
1. THE STANDARD MODEL

1.1. All the phenomena of nature, except gravity, are described by the
standard model of elementary particles. The Lagrangian defines a partic-
ular quantum field theory. The precise definition of a quantum field theory
involves the mysterious procedure of renormalization; we only understand
it fully in perturbation theory.

1.2. It is a Yang-Mills Theory with gauge group SU(3)×SU(2)×U(1)
, a scalar field and a set of spin 1

2 fields. The theory is specified by the
representations of the scalar and fermion fields; and the couplings among
them. The three states SU(3) symmetry is labelled by ‘ color’; SU(2)is
called weak isospin and the U(1)is called weak hypercharge. We denote the
corresponding gauge fields by a set of vector fields: Aα

µβ
, each component

of which is a traceless hermitean 3×3 matrix; W a
µb, whose components are

traceless hermitean 2×2 matrices; and Yµ each component of which is just
a real function.

1.3. The scalar field is invariant under SU(3); it is in the fundamen-
tal (doublet) representation of SU(2); has hypercharge one. That is, φ

transforms as (1,2,1) : the trivial representation of color, the defining rep-
resentation of SU(2)and of hypercharge one.

This means that if g ∈U(2) = SU(2)×U(1)/Z2, the scalar field trans-
forms as the doublet φ → gφ . The covariant derivative on scalars is

∇µφb = ∂µφb + i[W a
µb +Yµδ

a
b ]φa

1.4. There are two kinds of fermions: quarks and leptons whose left
and right-handed components couple differently to gauge bosons, as
listed below.

(1) The left-handed quarks qαbA where α = 1,2,3 labels the fundamen-
tal representation of color SU(3); b labels the fundamental repre-
sentation of weak isospin SU(2); the hypercharge 1

3 ; and A = 1,2,3
labels the generations.

γ5q = q, ∇µqαbA = ∂µqαbA + i
[{

W a
µb +

1
3

Yµδ
a
b

}
δ

β

α +Aβ

µα

]
qβaA

(2) The left-handed leptons lbA are trivial under color; in the fundamen-
tal of weak isospin; and has hypercharge −1.

γ5l = l, ∇µ lbA = ∂µ lbA + i
{

W a
µb−Yµδ

a
b

}
laA

1
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(3) The right-handed up-quarks uαA are in the fundamental of color; are
trivial under weak isospin; and has hypercharge 4

3

γ5u =−u, ∇µuαA = ∂µuαA + i
[

Aβ

µα +
4
3

Yµδ
β

α

]
uβA

(4) The right-handed down-quarksdαA are also fundamental in color;
trivial under weak isospin; and hypercharge

γ5d =−d, ∇µdαA = ∂µdαA + i
[

Aβ

µα −
2
3

Yµδ
β

α

]
dβA

(5) The right-handed charged leptons eAare trivial under both color and
weak isospin; and have hypercharge −2.

γ5e =−e, ∇µeA = ∂µeA + i
[
−2

3
Yµ

]
eA

(6) The right-handed neutrinos νA are trivial under color and weak isospin,
as well as of zero hypercharge. They do not couple to any gauge
bosons at all.

γ5ν =−ν , ∇µνA = ∂µνA

1.5. The Lagrangian can then be written down.

L =
1

4α1
Y µνYµν +

1
4α2

W µνWµν +
1

4α3
FµνFµν + ∣∇φ ∣2− λ

4

[
φ

†
φ − v2

]2
+

q̄αbAiγµ
∇µqαbA + ūαAiγµ

∇µuαA + d̄αbAiσγ
µ

∇µdαbA+

l̄αbAiγµ
∇µ lαbA + ēAiσ µ

∇µeA + ν̄
Aiγµ

∂µνA+

+
1
v ∑

A
MAūαA

φaε
abqαbA +

1
v ∑

AB
M̃BV B

A d̄αA
φ

†bqαbB+

1
v ∑

A
mAēA

φaε
ablbA +

1
v ∑

A
m̃AUB

A ν̄
A
φ

†blbB

Note that the right-handed neutrinos do not couple to any gauge bosons.
The basis is chosen so that mass matrix of the up quarks is diagonal, with
entries MA. Then those of the down quarks will be the diagonal matrix M̃
times the CKM matrix V which is a unitary matrix; because of the freedom
to choose phases for the basis of quarks, V is defined only modulo a left
and a right action by diagonal unitary matrices: V ∈U(1)N∖U(N)/U(1)N .
Similarly, the mass matrix of the charged leptons is chosen to be diagonal,
leading to a neutrino mixing matrix U ∈U(1)N∖U(N)/U(1)N . The dimen-
sion of the double coset space U(1)N∖U(N)/U(1)N is (N−1)2.
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1.6. The parameters are α1,α2,α3,λ ,v,MA,M̃A,V B
A ,mA, m̃A,UB

A . That is
5+ 4N + 2(N− 1)2 = 2N2 + 7 parameters where N is the number of gen-
erations. For N = 3 these are 25 parameters. Most of them are known to
reasonable accuracy: the unknown parameters are the Higgs mass (λ )and
all except two combinations of m̃A,UA

B in the neutrino sector: only the two
combinations of the neutrino masses and mixing angles that give neutrino
oscillation lengths are known.

1.7. All of the particles predicted by the standard model except the
right handed neutrinos and the Higgs boson have been observed. Most
of them were not known at the time the model was proposed. They were
found over the last three decades, as the energy of the accelerators and
the size of neutrino detectors increased. The aim of the next generation
of high energy physics experiments is to detect the Higgs boson and the
right handed neutrinos; or, to prove that the standard model is wrong.

1.8. In the following sections we will develop the mathematical and
physical apparatus to explain the meaning of the above Lagrangian.

2. QUANTUM MECHANICS

A good reference is R. Shankar, Principles of Quantum Mechanics . The
classic text remains Dirac’s book of the same title. You will be a walking
encyclopedia of quantum mechanics if you master the third volume of the
Course in Theoretical Physics by Landau and Lifshitz. The summary below
is not a substitute for a proper course in quantum mechanics: it can take a
year to learn the material summarized in this section.

2.1. The Postulates. Once you understand the basic structure of a physi-
cal or mathematical theory, it is useful to summarize the basic laws as ax-
ioms: independent facts from which all others can be derived. This was first
achieved for plane geometry by Euclid. For mechanics by Newton. There is
always a period of experimentation and discovery before a subject become
mature enough to be axiomatized.

In the case of non-relativistic quantum mechanics the works of Planck,
Einstein, Bohr, Heisenberg, Pauli, Born,Jordan, Schrodinger.... formed this
period of discovery. It was Dirac, in his book Principles of Quantum Me-
chanics, who put it all together in more or less the form we think of it now.

Quantum theory is still not completely developed. Questions about mea-
surement and interpretation are still being worked out (e.g.,”weak measure-
ment”). Also, combining relativity with quantum mechanics (quantum field
theory) leads to infinities that have to be removed by a mysterious proce-
dure known as renormalization. No one is satisfied with this situation. Even
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worse, we have not yet been able to reconcile quantum mechanics with gen-
eral relativity to get a quantum theory of gravity. Also, the discovery of dark
energy suggests that something is seriously wrong in the way we think of
the energy of the vaccuum.

Nevertheless we can say, after almost a century of experimental tests, a
few things for certain about how quantum theory works. It is not too early
to summarize them as a set of postulates.

2.1.1. The states of a physical system are represented by vectors in a com-
plex Hilbert space. This means the we can take linear combinations

α∣ψ >+β ∣φ >

of two states ∣ψ > and φ > to get another state. The quantities α,β are
complex numbers. There is a way to take the inner product (scalar product
) of two states to get a complex number

< ψ∣φ > .

This inner product is linear in the second argument

< ψ∣αφ +β χ >= α < ψ∣φ >+β < ψ∣χ >

and anti-linear in the first entry

< αψ +β χ∣φ >= α
∗ < ψ∣φ >+β

∗ < χ∣φ > .

Remark 1. Be aware that mathematicians use the opposite convention: for
them it is the second entry in an inner product that is anti-linear. Math-
ematics and physics are two neighboring cultures divided by a common
language.

Moreover, the inner product of any vector with itself is positive; it is only
zero for the zero vector. Thus

∣ψ∣2 =< ψ∣ψ >

can be thought of as the square of the length of a vector.

Remark 2. Strictly speaking states are represented by rays (directions) in
Hilbert space. It is a fine point though.

A typical situation is that the state is a complex valued function of some
real variable (e.g., position), The inner product is then

< ψ∣ψ >=

ˆ
ψ
∗(x)φ(x)dx.
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Exercise 3. Verify that this integral has the properties of an inner product.

Or, the states may be represented by a column vector with complex com-

ponents ψ =

(
ψ1
ψ2

)
etc.

Exercise 4. Prove that
∣< ψ∣φ > ∣2

∣ψ∣2∣φ ∣2
≤ 1

for all non-zero states ∣φ >, ∣ψ > . This is called the Cauchy-Schwarz
inequality.

2.1.2. If a system is in state ∣φ >, the probability of finding it in another

state ∣ψ >is ∣<ψ∣φ>∣2
∣ψ∣2∣φ ∣2 .. This is one of the confusing things about quantum

mechanics, until you get used to it. A classical analogue is the polarization
of light. About half of circularly polarized light will pass through a filter
that allows only linearly polarized light.

2.1.3. The observables of a physical system are hermitean linear opera-
tors on the states. A linear operator (or matrix) acting on a state produces
another state, such that

L(α∣ψ >+β ∣χ >) = αL∣ψ >+βL∣χ > .

Hermitean operators satisfy in addition

< ψ∣L∣χ >=< χ∣L∣ψ >∗ .

That is, the conjugate-transpose of a matrix elements is itself. If

L∣ψλ >= λ ∣ψλ >

for some complex number λ and non-zero vector ∣ψλ >, we say that
ψλ >is an eigenvector of Lwith eigenvalue λ . The most important property
of a hermitean operator is that it has real eigenvalues. That comes in handy
because

2.1.4. The possible outcomes of measuring an observable are its eigenval-
ues. Even if if we know the state of a system, we may not be able to predict
the outcome of measuring an observable. The best we can do is to give
probabilities. With λ , ∣ψλ > defined as above,



6

2.1.5. If the system is in some state ∣φ >,the probability of getting the out-
come λ upon measuring L is.

∣< ψλ ∣φ > ∣2

∣ψλ ∣2∣φ ∣2
.

Exercise 5. Recall that this is always real and less than one. Why do the
probabilities add up to one?

2.1.6. There is a hermitean operator called the hamiltonian which repre-
sents energy; the time dependence of a state is given by.

ih̄
∂ ∣ψ >

∂ t
= H∣ψ > .

Thus if you know the state at some time, you can in principle predict
what it will be at some later time. If you know the exact hamiltonian and if
it is simple enough to make the equation solvable.

2.2. Electron in a Magnetic Field. As an example, think of an electron
in a magnetic field. It is bound to an atom (e.g., Sodium) and we ignore
the change in its position: only the rotation of its spin. The wave func-
tion has two components. The energy of an eletron in a magnetic field is
proportional to the dot product of the spin and the magnetic field

(2.1) H = µσ ⋅B
where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices.

Exercise 6. Find the eigenvalues and eigenfunctions of the hamiltonian

(2.1). If the initial state at time t = 0 is
(

1
0

)
and the magnetic field is

in along the x−axis B = (B,0,0) what is the probability that a measurement
of σ3 at a time t will yield the value −1? This illustrates the phenomenon
of oscillationof quantum states, also important for neutrinos.

2.3. Symmetries and Conservation Laws.

2.3.1. Symmetries are represented by unitary operators that commute with
the hamiltonian. Recall that the probability of finding a particle in state ψ

in another state φ is ∣ < φ ∣ψ > ∣2 ( assuming that the state vectors are of
length one.) If the symmetry is represented by a linear transformation L it
must satisfy

∣< Lφ ∣Lψ > ∣= 1.
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Also recall the definition of the hermitean conjugate (adjoint)

< Lφ ∣ψ >=< φ ∣L†
ψ >

Thus we see that one way to satisfy the condition is to have

L†L = 1

That is, unitary transformations. Most symmetries are of this type. (See
below for an exception.)

Recall that a state of energy E is an eigenstate of the hamiltonian.

Hψ = Eψ

A symmetry must take it to another state of the same energy:

H(Lψ) = E(Lψ).

This is satisfied if
HL = LH.

That is, if the hamiltonian commutes with the symmetry operator. Thus
a symmetry is represented by a unitary operator that commutes with the
hamiltonian:

L†L = 1, HL−LH = 0.

2.3.2. An exceptional case is time reversal, which is an anti-linear operator.

Θ(aψ +bφ) = a∗Θψ +b∗Θφ .

We won’t have much more to say about this case for now; we will only consider the case
of linear operators for now.

2.3.3. An example is Parity. It reverses the sign of the co-ordinates of a
particle

Pψ(x) = ψ(−x).

Clearly P2 = 1.
The Schrödinger equation for a free particle is invariant under this trans-

formation

− h̄2

2m
∇

2
ψ =−ih̄

∂ψ

∂ t
.

Another way of seeing that this is a symmetry is that the operator P com-
mutes with the hamiltonian

H =− h̄2

2m
∇

2, PH = HP.

Thus if ψ is a state with energy E

Hψ = Eψ
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so will be Pψ . Even with a potential parity continues to be a symmetry if

V (−x) =V (x).

For example consider a particle in one dimension with a potential

H =− h̄2

2m
∇

2 +V, V (x) = λ (x2−a2)2, λ > 0.

There are two minima at x = ±a. The eigenstates of energy can also be
simultaneously eigenstates of parity because [H,P] = 0. It turns out that the
ground state is of even parity

ψ(−x) = ψ(x)

while the first excited state is of odd parity

ψ(−x) =−ψ(x).

2.3.4. Translation invariance leads to conservation of momentum. The trans-
lation by a is represented by the operator

T (a)ψ(x) = ψ(x+a).

A free particle on a line has hamiltonian

H =− h̄2

2m
∂ 2

∂x2 +V

with a constant potential. Thus whether we apply the hamiltonian before or
after a translation we get the same effect on a wavefunction:

HT (a) = T (a)H.

For a particle moving in one dimension, an infinitesimal translation is rep-
resented by the derivative operator:

ψ(x+a)≈ ψ(x)+a
∂ψ

∂x
+ ⋅ ⋅ ⋅

Thus if a system is invariant under translation, its hamiltonian must satisfy

[H,
∂

∂x
] = 0.

The operator ∂

∂x is anti-hermitean. The corresponding hermitean operator is
−i ∂

∂x . If we multiply by h̄ we get the momentum operator

p =−ih̄
∂

∂x
.

Thus translation invariance implies the conservation of the momentum:

[H, p] = 0.
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Similar arguments apply to each component of momentum of a free particle
moving in R3.

2.3.5. Rotation invariance implies conservation of angular momentum. The
infinitesimal generators of rotation are

L = r×p, p =−ih̄
∂

∂r
.

They satisfy the relations

[L1,L2] = ih̄L3, [L2,L3] = ih̄L1, [L3,L1] = ih̄L2.

2.3.6. In quantum mechanics, a particle can have angular momentum even
when its momentum is zero. Total angular momentum is the sum of the
orbital angular momentum and an intrinsic angular momentum

J = L+S.

The components of S are a set of three matrices satisfying

[S1,S2] = ih̄S3, [S2,S3] = ih̄S1, [S3,S1] = ih̄S2.

The simplest choice is S = 0. There are several such spin zero particles;
e.g., the alpha particle. The next simplest choice is

S1 =
h̄
2

(
0 1
1 0

)
S2 =

h̄
2

(
0 −i
i 0

)
S3 =

h̄
2

(
1 0
0 −1

)
These are ‘spin half’ particles, since the maximum eigenvalue of a compo-
nent of spin is half of h̄. An electron, a proton, a neutron are all examples
of such particles.

