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1. Riemann Normal Co-ordinates

1.1. The geodesic emanating from a point provide a special co-ordinate

system called the Riemann normal co-ordinates. This system is closest to

the Cartesian co-ordinate system in Euclidean space. Let M be a Riemannian

manifold of dimension n , with metric tensor g and p0 ∈ M is a point on it. Given

any unit vector v at p0 we can solve the geodesic equation to find a curve passing

through p0 and v as the tangent there. Within some neighborhood U ⊂ M of p0
these geodesics will not cross: there will be a unique geodesic connecting p0 to any

p ∈ U . Let s(p) be the arc-length of the geodesic from p0 to p. We can then assign

to this point the co-ordinate s(p)v ∈ Rn
. This is the Riemann normal co-ordinate

system.

1.2. The metric tensor is the identity matrix and the Christoffel symbols

vanish at the origin of a Riemann normal system. Since the derivatives of g
at a point are determined by Γ at that point, we get by the Taylor series expansion,

gµν(x) = δµν +O(x2
)

The derivatives of Γ may not vanish even at the origin. In fact the Riemann

tensor at the origin will be

Rµ
νρσ(0) = ∂νΓ

µ
ρσ(0)− ∂ρΓ

µ
νσ(0)

We can express the second derivatives of the metric at a point in terms of the

Riemann tensor at that point. By the Taylor series again,

gµν(x) = δµν − 1

3
Rµρνσ(0)x

ρxσ
+O(x3

)

These facts can be proven by expanding the metric in a Taylor series and also

solving the geodesic equation as a power series and then matching coefficients. The

radius of convergence of these series is the distance at which a pair of geodesics

emanating from p0 will collide.

1.3. Thus up to a co-ordinate transformation, all Riemannian manifolds

look like Euclidean space to second order in the distance. This is the math-

ematical statement of the quivalence principle. Rather, it is because Riemannian

geometry satisfies this property that it is the correct mathematical description of

gravity.
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1.4. The Ricci tensor describes the rate of growth of the volume of a

small sphere, compared to the volume of the same sphere in Euclidean

geometry. Recall that the colume density at a point is
√
det g. ( In Lorentzian

signature we might out a negative sign under the root.) Also

�
det [1 +A] = exp

�
1

2
tr log (1 +X)

�

= exp

�
1

2
tr

�
X − X2

2
+

X3

3
· · ·

��

= 1 +
1

2
trX +

1

4

�
(trX)

2 − trX2
�
+ · · ·

�
det g(x) = 1− 1

6
Rρσx

ρxσ
+ · · ·

By comparison, we see that the volume of a sphere with smal radius is less than

that of Euclidean space, when the Ricci tensor is positive (i.e., Rµνuµuν > 0 for all

u) . Thus, for the sphere, the volume (actually area) of a disc of radius s is

2π

ˆ s

0
sin θdθ ≈ π

�
s2 − s4

12
+ · · ·

�

Conversely, on spaces of negative Ricci tensor, the volume grows faster than in

Euclidean space.

2. Myer’s Theorem

2.1. A space of positive Ricci tensor must have finite diameter. This is a

theorem of Myers. The diameter of a space is the largest distance between a pair

of points in it. ( A better name for it would have been diagonal, but everyone

calls it diameter these days.) The proof uses the variational principle for geodesics.

Myer’s thoerem is a precursor to the singularity theorems of GR. These theorems

of Penrose and Hawking say that a Lorentzian space-time whose Ricci tensor has

positive time-like components cannot have arbirrary long time-like geodesics: a

singularity because time does not last for ever. So it is worth learning Myer’s

theorem before learning this part of GR.

2.2. Recall the action (also called energy by mathematicians) of a curve

on a Riemannian manifold.

S(γ) =
1

2

ˆ l

0
g(γ̇, γ̇)dt

We consider the space of curves starting at some point p and ending at some

point q. By multiplying t by an appropriate constant, we can choose the length of

the tangent γ̇ at the starting point to be unity.
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2.3. Its first variation gives the geodesic equation. Suppose v is some vector

field defines in some neighborhood of γ. Then for small enough τ , we can define a

new curve

γτ,v(t) = exp[τv]γ(t)

That is, go out a distance τ along the geodesic starting at γ(t) and tangential to

v(γ(t)) at that point. The first variation of S along v is

�
dS(γτ,v)

dτ

�

τ=0

=

ˆ l

0
g (Dγ̇v, γ̇) dt

If the first variation (keeping boundary values fixed v(p) = v(q) = 0) of this

vanishes for all v, then γ is a geodesic. Then γ̇ has constant length (unity) and

S = l

is just the arc-length. If the geodesic is also minimizing, then l is the distance

between p and q.

2.4. The second variation gives the Jacobi equation. The second varation of

the action functional is also of interest. A standard calculation (e.g., using Fermi

co-ordinates) gives

�
dS(γτ,v)

dτ

�

τ=0

=

ˆ l

0
[g (Dγ̇v,Dγ̇v)−K(γ̇ ∧ v)] dt

where K(u ∧ v) is the sectional curvature of the plane defined by u and v. If γ
is a minimizing geodesic, this must be positive for all v :

ˆ l

0
[g (Dγ̇v,Dγ̇v)−K(γ̇ ∧ v)] dt ≥ 0

2.4.1. Now we make a variatonal ansatz.

v(t) = V (t) sin
πt

l
where V (t) is the parallel transport of some vector V at p. (That is, Dγ̇V = 0).

The factor of sin makes sure that v vanishes at the boundary. Then

ˆ l

0

�
|V |2

�π
l

�2
cos

2 πt

l
−K(γ̇, V ) sin

2 πt

l

�
dt ≥ 0

=

��π
l

�2
|V |2 −K(γ̇, V )

�ˆ l

0
sin

2 πt

l
dt+ |V |2

�π
l

�2 ˆ l

0

�
cos

2 πt

l
− sin

2 πt

l

�
dt

The integral in the forst term is a positive quantity and the last term is zero.

Hence for a minimizing geodesic,

�π
l

�2
|V |2 −K(γ̇, V ) ≥ 0

This already gives Bonnet’s theorem: if the sectional curvature is bounded

K(u, v) ≥ k|u|2|v|2 for some k > 0,

�π
l

�2
− k ≥ 0
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or

l ≤ π√
k
.

Recall that the Ricci tensor is the sum of sectional curvatures over an orthonor-

mal frame

Ric(u) =
n�

i=1

K(u, ei)

2.4.2. We can do better by averaging the inequality over all V with a Gaussian
measure e−

1
σ2 |V |2dV with some variance σ, subject to the constraint that g(γ̇, V ) =

0. Since there are only n− 1 independent such vectors, we will get

�π
l

�2
− 1

n− 1
Ric(γ̇, γ̇) ≥ 0.

Recalling that γ̇ is of unit length, we find that the length of a minimizing geodesic

l must satisfy

Ric ≤
�π
l

�2
(n− 1).

Thus the argument is essentially a use of the variational principle. More clever

choice of variatonal ansatz gives improved versions of Myer’s theorem.


