L = −lu′.

Here prime denotes derivative w.r.t. �. Also l = L
rs

. So

E2

1− u
− l2u′2

1− u
− l2u2 = 1

1.5. We get an ODE for the orbit.

l2u′2 = E2 − 1 + u− l2u2 + l2u3

This is the Weierstrass equation, solved by the elliptic integral . Since we are
interested in the case where the last term (which is the GR correction) is small a
different strategy is more convenient. Differentiate the equation to eliminate the
constants:

u′′ + u =
1

2l2
+

3

2
u2

1.5.1. In the Newtonian approximation the orbit is periodic. The Newtonian ap-
proximation is

u′′0 + u0 =
1

2l2
=⇒

u0 =
1

2l2
+B sin�

for some constant of integration B.

1.5.2. Recall the equation for an ellipse in polar co-ordinates.

1

r
=

1

b
+
�

b
sin�

Here, � is the eccentricity of the ellipse: if it is zero the equation is that of a
circle of radius b. In general b is the semi-latus rectum of the ellipse. If 1 > � > 0
, the closest and farthest approach to the origin are at 1

r1,2
= 1

b ±
�
b so that the

major axis is r2 + r1 = 2b
1−�2 . So now we know the meaning of l and B in terms of

the Newtonian orbital parameters.

b = 2rsl
2, B =

�

b
rs
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1.5.3. We can find the GR correction to the orbit by perturbing around the Newto-
nian solution. Putting

u = u0 + u1

to first order

u′′1 + u1 =
3

2
u20

=
3

8l4
+

3B

2l2
sin�+

3

2
B2 sin2 �

u′′1 + u1 =
3

8l4
+

3

4
B2 + 3

B

2l2
sin�− 3

4
B2 cos 2�

Although the driving terms are not periodic, the solution is not periodic,because
of the resonant term sin� in the r.h.s.

u1 = periodic + constant� sin�

1.6. In GR the orbit is not closed. Thus GR predicts that as a planet returns
to the perihelion its angle has suffered a net shift. After rewriting B, l, rs,in terms
of the parameters a, �, T of the orbit, the perihelion shift is found to be

24�2a2

(1− �2)c2T 2

where a is the semi-major axis and T is the period of the orbit.

1.7. This perihelion shift agrees with the measured anomaly in the orbit
of Mercury. At the time Einstein proposed his theory, such a shift in the peri-
helion of Mercury was already known-and unexplained- for a hundred years! The
prediction of GR, 43′′ of arc per century, exactly agreed with the observation: its
first experimental test. For the Earth the shift of the perihelion is even smaller:
3.8′′ of arc per century. Much greater accuracy has been possible in determining the
orbit of the Moon through laser ranging. The resuls are a quantitative vindication
of GR to high precision.