The photon has spin one. But it cannot be described by the above the-
ory because it moves at the speed of light. We need relativistic quantum
mechanics for that.

There are a set of particles called ∆ that have spin 3
2 . Their spin is repre-

sented by 4x4 matrices. There are particles with even higher spin but they
tend to be unstable.

2.4. Rotations.

2.4.1. The distance between two points x = (x1,x2x3) and y = (y1,y2,y3) is
given by (x1− y1)

2 +(x2− y2)
2 +(x3− y3)

2. If we translate both vectors
by the same amount , the distance is unchanged. Similarly if we rotate both
the same way, the distance is unchanged.
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2.4.2. The square of the length of a vector, thought of as a 3× 1 matrix is
xT x. A rotation is described by a 3×3 matrix R

x→ Rx.
The length of x is unchanged if

RT R = 1
Such matrices are called orthogonal. Not all orthogonal matrices de-

scribe rotations though. The matrix

P =−1
reverses the sign of all three co-ordinates, which cannot be achieved by

any rotation. Yet it is orthogonal. Every orthogonal matrix has determinant
±1. Every rotation can be built up by rotations through very small angles.
Since the sign of the determinant cannot suddenly jump from 1 to -1, the
determinant of a rotation matrix must be the same as for the identity. That
is,

2.4.3. A rotation is a matrix that is both orthogonal and of determinant
one. The set of all 3× 3 orthogonal matrices is called O(3). Matrices of
determinant one used to be called special matrices. Thus the set of rotation
matrices is called SO(3).

2.4.4. If g,h ∈ SO(3), then gh ∈ SO(3) and g−1,h−1 ∈ SO(3) as well. In
mathematical terminology, this means that SO(3)is a group: it is closed
under multiplication of these matrices as well as taking their inverses. This
idea of a group is essential in particle physics: all the important symmetries
are described by groups.

2.4.5. An infinitesimal transformation R = 1+A is orthogonal AT +A = 0;
i.e., infinitesimal rotations are described by anti-symmetric matrices. An
arbitrary anti-symmetric matrix can be written as a linear combination of
the basic ones

S12 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , S23 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠ , S13 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠
which describe rotations in each co-ordinate plane. They satisfy the com-

mutation relations (verify this)

[S12,S23] = S13, [S23,S13] = S12, [S13,S23] =−S12
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This is an example of what is called a Lie algebra. It has turned out that
elementary particles are classified by algebras SU(3),SU(2) such as these,
only more complicated. Note that the Pauli matrices satisfy very similar
commutation relations.

Exercise 7. What are the commutation relations of rotations in four dimen-
sions?

3. RELATIVITY

3.1. It is an astonishing physical fact that the speed of light is the same
for all observers. This is not true of other waves. For example, the speed
of sound measured by someone on standing on Earth is different from that
measured by someone in an airplane. This is because sound is the vibration
of molecules of air while light is the oscillation of electric and magnetic
fields: there is no medium (ether) needed for its propagation. If an observer
is moving with velocity v1 relative to air, the speed of sound measured by
him/her would be

v = v1 + cs

where cs is the speed of sound measured by a static observer.

3.2. The law of addition of velocities has to be modified to take account
of this fact. The usual law (Galeleo) for addition of velocities (considering
only one component for simplicty)

u+ v

would lead to velocities greater than or less than c , the speed of light.
The correct law is

u+ v
1+ uv

c2

.

3.3. Rapidity is a more convenient variable than velocity in relativistic
mechanics. If either u or v is of magntitude c, the sum is also of magnitude
c. If we make the change of variables (considering only one component for
simplicity)

v = c tanhθ

this formula becomes simple addition:

tanh[θ1 +θ2] =
tanhθ1 + tanhθ2

1+ tanhθ1 tanhθ2
.
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The variable θ is called rapidity. Although velocities cannot exceed
c,rapidity can be as big as you want. As θ → ∞, v→ c. This also sug-
gests that a boost (change of velocity) is some kind of rotation, through an
imaginary angle. Remember that tan iθ = i tanhθ .

3.4. The wavefront of light has the same shape for all observers. Imag-
ine that you turn on and off quickly a light bulb at t = 0,at the position x= 0.
Light propagates along cone

c2t2− x2
1− x2

2− x2
3 = 0,

3.5. The laws of physics must be the same for all observers. This is the
principle of relativity. It is not a discovery of Einstein: what is new is really
how he reconciled this principle with the fact that the velocity of light is the
same for all observers. Einstein realized that Newton’s laws of mechanics
need to be modified to fit with the new law for the addition of velocities.
Minkowski realized that the theory of relativity can be understood geomet-
rically: it says that the square of the distance between two events (points in
space-time) is

c2(t− t ′)2− (x1− x′1)
2− (x2− x′2)

2− (x3− x′3)
2

Lorentz transformations (changes of velocities) are like rotations in the
x− t plane. Because of the relative sign difference between the time and
space components, these rotations are through an imaginary angle; this an-
gle is rapidity. More generally

3.6. The Minkowski inner product of four-vectors is.
u ⋅ v = u0v0−u1v1−u2v2−u3v3

It is useful to write this as

u ⋅ v = uT
ηv

where

η =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠
is called the Minkowski metric.

Remark 8. Be warned that all physicists except particle physicists, use the
opposite convention, with three positive and one negative sign. Even some
particle physicists use the opposite convention (e.g., S. Weinberg).

The points of space time are four vectors with components ct,x1,x2,x3.
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3.7. Rapidity can be thought of as an angle in the x t plane. Again con-
sider just one direction for space. Supose x t and x′ t ′ are space and time as
measured by two observers. Since they must agree that the velocity of light
is the same, the shape of the wave front must be the same as well:

c2t2− x2 = c2t ′2− x′2

This means that

x′ = coshθx− sinhθct

ct ′ = coshθct− sinhθx

for some real number θ . Similar to the way a rotation in the plane leaves
the square of the distance x2 + y2 unchanged. We can identify this angle
with rapidity. Along x′= 0 (the position of one of the observers) the relation
between xand t is

x
t
= c tanhθ .

In other words v = c tanhθ . The above is an example of a Lorentz trans-
formation. More generally,

3.8. A Lorentz transformation is a 4×4 matrix that leaves the Minkowski
distance unchanged. Thus a Lorentz transformations is much like a rota-
tion, except that the matrices must satisfy the condition

Λ
T

ηΛ = η .

3.9. The products and inverses of Lorentz transformations are also
Lorentz transformations. This means that the set of Lorentz transforma-
tions forms a group. It is denoted by O(1,3) : orthogonal matrices with
respect to a metric ηwith 1 positive sign and three negative signs.

3.9.1. O(3) is contained as a special case of O(1,3). A matrix that does not
mix space and time ⎛⎜⎜⎝

1 0 0 0
0
0
0

R

⎞⎟⎟⎠
is a Lorentz transformation if R is orthogonal.
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3.9.2. We can split Lorentz transformations into four types using the signs
of detΛ and Λ00.. If Λ00 < 0 the transformation includes a time reversal. If
Λ00 > 0 and detΛ < 0, it includes a space reversal (Parity). The subgroup
with

detL > 0, Λ00 > 0
is called the set of proper Lorentz transformations SO(1,3). Although

at first all four types of Lorentz transformations appeared to be at he same
footing, it turned out neither Parity nor time reversal is an exact symmetry
of nature.

3.9.3. Only the proper Lorentz transformtions are exact symmeties of na-
ture. Parity is violated by the weak interactions: essentially the fact that
neutrinos are left handed. Time reversal is violated by the phase in the mass
matrix (Kobayashi-Mazkawa matrix) of quarks.

3.9.4. Infinitesimal Lorentz transformations form a six dimensional Lie al-
gebra. If Λ = 1+ λ for some small matrix λ , the Lorentz condition be-
comes

λ
T

η +ηλ = 0
This means that ηλ is anti-symmetric. A four by four antis-symmetric

matrix has six independent components. Three of them represent infinites-
imal rotations. The remaining three are boosts (changes of velocity) in the
three co-ordinate directions. Any infinitesimal Lorentz transformation can
be written as the sum of the six independent matrices:

L12 =

⎛⎜⎜⎝
0 0 0 0
0
0
0

0 −1 0
1 0 0
0 0 0

⎞⎟⎟⎠ , L23 =

⎛⎜⎜⎝
0 0 0 0
0
0
0

0 0 0
0 0 −1
0 1 0

⎞⎟⎟⎠ , L13 =

⎛⎜⎜⎝
0 0 0 0
0
0
0

0 0 −1
0 0 0
1 0 0

⎞⎟⎟⎠ ,

(3.1)

L01 =

⎛⎜⎜⎝
0 1 0 0
1
0
0

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎠ , L02 =

⎛⎜⎜⎝
0 0 1 0
0
1
0

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎠ , L03 =

⎛⎜⎜⎝
0 0 0 1
0
0
1

0 0 0
0 0 0
0 0 0

⎞⎟⎟⎠
They satisfy the commutation relations

[L12,L23] =−L13

[L12,L01] = L02
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[L01,L02] =−L12

and their cyclic permutations. These commutation relations define the
Lorentz Lie algebra. They can also be written as

[Lµν ,Lρσ ] = ηνρLµσ −ηµρLνσ −ηνσ Lµρ +ηµσ Lνρ

3.9.5. In addition to Lorentz transformations, translations are also sym-
metries. Together they form a ten dimensional algebra of symmetries, the
Poincare’ algebra.

[Lµν ,Lρσ ] = ηνρLµσ −ηµρLνσ −ηνσ Lµρ +ηµσ Lνρ

[Lµν ,Pρ ] = ηνρPµ −ηµρPν

(3.2) [Pµ ,Pν ] = 0.

3.10. Invariance under translations leads to the conservation of energy
and momentum.

3.11. Energy and momentum transform together as a four-vector un-
der Lorentz transformations.

p = (E,cp1,cp2,cp3).

3.12. The relation between energy and momentum is.

p ⋅ p = m2c4, E > 0

Geometically, this one sheet of a hyperboloid in four-dimensional space,
called the mass shell.

E =
√

m2c4 + c2p2

In particular, even a particle at rest has energy

E = mc2.

For velocities small compared to c,

E ≈ mc2 +
p2

2m
The second term is the Newtonian formula for kinetic energy. Since the

mass of particles usually do not change,in most situations we do can ignore
the first term. But in nuclear reactions, this energy can be released with
spectacular results.
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3.13. For massless particles the momentum vector is null. The inner
product of momentum with itself is zero

p ⋅ p = 0.

Geometrically, the set of null momenta is a cone in four-dimensional
space.

The relation of energy to momentum is

E = c∣p∣

3.14. Free particles move along straight lines in Minkowski space. Mas-
sive particles move along time-like straight lines: the tangent vector has
positive inner product with itself. Massless particles move along null lines.

3.15. Conservation of energy-momentum places important restrictions
on decays and scattering of elementary particles.

4. THE SCHRODINGER EQUATION HAS TO BE CHANGED TO TAKE
ACCOUNT OF RELATIVITY

Recall that in quantum mechanics

p =−ih̄
∂

∂x
, E = ih̄

∂

∂ t
.

The relation

E =
p2

2m
of non-relativistic mechanics gives the Schrodinger equation for a free

particle:

ih̄
∂ψ

∂ t
=− h̄2

2m
∂ 2ψ

∂x2 .

For a relativistic particle instead

E2 = c2p2 +m2c4

leading to
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4.1. The Klein Gordon Equation.

1
c2

∂ 2ψ

∂ t2 =
∂ 2ψ

∂x2 −
(mc

h̄

)2
ψ.

The quantity h̄
mc has the dimension of length; it is a fundamental property

of a particle determined by its mass, called its Compton wavelength. It is
called that because this combination first appeared in Compton’s explana-
tion of the scattering of gamma rays by elecrons. Now we know that this
equation only describes spin zero particles. Dirac discovered the correct
equation for spin one half particles like the electron.

4.2. For a massless particle this becomes the wave equation.

1
c2

∂ 2ψ

∂ t2 =
∂ 2ψ

∂x2

4.3. Mass and spin define the transformation properties of an elemen-
tary particle. Mass is defined by the norm of the momentum four-vector.

p ⋅ p = m2

Spin s is defined in a similar way by

W ⋅W = m2s(s+1)
where

W µ = ε
µνρσ pνLρσ

is the Pauli-Lubanski vector. Its time component is the dot-product of
angular momentum and momentum. Thus it picks out the intrisic or spin
component of angular momentum: orbital angular momentum has zero dot
product with momentum.

4.4. In the quantum theory, infinitesimal translations and Lorentz trans-
formations are represented by hermitean operators on the Hilbert space.

4.5. An elementary particle is such an irreducible representation of the
Poincare Lie algebra. Irreducible means that every state in the Hilbert
space can be turned into any other state by some Poincare transformation.
If the representation is not irreducible, there would be some subset of states
that only mix with each other (form an invariant subspace) and then the
system can be broken up into two pieces (the invariant subspace and its
complement). So it would not be elementary or indivisible.This mathemat-
ical realization of the physical concept of an elementary particle is due to
Wigner.
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5. MAXWELL’S EQUATIONS

Read the book by Jackson on Classical Electrodynamics. Or the second
volume of the series by Landau and Lifshitz Classical Theory of Fields.

5.1. All magnetic fields must have zero divergence.

∇ ⋅B = 0

This means in particular that there is no analogue to an isolated electric
charge in magnetism: a permanent magnet has to be a dipole. If you cut
a dipole into two we will not get an isolated North pole and South pole.
Instead we will get two dipoles again. Some theories that go beyond the
standard model do allow for magnetic monopoles; but none have yet been
observed.

5.2. This equation can be solved by postulating that the magnetic field
is a curl of a vector potential.

B = ∇×A

5.3. Two vector potentials that differ only by the gradient of a scalar
give the same magnetic field. This is called a gauge transformation

A′ = A+∇Λ, B′ = B

∇×∇Λ = 0.
It turns out that invariance under this transfomation is a fundamental sym-

metry of nature. We will see that gauge transformations that generalize this
are the fundametnal symmetries of the standard model.

5.4. Another equation of Maxwell relates the time derivative of the
magnetic field to the eletric field.

∂B
∂ t

= ∇×E

5.5. We can solve this by postulating in addition a scalar potential V .

E =
∂A
∂ t
−∇V

Remark 9. Recall that we are using units such that c = 1. Otherwise there
will be some factors of call over the place.

The gauge transformations must now change the scalar potential as well

V ′ =V +
∂Λ

∂ t



19

so that the electric field is unchanged.

∂∇Λ

∂ t
= ∇

∂Λ

∂ t
.

5.6. Under Lorentz transformations the scalar and vector potentials
combine into a four-vector A = (V,A). We will introduce an index µ =
0,1,2,3 such that

A0 =V, A = (A0,A1,A2,A3)

Then the gauge transformation can be written as

A′µ = Aµ +∂µΛ

where ∂µ denotes differentiation along the µ th direction. Gauge invari-
ance is based on the identity

∂µ∂νΛ = ∂ν∂µΛ.

The electric and magnetic fields are then

Ei = ∂0Ai−∂iA0, i = 1,2,3.

