GRAVITATION F10

S. G. RAJEEV

Lecture 6
1. GENERAL CO-ORDINATES

1.1. The choice of co-ordinate system should be adapted to the system
being studied. For example, curvilinear co-ordinates are useful in solving
the Laplace equation in various geometries.

1.2. The transformation between co-ordinates must be smooth func-
tions. Within a region where both co-ordinate systems are valid, the trans-
formation between them must be differentiable and invertible. A simple
example is the transformation between cartesion and polar co-ordinate sys-
tems. More generally, the new co-ordinate system x is specified as a set
of functions of the old co-ordinates x* .

1.3. The gradient of a scalar field transforms as.
af  ox¥ Jdf
IxH  Ix'H IxV
This is the chain rule of differentiation. Notice that the index v is summed

over. Another way to understand this transformation law is that the infini-
tesimal change in the scalar field is the same in both co-ordinate systems:

af af
— 'u— — /[J,_
df =dx g dx ER

1.4. If the derivatives of a function vanish at a point in one co-ordinate
system, they vanish in any co-ordinate system. The derivatives along the
different co-ordinate axes of a function can be thought of as the components
of a vector field. More generally,

1.5. The components of a vector field change under co-ordinate trans-
formations in a similar way:
a)/ B a le
B ok
1

Oy .
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1.5.1. More precisely, fields that transform this way are called covariant
vector fields. We will soon see another kind of vector called a contravariant
(contra-gradient) vector that transforms oppositely.

1.5.2. Not every covariant vector field is the derivative of a function: the
integrability condition is.

a‘uwv - aku - O

Problem 1. Show that the above integrability condition is independent of
changes of co-ordinates.

1.6. The second derivatives of a function do not transform as a tensor.
More precisely, the second dervatives might vanish in at some point in one
system but not in another.

By repeated use of the chain rule of differentiation,

aZf o0x'C 9x’V aZf ox'C aZx/v af
OXPIXH — OxP JxH 9xOdxV  IxP IxHIxC dxV’
If the change of co-ordinates is linear, the last term vanishes; in general
it won’t be zero. Thus we will need some new notion of derivative to go
beyond the fisrt derivative of a function.

1.7. The tangent vector to a curve transforms as a contravariant vec-
tor: opposite to the gradient of a function. A curve is given by specifying
the co-ordinates as a function of some parameter x* (7). The components
of the tangent vector are %.If we transform to some new co-ordinates

dx'*  Ix'M dx¥
dt  oxV dt’
More generally, a vector whose components that transform this way is
called a contravariant vector:

/
VH = _8x“v
T ooxv

Remember that the derivatives of x w.r.t. x’ form the inverse matrix to the
derivative of X’ w.r.t. x.

axt axv

ox'P gxit P
Thus contravariant and covariant vectors transform opposite to each other.

1.7.1. The Kronecker delta are components of the identity matrix.
Y 0 ifu#v
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1.8. The sum of the products of corresponding components of a covari-
ant vector and a contravariant vector is a scalar: unchanged under
co-ordinate transformations.

o = ailva)v YH = MV
N oxp P

o — o ax"V dx'H
= o,V = -V
# V Oxk IxP
We took care that an index appears at most twice in a factor. Also, a pair
of repeated indices can be replaced by another without changing the value:

P - a)vsgvp - (vav.

(DVVV - a)uvu .

2. THE METRIC IN CURVILINEAR CO-ORDINATES

2.1. The infintesimal distance ds between two neighboring points in
Euclidean space in Cartesian co-ordinates is given by.

ds* = Ouvdxtdx”
2.2. In a general co-ordinate system.
ds* = gyydx*dx”

where g,y can depend on x*.

2.3. The components transform under changes of co-ordinates as.

, oxHoxY

8o = gxp g SV
To see this we have to remember that ds itself is independent of the co-
. /! /,
ordinate system; and use the rule for each factor dx* = %dxp .

2.3.1. We say that g,v are the components of the metric tensor. Metric
refers here to a measure of distance.

2.4. We can calculate g, by transforming from the Cartesian co-ordinate

system or by some more direct geometrical argument.
e In the polar co-ordinate system of the plane ds*> = dr* + r’d¢>
o If we define x* = xo\j}xl, in Minkowski space ds®> = 2dxTdx~. In
this case the metric tensor is not diagonal.
e The metrix of R? in spherical polar co-ordinates is

ds* = dr* +r* (d6* +sin® 0d¢?)
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e For a more perverse example we note the prolate spheroidal co-
ordinates in Euclidean space R® which is useful in solving some
differential equations:

x! = sinhrsinBcos @, X2 = sinhrsin@sin ¢, x> = coshrcos 6

ds® = [sinh®r +sin® 0] [dr? +d6*] + sinh® rsin” 0d¢*
e More examples can be found in the monograph of Morse and Fesh-
bach [1]. Or more conveniently on wikipedia these days.
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