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Lecture 6

1. GENERAL CO-ORDINATES

1.1. The choice of co-ordinate system should be adapted to the system

being studied. For example, curvilinear co-ordinates are useful in solving
the Laplace equation in various geometries.

1.2. The transformation between co-ordinates must be smooth func-

tions. Within a region where both co-ordinate systems are valid, the trans-
formation between them must be differentiable and invertible. A simple
example is the transformation between cartesion and polar co-ordinate sys-
tems. More generally, the new co-ordinate system x�µ is specified as a set
of functions of the old co-ordinates xµ .

1.3. The gradient of a scalar field transforms as.

∂ f
∂x�µ

=
∂xν

∂x�µ
∂ f
∂xν

This is the chain rule of differentiation. Notice that the index ν is summed
over. Another way to understand this transformation law is that the infini-
tesimal change in the scalar field is the same in both co-ordinate systems:

d f = dxµ ∂ f
∂xµ = dx�µ

∂ f
∂x�µ

1.4. If the derivatives of a function vanish at a point in one co-ordinate

system, they vanish in any co-ordinate system. The derivatives along the
different co-ordinate axes of a function can be thought of as the components
of a vector field. More generally,

1.5. The components of a vector field change under co-ordinate trans-

formations in a similar way:

ω �
µ =

∂x�ν

∂xµ ων .
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1.5.1. More precisely, fields that transform this way are called covariant
vector fields. We will soon see another kind of vector called a contravariant
(contra-gradient) vector that transforms oppositely.

1.5.2. Not every covariant vector field is the derivative of a function: the
integrability condition is.

∂µων −∂νωµ = 0
Problem 1. Show that the above integrability condition is independent of
changes of co-ordinates.
1.6. The second derivatives of a function do not transform as a tensor.

More precisely, the second dervatives might vanish in at some point in one
system but not in another.

By repeated use of the chain rule of differentiation,

∂ 2 f
∂x�ρ∂x�µ

=
∂x�σ

∂xρ
∂x�ν

∂xµ
∂ 2 f

∂xσ ∂xν +
∂x�σ

∂xρ
∂ 2x�ν

∂xµ∂xσ
∂ f
∂xν .

If the change of co-ordinates is linear, the last term vanishes; in general
it won’t be zero. Thus we will need some new notion of derivative to go
beyond the fisrt derivative of a function.

1.7. The tangent vector to a curve transforms as a contravariant vec-

tor: opposite to the gradient of a function. A curve is given by specifying
the co-ordinates as a function of some parameter xµ(τ). The components
of the tangent vector are dxµ

dτ .If we transform to some new co-ordinates

dx�µ

dτ
=

∂x�µ

∂xν
dxν

dτ
.

More generally, a vector whose components that transform this way is
called a contravariant vector:

v�µ =
∂x�µ

∂xν vν

Remember that the derivatives of x w.r.t. x� form the inverse matrix to the
derivative of x� w.r.t. x.

∂xµ

∂x�ρ
∂x�ν

∂xµ = δ ν
ρ .

Thus contravariant and covariant vectors transform opposite to each other.

1.7.1. The Kronecker delta are components of the identity matrix.

δ µ
ν =

�
1 if µ = ν
0 if µ �= ν



GRAVITATION F10 3

1.8. The sum of the products of corresponding components of a covari-

ant vector and a contravariant vector is a scalar: unchanged under

co-ordinate transformations.

ω �
µ =

∂x�ν

∂xµ ων , v�µ =
∂x�µ

∂xρ vρ

=⇒ ω �
µv�µ = ων

∂x�ν

∂xµ
∂x�µ

∂xρ vρ = ωνδ ν
ρ vρ = ωνvν .

We took care that an index appears at most twice in a factor. Also, a pair
of repeated indices can be replaced by another without changing the value:

ωνvν = ωµvµ .

2. THE METRIC IN CURVILINEAR CO-ORDINATES

2.1. The infintesimal distance ds between two neighboring points in

Euclidean space in Cartesian co-ordinates is given by.

ds2 = δµνdxµdxν

2.2. In a general co-ordinate system.

ds2 = gµνdxµdxν

where gµν can depend on xµ .

2.3. The components transform under changes of co-ordinates as.

g�ρσ =
∂x�µ

∂xρ
∂x�ν

∂xµ gµν

To see this we have to remember that ds itself is independent of the co-
ordinate system; and use the rule for each factor dx

�µ = ∂x�µ
∂xρ dxρ .

2.3.1. We say that gµν are the components of the metric tensor. Metric
refers here to a measure of distance.

2.4. We can calculate gµν by transforming from the Cartesian co-ordinate

system or by some more direct geometrical argument.

• In the polar co-ordinate system of the plane ds2 = dr2 + r2dφ 2

• If we define x± = x0±x1
√

2
, in Minkowski space ds2 = 2dx+dx−. In

this case the metric tensor is not diagonal.
• The metrix of R3 in spherical polar co-ordinates is

ds2 = dr2 + r2 �dθ 2 + sin2 θdφ 2�
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• For a more perverse example we note the prolate spheroidal co-
ordinates in Euclidean space R3 which is useful in solving some
differential equations:

x1 = sinhr sinθ cosφ , x2 = sinhr sinθ sinφ , x3 = coshr cosθ
ds2 =

�
sinh2 r+ sin2 θ

��
dr2 +dθ 2�+ sinh2 r sin2 θdφ 2

• More examples can be found in the monograph of Morse and Fesh-
bach [1]. Or more conveniently on wikipedia these days.

REFERENCES

[1] Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York:
McGraw-Hill