B1 = ∂2A3−∂3A2, B2 = ∂3A1−∂1A3, B3 = ∂1A2−∂2A1

This suggests that we combine them into a single matrix Fµν

Fµν = ∂µAν −∂νAµ

It is an anti-symmetric matrix:

F =

⎛⎜⎜⎝
0 E1 E2 E3
−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0

⎞⎟⎟⎠
5.7. Scalar Products of vectors are Lorentz invariant. Recall that there
is also a symmetric matrix ηµν that allows us to take products of vectors.
Its indices are written above as a way of keeping track of them:

η
µν pµqν = p0q0− p1q1− p2q2− p3q3, η =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠
It is also useful to think of the combination
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η
µν pµ = pν , pν = (p0,−p1,−p2,−p3)

as a vector with indices above and the scalar product as

pνqν = p0q0− p1q1− p2q2− p3q3

A pair of indices that are repeated are summed over.

pνqν = ∑
ν

pνqν .

This convention due to Einstein simplifies the appearance of equations. It
means that you must be careful not to use the same index more than twice.

5.8. The remaining Maxwell’s equations can be written in Lorentz in-
variant form as.

∂
µFµν = jν

Expanded in terms of three dimensional quantities

∂E
∂ t

=−∇×B+ j

∇ ⋅E = j0
The scalar j0 is proportional to charge density and the vector j to current

density.

5.9. The potential A satisfies a wave equation.

5.10. The electromagnetic field describes a particle of mass zero and
spin one. Mass zero because it travels at the velocity of light. (Duh. it is
light.) Spin one because in three dimensional language it includes a vector
field, which has spin one.

6. THE DIRAC EQUATION

We saw earlier that a free spin zero massive particle is described by the
Klein-Gordon equation

∂
µ

∂µφ +m2
φ = 0.

It was Dirac who discovered the correct relativistic wave equation for
spin 1

2 particles. Recall that such a particle has angular momentum even
when it is at rest, given by the Pauli matrices 1

2σ . Also, their wave function
is not a single complex number but a pair of complex numbers. Since the
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spin matrices act on such a pair, it is called a spinor. Since both the spin and
the momentum are vectors a combination such as

σ ⋅p =

(
p3 p1− ip2

p1 + ip2 −p3

)
is a scalar under rotations. But it changes sign under parity (reflection of

all three spatial co-ordinates). Note that

(σ ⋅p)2 = ∣p∣2.
Moreover,

detσ ⋅p =−∣p∣2.
Is there a way to generalize this to get something invariant under Lorentz

transformations?

6.1. The set of four matrices (1,σ1,σ2,σ3) = σ µ transform as a vector
under Lorentz transformations.

6.1.1. σ ⋅ p ==

(
p0 + p3 p1− ip2
p1 + ip2 p0− p3

)
is Lorentz invariant. Note that

detσ ⋅ p = p2
0−∣p∣2 = p ⋅ p

is the Minkowski scalar product.Using the usual quantum mechanical
rule momentum can be thought of as differentiation

pµ =−ih̄∂µ

leading to a wave equation origially discovered (but not published) by
Pauli.

Remark 10. We will use units such that h̄ = 1so that it will not usually
appear explicitly. I put in in here just for clarity.

6.2. The Pauli Wave Equation.

σ ⋅∂ χ = 0

Or expanded out,

∂ χ1

∂ t
+

∂ χ1

∂ z
+

∂ χ2

∂x
− i

∂ χ2

∂y
= 0

∂ χ2

∂ t
− ∂ χ2

∂ z
+

∂φ χ1

∂x
+ i

∂ χ1

∂y
= 0
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6.2.1. This describes a massless spin 1
2 particle: each component of the

spinor satisfies the wave equation. The equation is Lorentz invariant, but
is not invariant under parity. This because the combination E − σ ⋅ p is
invariant under rotation and Lorentz boosts. Under a reflection momen-
tum changes sign but not angular momentum. (Remember that spin 1

2σ

and orbital angular momentum L = r× p must transform the same way).
Therefore σ ⋅p changes sign. But not E.

Pauli thought this equation could describe the neutrino but rejected it be-
cause it violated parity. But in 1957 it was discovered that Parity symmetry
is broken, and precisely in beta decays: that involve the neutrino!

6.2.2. We can get a Parity invariant equation by putting together two Pauli
spinors: under parity we just exchange them.

(∂0 +σ ⋅∇)χ = 0

(∂0−σ ⋅∇) χ̃ = 0

These still decsribe a pair of massless spin one half particles. We can get
a parity invariant equation for a massive spin one half particle by making
mass mix the two components:

6.3. The Dirac equation is.

(∂0 +σ ⋅∇)χ = imχ̃

(∂0−σ ⋅∇) χ̃ = imχ

The factor of i is chosen such that

6.3.1. Each component satisfies the wave equation for massive particles.(
∂

2
0 −∇

2
)

χ =−m2
χ̃

(
∂

2
0 −∇

2
)

χ̃ =−m2
χ

Thus a Dirac spinor has four components, which can be broken up into
two Pauli spinors.

ψ =

(
χ

χ̃

)
(

0 ∂0−σ ⋅∇
∂0 +σ ⋅∇ 0

)
ψ = imψ
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6.3.2. The Dirac equation can also be written as.

γ
µ

∂µψ = imψ

γ
0 =

(
0 1
1 0

)
γ =

(
0 −σ

σ 0

)
Recall that the Pauli matrices satisfy (indeed are defined by) the condi-

tions

σ
i
σ

j +σ
j
σ

i = 2δ
i j.

That is, each Pauli matrix has square one; and they ani-commute with
each other. In the same spirit

6.3.3. The Dirac matrices satisfy the conditions.

γ
µ

γ
ν + γ

ν
γ

µ = 2η
µν .

Exercise. Use this identity to derive the massive wave equation for each
component of the Dirac spinor, without using the explicit form in terms of
Pauli matrices above.

Up to a choice of basis, all the properties of Dirac matrices follow from
these conditions. In fact people use use other representations than the one
above (which is called the chiral representation because it makes the parity
or handedness explicit) when it suits some other purpose.

6.4. The left and right handed components are eigentates of γ5 = iγ0γ1γ2γ3.
Note that γ12

5 = 1.

6.5. The wave function of the electron satisfies the Dirac equation. It
predicts the correct value for the magnetic moment; the fine structure of the
hydrogen atom. The problems with negative energy solutions are resolved
by the hole theory of Dirac.

6.5.1. The muon, the tau and the six quarks all satisfy the Dirac equation,
but with vastly different masses. The masses vary from that of the electron,
0.5MeV, up to 180 GeV for the top quark. More precisely the mass is a
matix whose eigenvalues have these magnitudes. It turns out that in fact
the quark mass matrix has complex eigenvalues: the phase represents a
violation of CP. This clever way of explaning CPviolation won Kobayashi
and Mazkawa a Nobel prize last year. More on all this later.
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7. QUANTUM ELECTRODYNAMICS

So far we know the equations for the wave functions of spin 0,1
2 and 1

particles. To understand the interactions of these particles with each other
we must introduce non-linearities. The key is gauge invariance. A complete
study of the resulting theory, quantum electrodynamics is well outside the
scope of this course. Itzykson and Zuber Introduction to Quantum Field
Theory is still a good reference. At a level closer to this course is the book
by Kerson Huang, Quarks and Leptons.

Exercise. The Dirac equation implies the conservation of a current

jµ = ψ̄γ
µ

ψ, ψ̄ =
(

χ∗ φ∗
)

That is,

∂µ jµ = 0.
This implies that

∂

∂ t

ˆ
j0d3x = 0.

Thus we can think of Q = e
´

j0d3x as the electric charge and j0, j as
the charge and current densities respectively. The constant e is the electric
charge of the electron (or whatever other particle to which we will apply
this equation).Thus

7.1. The Maxwell’s equations in the presence of electrons is.
(7.1) ∂

µFµν = eψ̄γµψ.

Just as electrons create electric and magnetic fields,these fields must af-
fect their motion. The change in the Dirac equation due to the presence of
electric and magnetic fields is more subtle. Gauge invariance is the key to
understanding this. Recall that under gauge transformation

A′µ = Aµ +∂µΛ

where Λ is an arbitrary function. We want to preserve this symmetry
when we introuduce Aµ into the Dirac equation. We must transform ψas
well so that the changes in ψ and Aµcompensate for each other. Notice that
if

ψ
′ = eieΛ

ψ

∂µψ
′ = eieΛ

[
∂µψ +

(
ie∂µΛ

)
ψ
]
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Remark 11. Sensible people can handle the double use of the symbol e
here. The e in the exponent is the electric charge and that below is the base
of natural logarithms. Their values of course, have nothing to do with each
other.

Thus in the combination below the derivatives of Λ cancel out:[
∂µ − ieA′µ

]
ψ
′ = eieΛ

[
∂µ − ieAµ

]
ψ

7.2. The Dirac equation in the presence of an electromagnetic field is.

(7.2) γ
µ
[
∂µ − ieAµ

]
ψ = imψ

Under a gauge transformation both sides are mutiplied by the same fac-
tor, so it cancels out. The pair of equations (7.1,7.2) describe Quantum
ElectroDynamics (QED) of charged spin one half particles and photons.

7.3. The equation of a charged massive spin zero particle is.

η
µν
[
∂µ − ieAµ

]
[∂ν − ieAν ]φ =−m2

φ

This also follows using gauge invariance. Of course, here φ is a scalar not
a spinor.

7.4. The proper interpretation of the equations of Quantum Electro-
dynamics involves renormalization. The trouble is that the equations as
describes above lead to infinities when quantum effects are fully included.
They have to removed by a strange set of rules called “renormalization”.
These rules work remarkably well and agree with experiments to high pre-
cision: fifteen decimal point accuracy is the best science has ever achieved.
Yet the correct mathematical formulation is still not clear. Dirac himself
was very unsatisfied by this situation. New ideas in analysis are needed.
But that is another story.

8. ATOMIC NUCLEI

8.1. Atomic Nuclei are made of neutrons and protons, of roughly equal
masses. The protons carry an electric charge but the neutrons do not.
This explains why many chemical elements have isotopes: the chemical
properties are determined by the number of electrons which is equal to the
number of protons (the atomic number Z). The atomic mass number (A) is
determined by the sum of neutrons and protons. The proportion of neutrons
in a nucleus increases with the atomic number. The stable isotopes of hy-
drogen have either zero or one neutron; for Uranium, even the longest lived
isotope has atomic mass number 238 compared with 92 protons. If there are
too few neutrons, a nucleus is in danger of decaying by fission: breaking up
into two nuclei each with smaller atomic number which can be stable with a
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smaller number of neutrons. If a nucleus has too many neutrons, it will emit
an electron converting a neutron into a proton (beta decay). For example,
Tritium decays into He3 with a half-life of about seven years. This is why
the warhead in hydrogen bombs have to be replenished every few years.

8.2. The neutron is slightly heavier than a proton. A free neutron de-
cays into a proton emitting an electron and an anti-neutrino with a half
life of about ten minutes. The neutrons inside nuclei do not decay as fast
or are stable because their binding energy is greater than the n− p mass dif-
ference. The decay is so slow because it is mediated by weak interactions
and because there is very little room in phase space for it:

mn− (mp +me)

mn
≈ 0.1%

Typical weak lifetimes (e.g. muon) is about a microsecond, already very
long by the standards of particle physics. Typical strong decays has life-
times (10−23 secs) (e.g., ρ → ππ).

8.3. The proton is stable. The lifetime is 6.6× 1033 years: the longest
confirmed lifetime of any particle. (Except perhaps the electron which no
one seems to imagine can decay.)

8.4. Both the neutron and the proton are spin half particles.

8.5. Although the neutron has no electric charge, it has a magnetic mo-
ment: suggesting that it is made of charged particles (quarks) whose
electric charges cancel out.

8.6. The neutron has no electric dipole moment. This is a test of CP
invariance of strong interactions. The standard model predicts, through
CP violation of weak interactions, a small electric dipole moment for the
neutron. But it is too small to be observed.

8.7. It became clear in the 1930s that the neutrons and protons have a
strong attractive force. Otherwise a nucleus would fall apart under Coulomb
repulsion. The range of this force has to be about the size of a nucleus: so
that all the neutrons and protons of the world don’t fall into one gigantic
nucleus. This can be explained if the force were to decrease exponentially
with a range a ∼ 1 fm (fm is a femtometer,10−15m which conveniently is
also called a Fermi).

8.8. Yukawa suggested that the strong force is due to exchange of a
massive particle, of mass µ ∼ h̄

ac ∼ 100 MeV.
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8.8.1. It is useful for conversions to note that h̄= 197.3269631(49)MeV fm..
For simplicity we will for now ignore the fact that there are two kinds of par-
ticles (n and p) inside the nucleus. In the next section we will return to this
doubling.

8.8.2. The Klein-Gordon equation with a point source has an exponential
decreasing static solution φ = g e−µr

4πr . Here g is a constant (Yukawa cou-
pling constant) that measures the strength of the field, analogous to electric
charge for the Coulomb field.

8.8.3. Similar to the photon which mediates the electromagnetic interac-
tions, except the photon is massless and the Coulomb force has infinite
range.

8.8.4. The exchange of photons can lead to repulsive as well as attractive
interactions. Because the nuclear force is always attractive, the spin of the
particle must be even. Yukawa suggested it must be spin zero. Gravity is
also always attractive: it is mediated by a hypothetical spin two particle.

8.9. This particle has since been discovered and is called the π meson.
It has a mass of about 140 MeV. There was some confusion about its discov-
ery. In fact another particle with a very close mass was discovered first in
cosmic rays, called the muon. But the muon did not get absorbed by nuclei.
It was Marshak (former Chair of our Department) who resolved the confu-
sion: the muon is a lepton, a copy of the electron only with a higher mass.
It has no strong interactions with the nuclei. But pions which are caused by
cosmic ray collisions in the upper atmosphere decay into the muons, which
are detected at lower altitudes.

8.10. We can modify the Dirac equation to include a coupling to a spin
zero particle. One way to do this is to add the scalar field to the mass of
the fermion:

γ
µ

∂µψ = i(m+φ)ψ

The scalar field of this type would be invariant under parity. This does
not quite work because

8.10.1. The pi meson is a pseudo-scalar. This means that it changes sign
under parity. Measuring the polarizations of the photons in the decay π0→
2γ tells us this fact. So the pion couples with opposite signs to the left and
right handed components of the proton.
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8.11. The Dirac equation coupled to a pseudo-scalar is.

γ
µ

∂µψ = imψ +gγ5φψ

γ5 =

(
1 0
0 −1

)
At infinity φ → 0 and we get back the free Dirac equation. g is a constant

that measures the strength of the interaction. Conversely the fermion serves
as a source for the scalar field

8.12. The wave equation of the scalar field is modified by the fermion
as well. (

∂
2
0 −∇

2
)

φ +m2
φ =−gψ̄γ5ψ

9. ISOSPIN

9.1. Heisenberg suggested that the neutron and the proton should be
thought of as two states of the same particle. If we were to ignore the
electromagnetic interactions (which are only about 1% as strong as the
strong interactions) and weak interactions (which are even smaller) and also
ignore the mass difference (less than 1%) the neutron and proton appear to
be two distinct states of the same particle. Much like the spin up and spin
down states of an electron. Heisenberg proposed an approximate symmetry
similar to spin, isospin,which is broken by electromagnetic and weak in-
teractions but is respected by strong interactions. There is a single particle
called the nucleon whose isospin up state is the proton and the isospin down
state is the neutron.( In addition, N carries spin 1

2 , so that each isospin state
can be spin up or spin down. ) Isospin is just like spin as far as mathemat-
ical properties go. But it is not related to angular momentum in any way.
It is just another conserved quantity like electric charge. Unlike the electric
charge, isospin conservation is not an exact law of nature: electromagnetic
and weak interactions will violate it.

ψ =

(
p
n

)
The electric charge is equal to the component of isospin plus a constant

shift:

Q = I3 +
1
2
.

