GRAVITATION F10

S. G. RAJEEV

Lecture 19
1. TIME-LIKE GEODESICS OF THE SCHWARSCHILD METRIC

To solve any mechanical problem we must exploit conservation laws. Often
symmetries provide clues to these conservation laws. We will determine the time-
like geodesics in the Schwarschild metric
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1.1. A time-like geodesic satisfies.
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Here the dot denotes derivatives w.r.t. 7.

1.2. Translations in ¢ and rotations are symmetries of the Schwarschild
metric. The angular dependence is the same as for the Minkwoski metric. The
invariance under translations in ¢ is obvious

1.3. Thus the energy and angular momentum of a particle moving this
gravitational field are conserved. The translation in T'gives the conservation

of energy per unit mass
E=(1-")i
r

Rotations in ¢ lead to the conservation of the third component of angular mo-
mentum per unit mass

L= r2q5.
This is an analogue of Kepler’s law of areas.

The conservation of angular momentum, which is a 3-vector, implies also that
the orbit lies in the plane normal to it.
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1.3.1. We can choose co-ordinates such that the geodesic lies in the plane 0 = 7.
By looking at the second component of the geodesic equation
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we can see that 6 = 7 is a solution. We can rotate the co-ordinate system so that
any plane passing through the center corresponds to 6 = 7.Thus
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1.4. To determine the shape of the orbit we must detemine r as a func-

tion of ¢. In the Newtonian limit these are conic sections: ellipse, parabola or

hyperbola. Let u = == .Then
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Here prime denotes derivative w.r.t. ¢. Also [ = TL So
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1.5. We get an ODE for the orbit.
Pu? = E? — 1 +u—1?u® 4 1%0®

This is the Weierstrass equation, solved by the elliptic integral . Since we are
interested in the case where the last term (which is the GR correction) is small a
different strategy is more convenient. Differentiate the equation to eliminate the
constants:
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1.5.1. In the Newtonian approximation the orbit is periodic. The Newtonian ap-
proximation is
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for some constant of integration B.

1.5.2. Recall the equation for an ellipse in polar co-ordinates.
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Here, € is the eccentricity of the ellipse: if it is zero the equation is that of a
circle of radius b. In general b is the semi-latus rectum of the ellipse. If 1 > ¢ > 0
, the closest and farthest approach to the origin are at —— = % + § so that the

71,2
major axis is 1o + 71 = %. So now we know the meaning of [ and B in terms of

the Newtonian orbital parameters.

sin ¢

b=2rJ? B= %Ts



GRAVITATION F10 3

1.5.3. We can find the GR correction to the orbit by perturbing around the Newto-
nian solution. Putting
U= Uug + uy
to first order
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Although the driving terms are not periodic, the solution is not periodic,because
of the resonant term sin ¢ in the r.h.s.

u1 = periodic + constante sin ¢

1.6. In GR the orbit is not closed. Thus GR predicts that as a planet returns
to the perihelion its angle has suffered a net shift. After rewriting B, [, r,,in terms
of the parameters a, e, T of the orbit, the perihelion shift is found to be
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where a is the semi-major axis and T is the period of the orbit.

1.7. This perihelion shift agrees with the measured anomaly in the orbit
of Mercury. At the time Einstein proposed his theory, such a shift in the peri-
helion of Mercury was already known-and unexplained- for a hundred years! The
prediction of GR, 43" of arc per century, exactly agreed with the observation: its
first experimental test. For the Earth the shift of the perihelion is even smaller:
3.8"” of arc per century. Much greater accuracy has been possible in determining the
orbit of the Moon through laser ranging. The resuls are a quantitative vindication
of GR to high precision.