The free Dirac equation becomes

γ
µ

∂µψa = imψa, a = 1,2
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with a = 1 for the proton and a = 2 for the neutron. We ignore the fact
that they have slightly different masses.

9.2. The pi meson has isospin one. Thus there are three possible isospin
states: there are actually three pi mesons, with almost equal masses and
electric charges ±1,0.

φ =

⎛⎝ π+

π0

π−

⎞⎠
For them the formula for electric charge is

Q = I3.

There is no shift, unlike for the fermions. In reality the mass of the
charged pions are a few percent different from that of the neutral pion but
we ignore that for now. The strong interactions are caused by exchanges of
pions:

n→ p+π
−, p→ n+π

+.

Because there may not be enough energy to create a free pion in a nu-
cleus, the pions are often virtual: they exist only for a time of order 1

µ
. But

that is enough to produce the attractive interactions of range 1
µ
.

9.3. The Dirac equation of the nucleon including the coupling to the
pion triplet is.

γ
µ

∂µψ = i(m+gτ ⋅φγ5)ψ

Here, τare Pauli matrices of isospin. For example τ1 =

(
0 1
1 0

)
inter-

changes n with p of the same spin.
To complete the story we must say how the nucleon is a source for the

pion field:

9.4. The equation for the pion field is.(
∂

2
0 −∇

2
)

φ +µ
2
φ =−gψ̄τγ5ψ
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9.5. This Yukawa theory is an effective theory for strong interactions.
The proton and the pion are not elementary particles: both are made of
quarks. The correct modern theory is Quantum ChromoDynamics. A “ef-
fective theory” is high energy physics jargon for an approximate theory,
valid in some cases but not to be thought of as the final word. Thus, hydro-
dynamics is an effective theory for the collective theory of large numbers
of molecules; chemists have theories of chemical bonds which approximate
quantum mechanics; a planet can be treated as a point particle in celestial
mechanics. In each of these cases, the complexities at short distances be-
ing ignored do not affect the behavior of the system at large enough scales.
Actually every theory of physics except for the standard model and general
relativity is an effective theory. Even today’s exact theory of particle physics
(the standard model) might be the effective theory of tomorrow when a more
accurate theory is discovered. We can only speculate now about what that
next level theory might be.

10. BREAKING OF ISOSPIN

10.1. We can combine the two formulas for electric charge, of the nu-
cleon and the pion into a single formula.

Q = I3 +
B
2

where B is the baryon number. Baryons are half integer spin particles
which participate in strong interactions: the nucleon is the lighest baryon.
The mesons are not baryons so they have B = 0. We will see later in terms
of the quark model why there are so many baryons and mesons and why the
mesons have baryon number zero.

10.2. The masses of the nucleon and pion have a small dependence on
isospin.

m = m0 + ε1I3

The masses of the pion are more subtle: we will postpone that story till
we talk about the quark model.

10.3. Isospin breaking is best understood in terms of the quark model:
the up and down quarks have different masses.

11. THE SIGMA MODEL

An excellent reference for this lecture is the book “Chiral Dynamics” by
Benjamin Lee.
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11.1. The pi mesons are much lighter than the nucleons. 140MeV <<
940Mev. To a first approximation we can treat the pions as massless. Nambu
suggested that they are so light because they are the remnants of a spon-
taneously broken symmetry. This is one of the deepest ideas of modern
physics and is going to play a role also in understanding the weak interac-
tions (the Higgs et. al. mechanism) So we are going to digress to explain it.
Let us go back to basics, classical mechanics.

11.2. The ground state is the minimum of the potential. For a classical
mechanical system the state of least energy (ground state) has zero kinetic
energy and is also at the minimum of the potential.

(11.1)
∂V
∂φa

= 0.

The second derivative of the potential at this point V ′′ is a symmetric ma-
trix all of whose eigenvalues are ≥ 0 : this is the condition for a minimum.
These eigenvalues also have another physical meaning: their square roots
are proportional to the frequencies of oscillations around the ground state.
Of special interest is the situation when there is a “zero mode”: one or more
of the eigenvalues of ,V ′′ is zero. What happens in that direction depends
on higher derivatives. Suppose there is a symmetry of V that is broken by
the ground state. For example, suppose

V (φ) = λ (φ 2−a2)2

Any point on the sphere ∣φ ∣ = a is a minimum: the choice of any one
direction breaks the symmery of rotation by choosing a direction. In this
case, the second derivative V ′′ at any minimum will have two zero modes:
there are two eigenvectors with zero eigenvalue, corresponding to two in-
finitesimal rotations that change the direction of φ .

Exercise 12. Calculate the eigenvalues and eigenvectors when φ = (0,0,a)

11.3. There are zero modes whenever a continuous symmetry is spon-
taneously broken. When we pick one of many solutions of (11.1) we can
always move to a nearby solution at no cost of energy. Thus there are always
“zero modes”, which are excitations of arbitrarily low energy.

11.4. In quantum mechanics the ground state is unique. In quantum
mechanics, the ground state is a linear superposition of all the points of
equal energy: there is an equal probability of finding the system at any one
point. Tunneling will prevent the ground state from being concentrated at
any one point. Thus in quantum systems with a finite number of degrees of
freedom we cannot have spontaneous symmetry breaking.
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11.5. Quantum systems with an infinite number of degrees of free-
dom can break symmetry spontaneously. In these cases tunneling is sup-
pressed by e−Ω where Ωis proportional to the volume of the system. This is
why a magnet can develop spontaneous magnetization: all directions have
the same energy. The quantum wave function of the magnet is concentrated
along one direction because tunnelling to the other states is suppressed. In
this case a continuous symmetry-rotation- is spontaneously broken.

11.6. When a continuous symmetry is spontaneously broken there are
waves of arbirarily small energy. The frequencies are still given by the
eigenvalues of V ′′. More precisely, taking into account of translation invari-
ance they are given by √

k2 +V ′′

where k is the wave number. To understand this, think of changing the
magnetization by a smal amount. This change will propagate along the
magnet as a wave: a “spin wave”. If the change is only one of direction of
the magnetization, we can make it as slowly varying in time as we want: the
restoring force is zero as the second derivative vanishes.Such low frequency
(and long wavelength) waves are a feature of all quantum systems with
spontaneously broken symmetry.

Small oscillations in translation invariant many body systems correspond
to bosonic particles: phonons for sound waves and “magnons” for mag-
netic waves. They are called Nambu-Goldstone bosons. Nambu’s Nobel
Prize was in part for this work.In a relativistic quantum theory, the Namu-
Goldstone bosons are massless particles: mass being the smallest possible
energy for a particle.

11.7. Pions are the Nambu-Goldstone bosons of a spontaneously bro-
ken O(4) symmetry. In a magnet there are two zero eigenvectors for V ′′

,corresponding to the two independent directions of a sphere. To get three
massless bosons, we must imagine a sphere of fixed length vectors in four
dimensions. Imagine a scalar field with four components (σ ,φ1,φ2,φ3) and
a potential

V (φ) =
λ

4
(
σ

2 +φ
2−F2

π

)2
.

It is invariant under rotations in four dimensions O(4). All the points on
the three dimensional sphere S3

σ
2 +φ

2 = F2
π

have the same energy. The constant Fπ is the radius of this sphere: it has
the value of about 150 MeV. It is called the pion decay constant because it
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also determines the probability of weak decays of the pion. (Weak decays
are a quite different phenomenon which we will discuss later. It just so
happens that this constant also shows up there and got its name that way.)
We can define the direction chosen by the ground state (i.e., the vacuum) to
be the fourth: the vacuum expectation value of σ is

< σ >= Fπ .

The second derivative of the potential at this point is

V ′′ = diag(3λF2
π ,0,0,0)

This leads to three massless particles (the pions) and on massive particle
(called the sigma). The constant λdetermines the mass of the sigma particle.

mσ =
√

3λFπ

11.8. The sigma particle is very unstable. It decays into pairs of pions
with a very high probability: only after many years of work have we been
able to identify it unambigously.

11.9. The sigma is a scalar while the pions are pseudo-scalars. Under
parity

(σ ,φ) 7→ (σ ,−φ)

We know the pions are pseudoscalars by measuring the polarization of
the photon in the decay π0→ 2γ . (More on this important decay later). The
sigma decays into two pions so it must be a scalar. The parity properties
are an important clue on how to complete the Yukawa theory to include the
sigma.

11.10. The Dirac equation of the nucleon including the coupling to the
pion triplet is.

(11.2) γ
µ

∂µψ = g(iσ + τ ⋅φγ5)ψ

In the ground state of the bosons, σ = Fπ ,φ = 0. Thus the mass of the
nucleon is related to the Yukawa coupling constant and the pion decay con-
stant

m = gFπ .

This is an important prediction of the sigma model, which can be verified
experimentally: each of the numbers are independently measurable.
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11.11. The equation for the pion field and sigma fields are.

(11.3)
(

∂
2
0 −∇

2
)

φ =
∂V
∂φ
−gψ̄τγ5ψ

(11.4)
(

∂
2
0 −∇

2
)

σ =
∂V
∂σ
− igψ̄ψ

The masses and interactions of the scalars are encoded in V . The field
equations (11.2,11.3,11.4) descrbe the “linear sigma model”, also called
the Gell-Mann-Levy model. The word linear here does not mean that the
equations are linear: only that the scalar fields take values in the linear
space R4. This model was first invented to explain strong interactions. But
with some tweaking-replace nucleons by quarks and scalar fields by Higgs
bosons- it describes the weak interactions. Old ideas of physics don’t just
die: they just get reincarnated.

11.12. We can add a correction to the potential to include a mass for
the pion. This will break the O(4) symmetry of the potential by picking out
some direction. The main effect is to change the eigenvalues of V ′′ at the
minimum, although the value of sigma field at the minimum is also changed
slightly, as a higher order effect:

(11.5) V (σ ,φ) =
λ

4
(σ2 +φ

2−F2
π )

2 + εσ .

Since ε is very small, we should think of this as a constained minimiza-
tion of εσ subject to the condition that σ2+φ

2 = F2
π : the condition for the

dominant term to be a minimum.

11.12.1. We can think of a pendulum as a mechanical analogue. Imagine
a pendulum suspended from a rod of length R. Actually the pendulum bob
has some elasticity. So what we mean by this is that the elastic potential
energy is minimized when the length is R. We can model this by an elastic
potential energy

V1 =
λ

4
(y2 + x2−R2)2

where (x,y) is the position of the pendulum bob; the origin is at the point
of suspension. All points of the circle x2 + y2 = R2 have the same elastic
energy. Adding the gravitational potential energy breaks this symmetry:

V (x,y) =
λ

4
(y2 + x2−R2)2 +mgy

The first and second derivatives are
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∂V
∂x

= λ (y2 + x2−R2)x

∂V
∂y

= λ (y2 + x2−R2)y+mg

V ′′ =
(

λ (y2 + x2−R2)+2λx2 2λxy
2λxy λ (y2 + x2−R2)+2λy2

)
The condition for the minimum

λ (y2 + x2−R2)x = 0
implies that either x = 0 or (y2 + x2− R2) = 0. We must choose x =

0 because if x2 + y2 = R2 exactly, there is no way to satisfy the second
equation! Thus y is determined by

λ (y2−R2)y+mg = 0
There is a root y− ≈−R which is the minimum; the other root is a maxi-

mum. By rewriting the equation as

y =
R2

y
− mg

λy2

we can find an approximation to this solution as

y− ≈−R− mg
λR2

The second term represents the small extension of the length of the pen-
dulum due to the weight of the bob.

The calculation of the eigenvalues of V ′′ is simplified if we put

λ (y2−R2) =−mg
y

into the formula for the second derivative before making the approxima-
tions:

V ′′(0,y−)=

(
−mg

y−
0

0 −mg
y−

+2λy2
−

)
≈
(
−mg

y−
0

0 2λy2
−

)
≈
( mg

R 0
0 2λR2

)
Thus one of the eigenvalues is large and the other small. The smaller

eigenvalue leads to the usual formula
√

g
R for the angular frequency of the

gravitational oscillations of the pendulum. The other one cooresponds to
the elastic oscillation of the pendulum and is usually ignored. In the case
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of the sigma model, the angular frequency of the usual oscillations of the
pendulum are analogous to the pion mass; that of the elastic oscillations is
like the σmass. The approximation of treating the length of the rod as fixed
(rigid rod) is analogous to the nonlinear sigma model. The rigid pendulum
has another kind of motion, in addition to the small oscillations. There are
rotations that go all the way around: past the maximum of the potential.
These are like the baryon (soliton) solutions of the nonlinear sigma model.
There are two kinds of rotations, clockwise and anti-clockwise, which are
roughly like the baryon and anti-baryon.

Exercise 13. Find the masses of the pi mesons predicted by (11.5), assum-
ing that ε is small.

12. THE CHIRAL MODEL

The sigma particle is so unstable that it is hardly there: it is a broad
resonance whose width is not smaller than its mass. If we were to eliminate
the σ field by constraining the potential to be at the minimum

σ
2 +φ

2 = F2
π

we would get the “nonlinear sigma model”, also called the “chiral model”.
This is a much more elegant model with much interesting geometry and
topology. Althought it is only an “effective theory”-an approximation to
QCD- of strong interactions, it has much life left in it still. In recent years,
the same ideas have found applications to new areas of physics: not only
magnetism but also atomic condensates show broken symmetries. Since
accelerator based experimental particle physics has not discovered no new
phenomena in forty years, theorists are inspired more by the exciting new
tools of atomic condensates. Ideas discovered validated there in turn should
help us in resolving the puzzles posed by particle physics. It is a bad idea
to look only at one set of tools when confronting the unknown: physics is a
unified subject. Thus there has been a revival of interest in these old ideas
of strong interaction physics.

12.1. The self-interactions of the pions are described by making pion
field takes values in a three dimensional sphere. The radius of this sphere
is a measure of the strength of this interaction: the larger the radius, the
higher the pion momentum has to be for the interactions to kick in. This
number is called Fπ , the pion decay constant. (It is called that because it
also controls the probability of weak decay of the pion: a quite different
phenomenon we are ignoring for now.) Its value is about 150 MeV. A varia-
tional principle tells us how to change the wave equation ( in stereographic
co-ordinates)
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∂µ

⎡⎢⎣ ∂ µξ(
1+ ξ

2

F2
π

)2

⎤⎥⎦= 0

The actual derivation of these equations require some geometry of the
sphere. We skip details here. The essential point is that the distance ds
between two neighboring points on the sphere is given by

ds2 =
dξ

2(
1+ ξ

2

F2
π

)2

in the co-ordinate system we are using. Such geometric modifications
of the wave equations are a fashionable topic among mathematicians right
now: they call this the “wave map” equation.

12.2. At infinity the field much approach a constant. Otherwise the total
energy would be infinite. The limiting value may be chosen to the “North
Pole” of the sphere which is the origin of our co-ordinate system

lim
∣x∣→∞

ξ = (0,0,0).

12.3. Any continuous map φ : R3→ S3 which approaches a constant at
infinity has an integer associated with it.

Q =
2
π

ˆ
det∂ξ d3x

This is the integral of the Jacobian of the map divided by the volume of
the sphere: it counts how many times R3 is wrapped around the sphere, a
kind of winding number. Under continuous evolution, this number would
be conserved.

12.3.1. A one dimensional analogue is the winding number of a map ξ :
R→ S1.

w(ξ ) =
ξ (∞)−ξ (−∞)

2π
=

´
∞

−∞

dξ

dx dx
2π

12.4. Skyrme suggested that nucleons are solitons of pions. So far we
have thought of the nucleons and pions as independent particles. In QCD
they are both made of quarks. Here is a bizarre third possibility: the nu-
cleons are simply pion configurations with non-zero winding number. They
are solutions to the pion wave equations that are very different from the
ground state. Nonlinear equations often have such solutions that are stable
and behave as particles on there on right, in addition to the small oscillations
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around the ground state. An important example are the solitary waves of the
ocean: tsunamis. Pions are like the more familiar ripples on the surface of
the oceans. These cost very little energy. But given a lot of energy (in the
case of ocean wave it is provided by an earth quake) we can also create a
huge new wave that looks like an entirely new particle. Skyrme suggested
that nucleons are just such solitons of the pion field. At the time this idea
was suggested (1960s) it was ignored because it was just too bizarre. But
about mid eighties a group of us revived it and showed how it is in fact an-
other way to look at QCD. Although QCD itself is too difficult to solve, in
simpler cases where it is possible to solve gauge theories, we have shown
that nucleons indeed are solitons.

12.5. Solitons of bosonic fields can have half integer spin and be fermions.
This is because of very subtle topological facts. When an infinite number of
particles act in unison, the usual rules of quantum mechanics can be over-
come.

12.6. The pion field equations have to be modified to include a short
range repulsion. Otherwise the soliton would shrink to zero and disappear.
This modification does not affect the other parts of the theory. Mathematical
proof that this avoids the singularity in the soliton solution is difficult but
there has been recent progress.

12.7. Properties of nuclei are well described by the soliton model. There
have been numerical solutions of the equations of the Skyrme model that re-
produce quite well the messy phenemenology of nuclear physics.

12.8. Physics is full of surprises even in areas that we think we under-
stand.

13. HADRONS

In the 1930s it looked as though we were on the verge of a simple descrip-
tion of the fundamental constituents of matter: the proton, the neutron,the
pion, the electron (and possibly the neutrino) along with the photon would
make up all matter. In the 1940s the muon was identified. (I. I. Rabi fa-
mously asked “Who ordered that?” ) Throughout 1940s, 1950s and 1960s
experimentalists discovered a whole zoo of strongly interacting particles.

13.1. Strongly interacting particles are collectively known as hadrons.
Electrons, neutrinos etc. are leptons, not hadrons.

13.2. Hadrons of half integer spin are called baryons; those of integer
spin are called mesons.
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13.2.1. The baryon number B is defined to be equal to 1 for the half integer
spin hadrons (baryons) and equal to zero for mesons. Anti-baryons have
baryon number minus one. The baryon number is just the atomic mas num-
ber of nuclear physics: the Deuteron has B = 2 , the α particle has B = 4
and so on:

13.3. The nucleon N =

(
p
n

)
is the lightest baryon with a mass of

about 940MeV..

13.4. The pion π =

⎛⎝ π+

π0

π−

⎞⎠ is the lightest meson at about 140MeV..

In addition,

13.5. There is a set of four baryons ∆ =

⎛⎜⎜⎝
∆++

∆+

∆0

∆−

⎞⎟⎟⎠ of spin and isospin

both equal to 3
2 .. These decay into a nucleon and a pion. Since the nucleon

has I = 1
2 ,J = 1

2 and the pion I = 1,J = 0 this strong decay respects both
spin and isospin conservation.

13.6. There is a set of three spin one mesons ρ =

⎛⎝ ρ+

ρ0

ρ−

⎞⎠ of isospin 1.

Their mass is ≈ 770MeV : about two thirds of the mass of a nucleon. They
decay strongly into pions.

13.7. The charges are related to isospin by the relation.

Q = I3 +
B
2
.

The shift of charge by a constant for the case of baryons (but not mesons)
is explained by the quark model.

13.8. There are hadrons of spins J = 0, 1
2 ,1,

3
22, ⋅ ⋅ ⋅ .

13.8.1. If the spin is a half integer, so is the isospin. Again explained by
the quark model.

13.8.2. As the spin grows the masses grow approximately proportionately.
The high mass hadrons are more and more unstable to decay to lower mass
ones. Such very unstable particles are called resonances. As the numbers
of hadrons grew into the hundreds, physicists accepted that there must be in
principle an infinite number of them.
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13.9. String theory arose as an explanation for the infinitely rising spec-
trum of hadrons.

13.9.1. A string is a surface in space time whose action is proportonal to
its area.

13.9.2. Nambu and Goto showed that this implies that the masses of its ex-
cited states are proportional to the angular momentum. The Nambu-Goto
model only allowed integer spins. Theirs was a “bosonic string theory”.

13.9.3. Supersymmetry was invented by Ramond to include fermions. The
idea did not quite work: no one has found a string theory that works in
four space time dimensions. Finding the correct string theory of hadrons
remains an important theoretical challenge.

13.9.4. The 10 dimensional version of superstring theory is logically con-
sistent and is a candidate for a quantum theory of gravity.

14. QUARKS

14.1. All of the hadrons are bound states of more elementary particles
known as quarks. This gives a very simple explanation for the prolifica-
tion of hadrons.

14.1.1. Quarks have spin 1
2 .. This is reasonable for an elementary particle:

it is the smallest non-zero value of spin allowed by quantum mechanics.

14.1.2. Mesons are bound states of quarks and anti-quarks. Which ex-
plains why they are bosons.

14.1.3. Baryons contain three quarks. It must be an odd number since
baryons are fermions. Since there are baryons of spin 3

2 and even parity
(so that the orbital angular momentum is even) we need thre to be three
quarks in a baryon. It follows that

14.1.4. The baryon number of a quark is 1
3 .. Anti-quarks have B =−1

3 .

14.2. There are a pair of quarks
(

u
d

)
forming an isospin 1

2 system.

This explains why spin and isospin are equal for the lowest lying baryons.

14.2.1. Their charges are given by Q = I3 +
B
2 .

Qu =
2
3
, Qd =−1

3
.

This then explains why this formula holds for all hadrons. Note that
the piece proportional to B cancels out in mesons since anti-quarks have
B =−1

3 .
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14.2.2. Some group theory will allow us to get the spins and isospins of the
hadrons out of those of the quarks.

14.3. But there is a surprise: color.

15. THE STATIC QUARK MODEL

15.1. A first approximation is to treat the hadrons as non-relativistic
bound states of quarks. So the different spin states have the same energy
(spin-orbit coupling is a relativistic correction). This gives an SU(4) sym-
metry: the four states of the quarks (spin up and down, isospin up and down)
all have the same energy in this approximation.

15.2. Quarks are fermions. Spin half particles should satisfy the Dirac
equation and satisfy the exclusion principle.

15.3. But then how do we explain the ∆++? It should be impossible to
put three up quarks into a state of spin 3

2 : all the spin are the same, violat-
ing the exclusion principle. One idea was that quarks obeyed some exotic
statistics that violates the Pauli exclusion principle. That turned out to be
wrong. Another possibility is that there is a extra degree of freedom.

15.4. Each quark comes in three colors. Thus there are three states for
the up quark (not counting the spin states) and three for the down quark.The
word color is used in a figurative way here: this quantum number has noth-
ing at all to do with light: nothing to do with electromagnetism.

15.5. There is an SU(3) symmetry corresponding to rotations among
the color states. Since quarks of different colors have the same masses,
isospin, charges etc.

15.6. Hadrons are color neutral. Nucleons and mesons do not have this
extra degree of freedom: we would have seen this in nuclear physics. Hadron
states are invariant under the color SU(3) symmetry. This means that color
cannot be directly measured:it can be inferred indirectly from properties of
hadrons.

15.7. The grond state of a three quark system must be a symmetric
combination of three fundamental representations of SU(4). The wave
function of quarks in a baryon is completely antisymmetric in color: that
is the way to make it invariant under SU(3) symmetry of color. The wave
function of fermions is anti-symmetric overall. Thus in spin and isospin it
must be symmetric. (We are assuming that the orbital angular momentum
is zero for the lowest lying states). Thus we can calculate the number of in-
dependent states of the baryon by ignoring color and pretending that quarks
are bosons:there are 4(4+1)(4+2)

3! = 20 such states. These can be split into
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I = 3
2 ,J = 3

2 and I = 1
2 ,J = 1

2 states. The first are the ∆ and the second set
the nucleons. There are 4×4 = 16 states for the ∆ and 2×2 = 4 states for
the nucleon which add up to twenty.

15.7.1. The number of independent states of a system of N bosons, each
with M states, is M(M+1)⋅⋅⋅(M+N−1)

N! . There are many ways to establish this
formula.

To begin with, it holds for M = 1. There is exactly one indepedent way
of occupying a single state with N bosons : we put them all into that one
available state. More generally, suppose we put N1 bosons in state 1, N2 in
state 2, and so on. The number of independent states bN(M) we seek is just
the number of solutions to the equation

N = N1 +N2 ⋅ ⋅ ⋅+NM

where each Ni = 0,1, ⋅ ⋅ ⋅ . Thus the generating function is

∞

∑
N=0

bN(M)xN =
∞

∑
Ni=0

xN1+N2⋅⋅⋅+Nn

But

∞

∑
Ni=0

xN1+N2⋅⋅⋅+rNn =
∞

∑
N1=0

xN1
∞

∑
N2=0

xN2 ⋅ ⋅ ⋅
∞

∑
NM=0

xNM =
1

(1− x)M .

since each factor is a geometric series. Now expanding the r.h.s. as a
binomial series

(1− x)−M =
∞

∑
N=0

M(M+1) ⋅ ⋅ ⋅(M+N−1)
N!

xN

which proves the result.

15.7.2. The states of a bosonic system where can be represented as polyno-
mials in complex variables. The degree of the polynomial is the number of
bosons; the nmber of variables is the number of states available to each bo-
son. Thus 1 is the empty state (vacuum) zi i = 1, ⋅ ⋅ ⋅M are the one particles,
and so on. The inner product of the states is determined by declaring that
the following is an orthonormal basis

∣N1,N2, ⋅ ⋅ ⋅NM⟩=
zN1
√

N1!
zN2
√

N2!
⋅ ⋅ ⋅ zNM

√
NM!

This is the coherent state description of a harmonic oscillator; the con-
nection to bosonic states is important also in quantum optics (Glauber and
Sudarshan). It is part of a general technique known as second quantization.
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15.7.3. If the number of colors where some odd number N , there would
have been baryons with I = J for I = 1

2 ,
3
2 , ⋅ ⋅ ⋅

N
2 . Show that

∑
I= 1

2 ,
3
2 ,⋅⋅⋅

N
2

(2I+1)2 =
(N +1)(N +2)(N +3)

3!
=

4(4+1)(4+2) ⋅ ⋅ ⋅(4+N−1)
N!

15.8. The proton and the neutron have anamolous magnetic moments.

15.8.1. The magnetic moment of the proton is roughly 3 times the nuclear
magneton. µp = 1.410 607 61 (41)× 10−26JT−1 .The nuclear magneton
eh̄
2m = 5.050 783 24(13)× 10−27JT−1. (These values are from the NIST
data base online.) For a fundamental spin half particle this ratio is predicted
by the Dirac equation to be 2: this works for the electron and muon but not
the proton .

15.8.2. The ratio of magnetic moments of the neutron to the proton is µn
µp
≈

−2
3 . NIST lists the values is a strange way: take the ratio of the two gyro-

magnetic ratios, − 1.832 471 85(43)×108

2.675 222 099(70)×108 to get this number. The negative sign
means that the neutron magnetic moment is pointed opposite to its spin,
while the proton’s is parallel. The Dirac theory would predict the neutron
not to have a magnetic moment at all, since it is electrically neutral.

15.9. The quarks model predicts the correct magnetic moments for the
nucleons. The accuracy is a few percent.

15.9.1. Assume that the quarks have the magnetic moments of fundamental
particles. The Dirac equation predicts their magnetic moments given the
mass and charges. We know the charges already.

15.9.2. In the static quark model the mass of the quark is approximately a
third of the nucleon mass. Neglects the binding energy and kinetic energy
as well as spin/isospin dependence. It is convenient to suppose that there
are N quarks in a baryon. Of course N = 3, but it is useful to the calculation
for a general value of N. It teaches us how it depends on N: also we are less
likely to make arithmetic mistakes.

The charge and magnetic moment of a quark are (using τ for the Pauli
matrices of isospin)

Q = e
[

B
2
+ I3

]
= e
[

1
2N

+
τ3

2

]
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For each quark (a runs over 1,2 ⋅ ⋅ ⋅N since there are N quarks in the
baryon) the component of magnetic moment along some direction (say
third) is

µa = 2
eQah̄
ma

σ3a

2
= 2

eh̄
m
N

[
1

2N
+

τ3a

2

]
σ3a

2
=

eh̄
m

{
σ3a

2
+

N
2

τ3aσ3a

}
.

We must sum over all the quarks in a baryon to get its magnetic moment

µ =
eh̄
m

N

∑
a=1

{
σ3a

2
+

N
2

τ3aσ3a

}
The first term is independent of isospin and the second depends on isospin.

This matrix on the space of states of the baryon will describe the magnetic
moments of states such as the nucleon and the Delta, as well as magnetic
transitions such as ∆→ Nγ.The first term is easy:

N

∑
a=1

σ3a

2
= J3

J3 being just the baryon angular momentum along the third direction.

µ = µ0 +µ1, µ0 =
eh̄
m

J3, µ1 =
eh̄
m

N
2

N

∑
a=1

τ3aσ3a

We need the matrix elements for the neutron and the proton.

15.9.3. The states of the baryon are in one-one correspondence with Nth
degree polynomials in four complex variables. This is just a way of think-
ing of states of a system of N bosons, each with four states. We can conve-
niently think of the four variables as the elements of a 2×2 matrix. Under
isospin and spin this matrix transforms as

z 7→ gzh† g,h ∈ SU(2)
The orthonormal basis is given by

∣n11,n12,n21,n22 >=
zn11

11√
n11!

zn12
12√
n12!

zn21
11√
n21!

zn22
22√
n22!

where the occupation numbers can take values 0,2 ⋅ ⋅ ⋅ subject to

n11 +n12 +n21 +n22 = 3
The left action is isospin and the right action is spin (say). Then detz is

invariant under both. The polynomials that describe the neutron and pro-
ton states are z(detz)k where N = 2k+ 1. You can check that these sates
transform with spin and isospin both equal to 1

2 . In this point of view
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D≡
N

∑
a=1

τ3aσ3a = ∑
i j

Ai jzi j
∂

∂ zi j
, A =

(
1 −1
−1 1

)
(Verify that this is correct on the one-particle states) The differential oper-

ator will mix the nucleon states with the other states (the magnetic moment
can induce the transitions such as ∆→ N. ) For N = 3,(states are not nor-
malized to have length one) the spin up states of the proton and the neutron
are

∣p⟩= z11(z11z22− z12z21) = z2
11z22− z12z21z11

∣n⟩= z21(z11z22− z12z21) = z11z22z21− z12z2
21

< p∣p >= 2+1 = 3 =< n∣n >

D∣p⟩= 3z2
11z22 + z12z21z11

D∣n⟩= z11z22z21 +3z12z2
21

< p∣D∣p >= 3(2!)−1 = 5

< n∣D∣n >= 1−3(2!) =−5

< p∣D∣p >

< p∣p >
=

5
3

< n∣D∣n >

< n∣n >
=−5

3

< µ >p=
eh̄
m

[
1
2
+

3
2

5
3

]
= 3

eh̄
m

< µ >n=
eh̄
m

[
1
2
− 3

2
5
3

]
=−2

eh̄
m
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16. K MESONS

16.1. K± are pseudo-scalar , isospin 1
2 particles of mass 494 Mev that

only decay by weak interactions. They were called “strange particles”
when they were discovered. What was strange about them is that they
were unusually long lived (10−8s): suggesting that they carry a quantum
number that is approximately conserved. This number was called “strange-
ness” (Gell-Mann). They are each other’s anti-particles. K+ was assigned
strangenesss S = +1and therefore K− would have S = −1. Unlike π± the
K± have form an isospin 1

2 doublet.

16.2. K0, K̄0 is another pair of pseudo-scalar , isospin 1
2 particles of

mass 498 MeV that are also stable under strong interactions. K0 has
I3 =−1

2 ,S = 1 and K̄0has I3 =
1
2 ,S =−1 .The charges of all the K-mesons

can be fit by changing the formula for electric charge (Gell-Mann-Nihijima)

Q = I3 +
B+S

2
16.3. The new quantum number is counts the net number of a new
kind quark, the strange quark. By a twist of fate, the strange quark has
S =−1 and the strange anti-quark hs S =+1. It has baryon number 1

3 like
the u and d quarks. From the above formula we see that its electric charge is
−1

3 . That is the same charge as the d quark. Thus we have the constituents
of the Kaons:

K+ = s̄u, K− = ūs, K0 = s̄d K̄0 = d̄s

16.4. There is also a neutral pseudoscalar meson that has strangeness
zero and isospin zero.

η
0 = s̄s

with a mass ≈ 548MeV. It decays mostly into 2γ which can be thought
of as the strange quark and anti-quark annihilating each other. A more
accurate description of the η0 includes mixing with ūu and d̄d . More on
mixing later.

16.5. The s quark is heavier than the uand d quarks. which explains
why particles that contain it as a few hundred MeV heavier than correspond-
ing particles made from u and dquarks alone.For example, mK+ −mπ+ ≈
350 MeV.Recall that the d quark is slightly heavier (by a few MeV) than
the u quark to explain the neutron-proton mass difference. For strong in-
teractions, the three quarks behave the same way. If we also ignore their
mass differences, the isospin symmetry is enlarged to a symmetry that ro-
tates three quarks into each other. Since these transformations can involve
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complex matrices, the symmetry must involve 3×3 complex matrices. One
natural choice is to generalize the SU(2) of isospin to SU(3). This is not
the only possibility: there several rank two Lie groups (with two commut-
ing quantum numbers such as I3 and S) to choose from. But SU(3) is what
worked.

16.6. The 8 pseudo-scalar mesons form a representation of SU(3). Anal-
ogous to the way the pions form a three dimensional representation of
SU(2).

17. SU(n)

17.1. U(n) is the set of n×n unitary matrices. Unitary means that

gg† = 1

A set of matrices whose products and inverses are also contained within
it is called a group. Thus U(n) is a group.

Unitarity already implies that the determinant of g is a complex number
of magnitude one. (Prove it.)

17.2. SU(n) is the set of n×n unitary matrices which are of determinant
one.

17.2.1. The familiar example from spin and isospin is the group SU(2).

17.2.2. The case of SU(3) is of much interest as well in particle physics.

17.3. A unitary matrix that is infinitesimally close to the identity is of
the form g = 1+ iA where A is hermitean. For

gg† = (1+ iA)(1− iA) = 1+O(A2)

17.3.1. Matrices of determinant one which are inifinitesimally close to the
identity are of the form 1+ iA with tr A=0. Prove that

det[1+A] = 1+ tr A+O(A2)

17.4. The set of traceless hermitean matrices is called su(n). We use
lower case letters to denote infinitesimal matrices.

17.5. A basis for su(2) is provided by the Pauli matrices.
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17.5.1. More precisely any traceless hermitean 2×2 matrix can be written
as.

A = a1
σ1

2
+a2

σ2

2
+a3

σ3

2

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
The coefficients ai are real. The factor of i is needed to make the term

anti-hermitean. the factor of 1
2 is a convention, which assures that

tr A†A = a2
1 +a2

2 +a2
3.

17.5.2. We can think of the up and down quarks as eigenstates of σ3with
eigenvalues ±1.

17.5.3. As more quarks were added, the approximate symmetry of isospin
came to be enlarged to larger groups. The up, down and strange quarks
correspond to su(3).

17.6. The number of linearly independent elements of u(n) is n2. A
hermitean mtrix has n2 independent components: there are n real entries
along the diagonal and n(n−1)

2 complex numbers above the diagonal. The
entries below the diagonal are not independent because they are just com-
plex conjugates of the ones above, so the total is n+ 2n(n−1)

2 = n2. Since
an anti-hermitean matrix is simply i times a hermitean one, its number of
independent components is also n2.This is called the dimension of u(n).

17.6.1. The dimension of su(n) is n2−1. The condition of being traceless
imposes one condition among the diagonal entries, so the number of inde-
pendent components of su(n) is n2−1.

17.6.2. The dimension of su(3) is 8.

17.7. The Gell-Mann matrices provide a basis for su(3).

A = a1
λ1

2
+a2

λ2

2
+a3

λ3

2
+a4

λ4

2
+a5

λ5

2
+a6

λ6

2
+a7

λ7

2
+a8

λ8

2

λ1 =

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , λ2 =

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠ , λ3 =

⎛⎝ 1 0 0
0 −1 0
0 0 0

⎞⎠
λ4 =

⎛⎝ 0 0 1
0 0 0
1 0 0

⎞⎠ , λ5 =

⎛⎝ 0 0 −i
0 0 0
i 0 0

⎞⎠
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λ6 =

⎛⎝ 0 0 0
0 0 1
0 1 0

⎞⎠ , λ7 =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠
λ8 =

1√
3

⎛⎝ 1 0 0
0 1 0
0 0 −2

⎞⎠
These are normalized such that

tr λαλβ = 2δαβ .

17.7.1. λ3 and λ8 are diagonal. They are related to isospin and strangeness
of quarks.

Exercise 14. Derive the commutation relations of su(3)in the Gell-Mann

basis. That is, write the commutators
[

λα

2 ,
λβ

2

]
= i fαβγ

λγ

2 as linear combi-
nations ofthe Gell-Mann matrices. Identify subsets of generators that are
transformed among each other by the Pauli matrices.

18. GELL-MANN-OKUBO FORMULA

18.1. The most obvious consequence of the strange quark is that there
is a spin 3

2 baryon sss. This is analogous to ddd = ∆−− and so should be
negatively charged. It is called the Ω−. The spin is 3

2 because the quark is a
fermion and its wavefunction is anti-symmetric in color. Same argument as
for uuu or ddd. Obviously, Ω− should not carry isospin and has strangeness
−3.

18.2. Next there should be an isospin 1
2 pair ssu and ssd of charges zero

and −1 respectively. These are called Ξ∗0,Ξ∗−. They have strangeness
S =−2. The star is to distinguish it from a similar particle of spin 1

2 .

18.3. There is an isospin 1 triplet suu,sud,sdd of charges 1,0,−1 . These
are called Σ∗+,Σ∗0,Σ∗−.

18.4. Along with the original quartet

⎛⎜⎜⎝
∆++

∆+

∆0

∆−

⎞⎟⎟⎠ =

⎛⎜⎜⎝
uuu
uud
udd
ddd

⎞⎟⎟⎠we get a

set of ten spin 3
2 baryons. To a good approximation we can think of the

uand dquarks as having the same mass, but the s quark is heavier so that
SU(3)is broken down to its isospin subgroup.We should expect that the ∆are
all of the mass. The three Σ∗, would of somewhat larger mass, then Ξ∗and
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Ω−. The static quarks model would say that each time we add replace a u
or d quark by an s quark we are increasing the mass of a particle by some
fixed amount: the s− u mass difference. Thus we get a particular case of
the Gell-Mann-Okubo mass relations

mΣ∗−m∆ = mΞ∗−mΣ = mΩ−−mΞ∗

At the time that this relation was discovered (by deeper group theoretic
arguments rather than the static quark model) it was known that (all in MeV)

m∆ = 1230, mΣ∗ = 1385, mΞ∗ = 1530

but the Ω− had not even been seen yet. Thus the first equality is a post-
diction that can be verified

mΣ∗−m∆ = 155≈ 145 = mΞ∗−mΣ

And there is a prediction of the mass of the Ω−.

mΩ− ≈ 1675

The discovery of the Ω− with a mass of 1672MeV at Brookhaven was
spectacular confirmation of the Gell-Mann-Okubo relations.

18.5. Similar mass relations can be derived for the spin 1
2 baryons.

There are eight of them, in one-one correspondence with the meson octet,
with names like N,Σ,Ξ. The mass relations are also verified here. The
mass relations for the pseudo-scalar mesons are not so easy to derive due
to spontaneous breaking of chiral symmetry which makes them lighter than
expected.

18.6. To go deeper into this subject we will need the representation the-
ory of SU(3). This is analogous to the theory of angular momentum oper-
ators. See the course “Symmetries in Physics” .

19. QUARKONIUM

19.1. The discovery of the spin one particle J/ψ at a mass of 3.096
GeV led to the immediate acceptance of the quark model. Theorists
had already predicted the existence of a fourth quark (charm) to be the up-
per counterpart to the strange quark: it was needed to cancel certain unob-
served phenomena (flavor changing neutral currents). Identifying J/ψ = c̄c
gave an immediate explanation for its excited states. Indeed non-relativistic
quantum mechanics suffices to explain the spectroscopy of the charmonium
states which were soon found.
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19.2. Subsequently the ϒ state was found at spin one and mass 9.46
GeV. This was identified with the bquark. Again the spectroscopy is ex-
plained by quantum mechanics with linear potential between b and b̄.

19.3. The discovery of the top quark with a mass 175GeV completes
the quark periodic table as far as we know. The weak decay of the top
quark occurs so fast that it does not form t̄t bound states through strong
interactions. So there is no quarkonium here.

20. POTENTIAL MODEL FOR QUARKS

20.1. For the c and b quarks, a linearly rising potential gives a good fit
to spectra.

− 1
2m

∇
2
ψ +V (r)ψ = Eψ, V (r) = a∣r∣

with
a≈ 100MeV

fits the data. Recall that this equation can be solved using Airy’s equation.

20.2. A linear potential fits with string theory.

20.3. The decay of J/ψ and ϒ well explained as the production of three
gluons which then becomes hadrons. The spin one state decays into an
odd number of gluons, due to parity conservation.

21. QUANTUM CHROMODYNAMICS

21.1. QCD is the fundamental theory of strong interactions. It is named
Quantum Chromodynamics by analogy to Quantum ElectroDynamics (QED),
the theory of electromagnetism. Like QED, it describes a spin 1

2 particle
(quark) interacting with a massless spin 1particle (the gluon). Instead of the
electric charge, the source of the interaction is color.

21.2. Each quark (u,d etc.) comes in three colors, leading to an exact
SU(3) symmetry. Recall that this is needed to reconcile the ∆++ = uuu
bound state with the fermionic nature of quarks. The symmetry is exact
because these three states have the same masses: unlike the approximate
SU(3) symmetry of ‘flavor’ that combines u,d,s.

21.3. Yang-Mills Theory describes the self-interaction of spin one par-
ticles of a non-abelian symmetry. The photon does not couple with itself:
two photons pass right though each other. (There is a small chance of scat-
tering through pair craetion, but that is not a fundamental interaction). With
a non-abelian group this is not the case any more.
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21.4. The Self-Interactions arise through commutators.

Fµν = ∂µAν −∂νAµ + i[Aµ ,Aν ]

The last term would be zero if the components were just real numbers as
in Maxwell’s theory.

21.5. The field equations are.

∂
µFµν + i[Aν ,Fµν ] = eψ̄γνψ, γ

µ
[
i∂µ − eAµ

]
ψ +mψ = 0

A detailed study of Yang-Mills theories such as QCD is outside the scope
of this course. Some of the deepest theoretical physics ever developed arise
here. Despite that even deeper new ideas are still needed to fully under-
stand QCD. We have not even scratched the surface. The most progress has
been though computer simulations. See the book by K. Huang “Quarks and
Leptons” for a more.

21.6. Divergences arise when we study this theory at the quantum level.

21.7. ’t Hooft and Veltmann showed that these divergences can be re-
moved by a procedure known as renormalization. This generalizes the
previous renormalization of QED due to Tomonaga, Schwinger and Feyn-
man.

21.8. Surprisingly, QCD has the property that interactions become weaker
at shirt distances. Only a handful of theories are asymptotically free. Other
than QCD the examples are in condensed matter physics (e.g., the Kondo
problem).

22. BETA DECAY

22.1. Heavy nuclei decay by emitting beta rays. Nuclei were found to
emit three kinds of radiation: α,β and γ. Now we know that the α particle
is the nucleus of He4. The γ particle is just a photon. And the β particle is
an electron.

An apparent lack of energy conservation in beta decay was explained as
due to the simultaneous emission of a massless chargeless particle (the anti-
neutrino in moern terminology). We know that a nucleus is a composite of
protons and neutrons. In terms of this a beta decay occurs when

n→ p+ e−+ ν̄e
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22.2. A neutron converts to a proton while emitting an electron and an

anti-electron-neutrino. But the nucleon is made of quarks too:
(

p
n

)
=(

uud
udd

)
. Thus

22.3. An down quark converts to an up quark emitting an electron and
an anti-electron-neutrino. An even deeper explanation is provided by the
Glashow-Salam-Weinberg theory: the d→ u+W−, W−→ e−+ ν̄e. The
W− is a spin one particle of mass (80GeV ) much higher than any of the
particles involved. Yet it still can be produced because quantum mechanics
allows energy conservation to be temporarily violated in intermediate tran-
sitions of a reaction. The probability of the reaction is supressed by a factor
of 1

M4
W

which explains why the beta decay is a “weak interaction”: much

rarer than strong decays such as ∆+→ pπ0.

22.4. The muon decays to the electron through the weak interaction.
In this case

µ → e+ ν̄e +νµ

Again we understand this today as a two step process

µ → νµ +W−, W−→ e−+ ν̄e

the second step is the same that in beta decay.

22.5. There are three kinds of neutrinos: the electron neutrino, the
muon neutrino and the tau neutrino. There is some mixing among them,
but to a good approximation, the three kinds of fermions numbers are sepa-
rately conserved. We postpone the questions of quark mixing and neutrino
oscillations.

22.6. To a good approximation the weak interactions can be under-
stood as the interaction of W±with fermion doublets.(

u
d

)
,

(
c
s

)
,

(
t
b

)
(

νe
e

)
,

(
νµ

µ

)
,

(
ντ

τ

)
Only the top quark has a high enough mass to produce a real W in its de-

cay t→ bW+. In all other cases the W is virtual: its creation violates enery
conservation and is suppressed by the large mass. Because the charge of the
particles changes ( u to detc.) in such decays these are called the “Charged
Current” interactions. This suggests that there is an SU(2) symmetry in the
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weak sector. Unlike the isospin of the strong interactions, this would apply
also to leptons.

23. V-A THEORY

23.1. Marshak and Sudarshan showed that only the left handed part
of fermions take part in charged current interactions. Once parity vio-
lation was discovered in weak interactions, it became possible that the left
and right handed components could couple with different strengths to weak
interactions. This is to be contrasted with the electromagnetic interactions
which, because of parity conservation, couple equally to the left and right
handed components. It was a revolutionary suggession of Marshak and Su-
darshan that the beta decay only involves the left handed component: par-
ity violation is maximal. This would allow the neutrino to be purely left
handed: have half as many degrees of freedom as the electron. At that time
this was called the V −A theory: the left handed component of a current is
the vector minus axial component.

In the middle seventies neutral current interactions were discovered as
well νe + p→ νe + p . ( A neutrino beam is a sent into a bubble chamber
full of liquid hydrogen. Occasionally you see the track of a proton recoiling:
the neutrinos don’t leave tracks.)

23.2. Neutral currents are weak interactions caused by the Z boson.
The Z boson is a spin one particle of mass 91GeV. Again, the Z boson pro-
duced is virtual and so the strength of the neutral weak interactions is sup-
pressed by 1

M4
z
. The Glashow-Salam-Weinberg theory predicted its mass,

once the strength of neutral currents was determined. Neutral currents cou-
ple to a linear combination of left and right handed components. More
precisely, there are two neutral spin bosons, one of which couples only to
the left handed component and the other only to the rigt handed compo-
nent of the fermions. The photon is the linear combination of these two
which respects parity and the Z boson is the orthogonal linear combination.
It is natural now to combine the neutral boson coupling to the left handed
fermions along with the W bosons into a triplet⎛⎝ L+

L0

L−

⎞⎠
24. GLASHOW-SALAM-WEINBERG THEORY

24.1. Thus we can account for weak interactions by having three vector
bosons that couple to the left handed components of fermions. The left
handed components of fermions fall naturally into weak isospin doublets
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(
u
d

)
L
,

(
c
s

)
L
,

(
t
b

)
L(

νe
e

)
L
,

(
νµ

µ

)
L
,

(
ντ

τ

)
L

We can couple them to the gauge bosons of an SU(2)Yang-Mills theory:
the corresponding bosons are Lµa above.

24.2. There is another vector boson that couples to the right handed
component. The right handed components (the neutrino has no right handed
component)

uR,dR,cR,sR, tR,bR

eR,µR,τR

couple to R . This is the symmetry U(1). Thus the complete theory has
gauge invariance under U(2)≈ SU(2)×U(1)

24.3. The photon and the Z boson are linear combinations of L0 and
R. The mixing angle θW of this linear combination (the Weinberg angle)
determines the ratio of the masses of W and Z.

Z = cosθW R+ sinθW L0

V =−sinθW R+ cosθW L0

cosθW =
MW

MZ
, θW ≈ 30∘.

24.4. The Higgs et. al. mechanism allows the photon to be massless
while the other three vector bosons are massive. At the time Glashow
proposed the above theory of weak interactions, it was known that gauge
invariance implies massless vector bosons:that would not work for weak
interactions. Breaking gauge invariance ‘by hand’ as Glashow did led to
various inconsistencies: the divergences in the theory did not cancel (not
renormalizable). This bothered Goldstone, Salam and Weinberg particu-
larly: the leading experts on renormalization theory. A way of breaking
gauge invariance without losing renormalizability was found by Higgs and
independently by Englert-Brout and Guralnik-Hagen-Kibble. This was at
the cost of adding a neutral spin zero particle: the ‘Higgs boson’. Salam and
Weinberg used this mechanism to find the unified theory of weak interac-
tions. ’t Hooft and Veltman later proved the renormalizability and invented
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methods for doing accurate (“higher loop”) calculations with the theory.
The discovery of neutral currents and then the W±,Z bosons exactly as pre-
dicted by GSW theory gave spectacular confirmation of the theory. The last
piece of the puzzle is the discovery of the Higgs boson, which is a main goal
of the LHC. Theory makes no prediction for its mass, except that it should
be less than a TeV.

24.5. Quarks and leptons get their masses through the Higgs mecha-
nism as well. The Yukawa coupling emerges again as the way quarks and
leptons couple to the Higgs boson.

24.6. It turns out that the mass matrices of quarks and neutrinos are
not diagonal. That is, the eigenstates of weak interaction (the coupling
matrix to the gauge bosons) and of the mass matrix (the Yukawa coupling
matrix) are not the same: these matrices do not commute. This leads to very
important phenomena of quark mixing and of neutrino oscillations. As it is
the focus of the current experimental research, we will study deeper the
Higgs mechanism and fermion mixing in separate lectures.

25. LAGRANGIAN FORMALISM

25.1. Hamilton’s Variational Principle gives a concise formulation of
equations of motion. Define the Lagrangian L to be some function of po-
sition and velocity; and action to be its integral:

S =

ˆ
L(q, q̇)dt

The condition that the action be stationary w.r.t. to small changes in q
leads to the condition

d
dt

∂L
∂ q̇
− ∂L

∂q
= 0

With the choice

L =
1
2

mq̇2−V (q)

this gives the Newtonian equations of motion

mq̈ =−∂V
∂q

.

25.2. In a relativistic theory we the unknown quantities are fields: func-
tions of space and time.
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25.3. The lagrangian depends on the fields and their derivatives. The
Lagrangian is a Lorentz scalar.

25.4. The action is the integral of the Lagrangian over space and time.

S =

ˆ
L(φ ,∂φ)d4x

∂µ

[
∂L

∂
(
∂µφ

)]= ∂L
∂φ

The Lagrangian of a free massive scalar field is

L =
1
2

η
µν

∂µφ∂νφ − 1
2

m2
φ

2

leading to the Klein-Gordon equation

∂µ∂
µ

φ +m2
φ = 0

More generally, an interacting scalar theory will have a lagrangian that
has terms higher degree than two:

L =
1
2

η
µν

∂µφ∂νφ −V (φ)

∂µ∂
µ

φ +
∂V
∂φ

= 0

Example 15. For the Higgs field of the standard model ( a complex doublet)

L = η
µν

∂µφ
†
∂νφ −V (φ), V (φ) =

λ

2

[
φ

†
φ − v2

]2

We can see directly that the ground states are on the sphere

φ
†
φ = v2

25.5. The Lagrangian of Maxwell’s theory is.

L =
1
4

FµνFµν + jµAµ , Fµν = ∂µAν −∂νAµ

leading to the equation

∂
µFµν = jν

25.6. The Lagrangian of Dirac field is.

L = ψ̄
[
iγµ

∂µ +m
]

ψ
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25.7. To get interacting theories we add the free lagrangians plus terms
that depend on several fields. For the Yukawa theory,

L = ψ̄
[
iγµ

∂µ +gφ
]

ψ +η
µν

∂µφ
†
∂νφ −V (φ)

For QED

L = ψ̄
[
iγµ

∂µ + eAµ

]
ψ +mψ̄ψ +

1
4

FµνFµν

26. CHARGED SCALAR FIELD

26.1. A free charged spin zero particle is represented by a complex
scalar field satisfying the Klein-Gordon equation.

∂ ⋅∂φ +m2
φ = 0

26.2. The Lagrangian is.

L = ∂φ
∗ ⋅∂φ −m2

φ
∗
φ

26.3. There is an invariance under the global transformation.

φ 7→ eiΛ
φ

It is a very general fact (Noether’s theorem) that symmetries lead to con-
servation laws.

26.4. And there is a conserved current.

jµ = i
[
φ
∗
∂µφ −φ∂µφ

∗]
26.5. We can replace the mass term by a potential V (φ) that depends
only on ∣φ ∣2 without losing this symmetry.

L = ∂φ
∗ ⋅∂φ −V (φ)

An example is

V (φ) = m2∣φ ∣2 + λ

2
∣φ ∣4

The last term represents a self-interaction of the scalar field: it leads to
cubic non-linearities in the field equations

∂ ⋅∂φ − ∂V
∂φ∗

= 0

∂ ⋅∂φ −m2
φ −λ ∣φ ∣2φ = 0
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26.6. By allowing the symmetry transformation to be position depen-
dent we get a theory of electromagnetism coupled to the charged scalar
field.

L = ∇φ
∗ ⋅∇φ −V (φ)− 1

4
tr F2, V (φ) = m2∣φ ∣2 + λ

2
∣φ ∣4

φ(x) 7→ eieΛ(x)
φ(x)

is not a symmetry.

∂µφ 7→ eiΛ(x) [
∂µφ(x)+ ie∂µΛφ

]
But if we bring in a gauge field and connect Λ(x) into a gauge transfor-

mation

Aµ 7→ Aµ +∂µΛ

∇µφ = ∂µφ − ieAµφ

∇µφ 7→ eieΛ
∇µφ

26.6.1. The field equations are.

∇ ⋅∇φ −m2
φ −λ ∣φ ∣2φ = 0

∂
µFµν = ie [φ∗∂νφ −φ∂νφ

∗]+2e2∣φ ∣2Aν

27. THE HIGGS MECHANISM

27.1. If m2 > 0, small perturbations around the ground state describe
a massive spin zero particle and a massless spin one particle. The min-
imum of the potential is at

φ = 0

Then all the fields can be expanded around this point; the nonlinear terms
are small.
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27.2. But if m2 < 0 we get spontaneous symmetry breaking. The point
is that the minimum is no longer at φ = 0. Indeed

V (φ) = m2∣φ ∣2 + λ

2
∣φ ∣4 = λ

2

[
φ
∗
φ +

m2

λ

]2

When m2 < 0, it is convenient to use the parameter v2 =−m2

λ

V (φ) =
λ

2
[
φ
∗
φ − v2]2

The minmum is along the circle

∣φ ∣2 = v2

27.3. The Abelian Higgs Model describes a massive spin one particle
and a massive neutral scalar field.

L =
1
4

FµνFµν + ∣∇φ ∣2− λ

4
[
∣φ ∣2− v2]2

where ∇µ = ∂µ + ieAµ is the covariant derivative as before.

27.3.1. We change to variables centered at a minimum of the potential in
scalar potential. By passing to the variables

φ =

[
v+

1√
2

H
]

eiθ

[
∣φ ∣2− v2]2 ={[v+ 1√

2
H]2− v2

}2

=

{
H2

2
+
√

2Hv
}2

=
H4

4
+
√

2vH3 +2v2H2

λ

4
[
∣φ ∣2− v2]2 = λv2

2
H2 +

√
2

4
λvH3 +

λ

16
H4

Note that θdrops out: consequence of the symmetry of the potential un-
der rotations.
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27.3.2. We can remove θ from the term inlving derivatives of φ as well by a
change of the vector field variable.

Aµ = Zµ +
1
e

∂µθ

∂µφ =

{
1√
2

∂µH +

[
v+

1√
2

H
]

i∂µθ

}
eiθ

∇µφ =

{
1√
2

∂µH +

[
v+

1√
2

H
]

i∂µθ

}
eiθ−ie

[
Zµ +

1
e

∂µθ

][
v+

1√
2

H
]

eiθ

=

{
1√
2

∂µH− ieZµ

[
v+

1√
2

H
]}

eiθ

So that

∣∇φ ∣2 = 1
2
[∂H]2 + e2Z2

[
v2 +
√

2vH +
H2

2

]
27.3.3. The Maxwell Larangian also is independent of θ .

1
4

FµνFµν =
1
4

ZµνZµν , Zµν = ∂µZν −∂νZµ

27.3.4. Combining all this the Lagrangian is, in the new variables. we get

L =
1
2
[∂H]2− 1

2
λv2H2 +

1
4

η
µν [∂µZν −∂νZµ ][∂µZν −∂νZµ ]+ e2v2Z2

−
√

2
4

λvH3− λ

16
H4 +

√
2e2vHZ2 +

1
2

e2H2Z2

The term e2v2Z2 becomes a mass for the vector boson. Also the term
λv2H2 is a mass term for the scalar boson.

mH =
√

λv, mZ = ev.
The remaining terms describe interactions; such as the decay

H→ ZZ
and scatterings

HH→ HH

HZ→ HZ
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27.3.5. The scalar is electrically neutral. There is no cubic term such as
H∂HZ which would have described a charge interaction .

27.3.6. Gauge invariance assures us that the variable θ will cancel out, as
it did. In fact we could have simplified the calculation by exploiting this.
That is “choose the gauge” where φ = v+ H√

2
is real.

28. FERMION MASSES IN THE ABELIAN HIGGS MODEL

28.1. The same Higgs field that gives mass to the vector bosons can
also give a mass to fermions. Recall that the Dirac equation for a massive
fermion is

[iγµ
∂µ +m]ψ = 0

This follows from the Lagrangian

L = ψ̄[iγµ
∂µ +m]ψ

Here
ψ̄ = ψ

†
γ0

so that
ψ̄ψ, ψ̄γ

µ
ψ

are a Lorentz scalar and Lorentz vectors respectively.
If we replace the constant m by a complex scalar field we get a version of

Yukawa coupling

L = ψ̄
[
iγµ

∂µ +g(φ1 + iγ5φ2)
]

ψ

Note that the imaginary part of φcouples as a pseud-scalar while the real
part is a scalar. This is similar to theσand π mesons in the Yukawa theory.

When the value v of the scalar field in the vacuum φ1 is not zero, we get
a mass for the fermion

m = gv.

28.2. To get the equations of the scalar fields as well, we must add its
Lagrangian.

L = ψ̄
[
iγµ

∂µ +g(φ1 + iγ5φ2)
]

ψ + ∣∂φ ∣2− λ

4
[
∣φ ∣2− v2]2

Note the U(1) symmetry

φ → eiΛ
φ , ψ → e−

i
2 γ5Λ

ψ, ψ̄ → ψ̄e−
i
2 γ5Λ

for constant Λ. Reval that
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γ5γµ =−γµγ5.

28.3. We can combine this with the Abelian Higgs model to get a theory
of massive spin zero, half and one fields.

L =
1
4

FµνFµν + ψ̄[iγµ
∇µ +g(φ1 + iγ5φ2)]ψ + ∣∇φ ∣2− λ

4
[
∣φ ∣2− v2]2

where

∇µψ =

[
∂µ +

i
2

γ5eAµ

]
ψ

is the covariant derivative of the fermion field: the factor i
2γ5e is deter-

mined by the transformation of the fermion field under the U(1) symmetry
above.. By passing to the variables Z,H,χ

φ =

[
v+

1√
2

H
]

eiθ , ψ = e−
i
2 γ5θ

χ

Aµ = Zµ +
1
e

∂µθ

[
∂µ +

i
2

γ5eAµ

]
ψ =

[
∂µ χ− i

2
γ5∂µθ χ

]
eiθ +

i
2

γ5e[Zµ +
1
e

∂µθ ]χeiθ

=

[
∂µ χ +

i
2

γ5eZµ χ

]
eiθ

we get

ψ̄
[
iγµ

∇µ +g(φ1 + iγ5φ2)
]

ψ = χ̄

[
iγµ

∂µ +
i
2

γ
µ

γ5eZµ +g
(

v+
1√
2

H
)]

χ

Combining with the bosonic part,

L=
1
2
[∂H]2− 1

2
λv2H2+

1
4

η
µν [∂µZν−∂νZµ ][∂µZν−∂νZµ ]+e2v2Z2+ χ̄

[
iγµ

∂µ +gv
]

χ

−
√

2
4

λvH3− λ

16
H4 +

√
2e2vHZ2 +

1
2

e2H2Z2

+χ̄

[
i
2

γ
µ

γ5eZµ +
g√
2

H
]

χ

The first line describes particle masses :
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spin mass
0

√
λv

1
2 gv
1 ev

The rest describes the interactions.

Exercise 16. Derives the masses of the spin zero, spin 1
2 and spin one par-

ticles in this Lagrangian.

28.3.1. The larger the fermion mass the stronger its coupling to the Higgs
boson. Both are proportional to g.

28.4. The Abelian Higgs model is only a toy; it is a good place to learn
properties of the much more complex realistic theory: the standard
model. The standard model must include many fermions and vector bosons,
but it has only one Higgs particle: it is the model with the absolute mini-
mum number of fundamental spin zero particles we need to explain masses
of the known particles. So v is the same for all particles in the above table
for masses.An important consequence is that the more massive a particle
is, the stronger is its coupling to the Higgs field. Thus, you should expect
that the top quark couples 105 times as strongly as the electron to the Higgs
boson. Since λ only appears in the self-interaction of the scalar and in its
mass, the currently known parameters cannot be used to predict it: we have
no clue about the mass of the Higgs boson. Using higher order quantum
corrections some indirect bounds can be obrained but they are only a gen-
eral guideline for the Higgs hunter: theorists can always wiggle out of any
such indirect argument. Any Higgs mass under a TeV is fine theoretically.

29. YANG-MILLS THEORY

29.1. Yang-Mills Theory is the foundation of the theory of elementary
particles. It describes the self-interaction of spin 1 particles: the photon,
Z,W± and the gluons. The principle of gauge invariance also determines
the interactions of these spin one particles with those of spin zero and spin
1: the quarks and leptons.There is also a theory of interactions of spin zero
particles (Higgs fields) and spin two particles (General Relativity).

29.2. Maxwell’s theory of electromagnetism is invariant under an abelian
gauge group. Let Λ : R4→ R be a real valued function. Recall that under
the gauge transformation

Aµ → Aµ +∂µΛ

the field strength
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Fµν = ∂µAν −∂νAµ

is unchanged. Thus the Lagrangian

L =
1
4

FµνFµν

is invariant under both gauge and Lorentz transformations. Two succes-
sive gauge transformations is equivalent to one under the sum

Λ1 +Λ2

This is a commutative (abelian) group. Suppose a scalar field transforms
as

φ → eiΛ
φ

Then the covariant derivative

∇µφ = ∂µφ + iAµφ

transforms as

∇µφ → eiΛ
∇µφ .

The Lagrangian

L =
1

4e2 FµνFµν +
1
2
∣∇φ ∣2−V (∣φ ∣)

is gauge invariant. We saw a version of this in the discussion of the Higgs
mechanism.

29.2.1. The value of e determines the strength of the interaction. We have
chosen to define the gauge potential such that the coupling constant appears
as a constant factor in the Lagrangian. For any e the gauge invariance holds.
and is determined experimentally to be about a third. More precisely

e2

4π
≈ 1

137
.

29.2.2. The commutator of covariant derivatives is just a multiplication by
the field strength:

∇µ∇νφ −∇ν∇µφ = iFµνφ

This is similar to the definition of curvature in Riemannian geometry.
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29.3. In Yang-Mills theory, the gauge fields are matrix-valued. Let g
be a function on space-time whose value is a unitary matrix of determinant
one. That is g(x) ∈ SU(n). Suppose we have a scalar field which is a vector
with ncomplex vector components. It transforms as

φ → gφ

We can define a covariant derivative by analogy

∇µφ = ∂µφ + iAµφ

where Aµ is a traceless hermitean matrix. (We have absorbed the constant
e into the definition of A . ) How should Aµ transform in order that this
covariant derivative transform as before?

∇µφ → g∇µφ

A short calculation gives the answer

Aµ → gAµg−1 +g∂µ(g−1)

If g= eiΛ this reduces to the transformation of Maxwell’s theory. What then
is the analogue of the field strength? We can calculate

∇µ∇νφ −∇ν∇µφ = iFµνφ

where

Fµν = ∂µAν −∂νAµ + i[Aµ ,Aν ]

The commutator term on the r.h.s. makes all the difference: it implies
interactions among spin one particles that have no analogue in Maxwell’s
theory.

Under gauge transformations,

Fµν → gFµνg−1.

29.4. The Lagrangian of Yang-Mills theory is.

LY M =
1

4α
trFµνFµν

It is invaraiant under gauge transformations. The constant αcontrols the
strength of the field: how likely it is to deviate from the value F = 0. It is
called the coupling constant.
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29.4.1. The Yang-Mills field equations are.

∂
µFµν +[Aµ ,Fµν ] = 0.

This is the analogue of Maxwell’s equatins without sources. It is already
nonlinear.All the nonlinearities arise from commutators.

29.5. Using covariant derivatives we can bring spin zero and spin one
fields as sources.

L =
1

4α
trFµνFµν +

1
2
∣∇φ ∣2−V (∣φ ∣)

L =
1

4α
trFµνFµν + ψ̄[iγµ

∇µ +m]ψ

etc. We will study some special cases in detail as they are part of the
standard model.

30. QUANTUM CHROMODYNAMICS

30.1. Yang-Mills Theory with gauge group SU(3) is Quantum Chro-
modynamics, the theory of strong interactions.

L =
1

8α
tr FµνFµν +

N f

∑
a=1

ψ̄[iγµ
∇µ +ma]ψ

Each quark field ψa is a three component vector under SU(3)in addition
to being a Dirac spinor. There are six kinds of such quarks a = 1, ⋅ ⋅ ⋅6
corresponding to u,d,c,s, t,b with widely varying masses:

ma ∼ 5,10,1500,250,175000,5000
in MeV. In most cases of interest in Nuclear Physics, only the lightest two
or three quarks needs to be considered.

30.2. Understanding the dynamics of non-abelian Yang-Mills theories
is one of the deepest unsolved problems of theoretical physics. It is one
of the seven millenium problems of the Clay Math Institute: one of the
seven hardest and most important problems in all of mathematics.The only
other physics problem in this list is fluid mechanics.

31. AN SU(2) GAUGE THEORY

31.1. A gauge theory with SU(2) invariance is.

L =
1

4α
trFµνFµν +

1
2
∣∇φ ∣2−V (∣φ ∣)

where φ =

(
φ1
φ2

)
is a vector with two complex components.
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31.2. The vacuum value of the Higgs field is non-zero. With the poten-
tial

V (φ) =
λ

4

[
φ

†
φ − v2

]2

any scalar satisfying

∣φ1∣2 + ∣φ2∣2 = v2

is a minimum. This is a vector of length v in four dimensions ( the real
and imaginary parts of the two components). In the field the field will point
in some constant direction, which we choose to be the second direction.
(This will pove to be convenient later.)

31.2.1. The isotropy group of the vacuum is trivial.(
a b
c d

)(
0
v

)
=

(
0
v

)
⇒ d = 1, b = 0

The only matrix of the form (
a 0
c 1

)
which is unitary has

c = 0, ∣a∣= 1.

Thus the unbroken subgroup is of the form
(

a 0
0 1

)
with a ∈U(1). To

have determinant one we need a = 1 as well.

31.3. It is convenient to change variables adapted to the vacuum.

φ =U
(

0
v+ H√

2

)
, U ∈ SU(2)

U has three degrees of freedom and H has one that add up to the four in
φ .

V (φ) =
λv2

2
H2 +

√
2

4
λvH3 +

λ

16
H4

Again, U drops out because of the SU(2) symmetry of the potential
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31.3.1. We can remove U from the term inlving derivatives of φ as well by
a change of the vector field variable.

Aµ = eUZµU−1− i[∂µU ]U−1

∂µφ =U
{

1√
2

∂µH +

[
v+

1√
2

H
]

iU−1
∂µU

} (
0
1

)

Aµφ =U
{

eZµ − iU−1
∂µU

}[
v+

1√
2

H
](

0
1

)

∇µφ =U
{

1√
2

∂µH + eZµ

[
v+

1√
2

H
]} (

0
1

)
So that

∣∇φ ∣2 = 1
2
[∂H]2 + e2

[
v2 +
√

2vH +
H2

2

]
(0,1)ZµZµ

(
0
1

)
and

L =
e2

4α
trZµνZµν + e2v2(0,1)ZµZµ

(
0
1

)
+

1
2
[∂H]2− λv2

2
H2

+e2
[√

2vH +
H2

2

]
(0,1)ZµZµ

(
0
1

)
−
√

2
4

λvH3− λ

16
H4

31.3.2. Choose e to normalize the kinetic energy of the YM field conven-
tionally.

Zµ = Zµa
σa

2

e2

4α
trZµνZµν =

1
4

Zµν
a Zµνa

That is,

e2 = 2α

31.3.3. The easily checked identity.

(1,0)ZµZµ

(
1
0

)
= (Zµ

1 )
2 +(Zµ

2 )
2 +(Zµ

3 )
2
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31.4. Thus we have the Lagrangian.

L =
1
4

Zµν
a Zµνa + e2v2ZµaZµ

a +
1
2
[∂H]2− λv2

2
H2

+e2
[√

2vH +
H2

2

]
ZµaZµ

a −
√

2
4

λvH3− λ

16
H4

Again the first line describes a spin zero particle of mass
√

λv and a set
of three spin one particles of mass ev. The rest are interactions.

Exercise 17. Show that the masses of all the gauge bosons are non-zero.
Are they equal?Hint Expand Zµ = Zµa

σa
2 in terms of Pauli matrices and

express (1,0)ZµZµ

(
1
0

)
in terms of these components.

32. SU(2)×U(1) GAUGE THEORY

32.1. Weak interactions are mediated by a pair of charged massive par-
ticles (W±) and a spin zero particle Z0. Beta decay is due to W±; the Z0

bosons mediate neutral current interactions which were discovered later.
The masses are not equal.

32.2. Electromagnetism is already described as a U(1) gauge theory.

32.3. The only consistent theory of massive spin one charged particles
is a broken gauge theory. Veltmann did heroic calculations of quantum
corrections to magnetic moments of spin one particles to show that the only
sensible value is that determined by such a Yang-Mills theory. In modern
language, no other theory is renormalizable.

32.4. There must be a gauge theory based on a Lie algebra of dimen-
sion 4 which is broken to a u(1) subalgebra by a Higgs field. This left
over symmetry is responsible for the photon being massless. In particu-
lar the SU(2) model of the last section cannot be the right theory of weak
interactions because it does not have a massless gauge boson.

32.5. The simplest choice is U(2)→ U(1). The gauge fields are 2× 2
hermitean matrices, but they are not traceless. We can use exactly the same
scalar Lagrangian as above. Without the condition that the determinant be
one the unbroken symmetry group is(

a 0
0 1

)
, a ∈U(1).

Thus the photon is the gauge boson corresponding to this direction in the
symmery group.
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32.6. There are two independent gauge invariant actions for the Yang-
Mills field. This is because the gauge group is not simple. Both

trFµνFµν

and

trFµν trFµν

are gauge invariant. The latter would have been zero for the SU(2) gauge
theory, because of the tracelessness. This is why the W± and Z0 can have
different masses. Or equivalently, why the charged current and neutral cur-
rent can have different, but universal, coupling constants. It is useful to split
the gauge field into a traceless part and a piece that is the multiple of the
identity

Aµ = gσaWµa +g′Yµ

with two independent coupling constans g,g′.

32.6.1. The SU(2) symmetry arising here is called weak isospin; the U(1)
is called weak hypercharge. We will see that electric is a linear combination
of the third generator of SU(2) and the weak hypercharge

Q = I3W +
Y
2
.

The general Yang-Mills Lagrangian for U(2) becomes

LY M =
1
4

W µν
a Wµνa +

1
4

Y µνYµν

32.7. The Lagrangian including the Higgs field is.

L =
1
4

W µν
a Wµνa +

1
4

Y µνYµν + ∣∇φ ∣2− λ

4

[
φ

†
φ − v2

]2

Again, the minimum of the potential is on the sphere φ †φ = v2.

Exercise 18. Go to the gauge φ =

(
0

v+ H√
2

)
and diagonalize the qua-

dratic part of the Lagrangian to get

mW = gv, mZ =
√

g2 +g′2v, mV = 0
for appropriate linear combinations Z,V of Wµ3 and Yµ .

∇µφ = ∂µφ + i
[
gσaLµa +g′Yµ

]
φ
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=

(
0

∂µ H√
2

)
+

(
ig′Yµ + igWµ3 ig

[
Wµ1− iWµ2

]
ig
[
Wµ1 + iWµ2

]
igYµ − ig′Wµ3

)(
0

v+ H√
2

)

=

⎛⎝ [
v+ H√

2

]
ig(Wµ − iWµ2)

∂µ H√
2
+
[
v+ H√

2

]
(ig′Yµ − igWµ3)

⎞⎠
Writing out in detail only the quadratic terms,

L=
1
4
[
∂µWµ1−∂νWµ1

]2
+

1
4
[
∂µWµ2−∂νWµ2

]2
+g2v2(W 2

µ1+W 2
µ2)+

1
4
[
∂µWν3−∂νWµ3

]2
+

1
4

Y µνYµν +(g′Yµ−gWµ3)
2v2+

1
2
(∂H)2− λv2

2
H2+⋅ ⋅ ⋅

We see that Wµ1,Wµ2 correspond to spin one bosons of mass gv. But Wµ3
and Yµ are mixed. The combination

Zµ =
g′Yµ −gWµ3√

g2 +g′2

is massive while the orthogonal combination

Vµ =
gYµ +g′Wµ3√

g2 +g′2

is massless. The mixing angle

tanθW =
g′

g

measures the relative strengths of the charged and neutral weak interac-
tions.

L=
1
4
[
∂µWµ1−∂νWµ1

]2
+

1
4
[
∂µWµ2−∂νWµ2

]2
+g2v2(W 2

µ1+W 2
µ2)+

1
4
[
∂µVν −∂νVµ

]2
+

1
4
[
∂µZν −∂νZµ

]2
+(g2+g′2)v2Z2

µ +
1
2
(∂H)2− λv2

2
H2+⋅ ⋅ ⋅

32.7.1. Strictly speaking the symmetry group of the electroweak theory is
U(2) and not SU(2)×U(1) as it is commonly called. The difference is a
discrete symmetry Z2 = {1,−1} :

U(2) = SU(2)×U(1)/Z2

It so happens that all the standard model particles happen to be unchanged
by this symmetry so that the true gauge group is U(2). This does not affect
any perturbative calculation, but can slightly change some facts about large
excitations such as cosmic strings.
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33. FERMIONS IN THE ELECTROWEAK THEORY

33.1. The quarks and leptons are Dirac fermions, but their left and
right handed parts transform differently under SU(2)×U(1). Consider
for simplicity just the fermions of the first generation.We will include others
later

33.2. The left handed components are doublets under weak isospin.
The left handed components of the leptons form a doublet under SU(2).
So do the left handed parts of the up and down quarks, except there are
three copies of them, one for each color.(

l1
ν1

)
L
,

(
uα

dα

)
L

l1 here stands for the ani-electron (positron) and ν1for the anti-electron-
neutrino That is, these particles have lepton number−1. This choice makes
it easier to write down the Lagrangian.

33.2.1. Recall Q = I3W + Y
2 . To get the correct electric charges, the weak

hypercharges are 1 and 1
3 for the left-handed leptons and quarks respec-

tively.

33.2.2. The right handed components are invariant under SU(2): they do
not take part in the charged current interactions.

ν1R, l1R,uRα

Because I3W = 0, the right electric charges the hypercharge assignments
are 0,2, 4

3 ,−
2
3 respectively.

33.3. Fermions get their masses from coupling to the Higgs boson as
well.

33.3.1. The cross-product of spinors is invariant under SU(2). If we have
two spinors (

φ1
φ2

) (
χ1
χ2

)
the product

φ1χ2−φ2χ1

is invariant under the transformation

φ → gφ , χ → gχ.

For then,

φ1χ2−φ2χ1→ detg[φ1χ2−φ2χ1].
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We can write

φ1χ2−φ2χ1 = φ
T iσ2χ

This will come in useful in forming Yukawa couplings.

33.3.2. The electron mass. Let us consider the simplest case before we
look at the general situation. The left-handed fermions as well as the scalar
field transform as doublets. By the way this determines the weak hyper-
charge of the scalar field to be 1. So the Yukawa coupling

−gel̄1Rφ
T iσ2

(
l1
ν1

)
L
+h.c.

is invariant under the gauge symmetry as well as Lorentz transformations.
In the gauge where the scalar is

φ =

(
0

v+ H√
2

)
this becomes

gevl̄1Rl1L +ge
H√

2
ēReL +h.c

Thus the electron mass is

me = gev
and its coupling to the Higgs is also proportional to the Yukawa constant.

33.3.3. The Up Quark masses. The natural analogue

−guūα
R φ

T iσ2

(
uα

dα

)
L
+h.c.

will give a mass to the up quark. Of course, the different colors have the
same coupling to the scalar. Again this leads to mu = guv

33.3.4. The down Quark Masses. But the up quark is massive too.

gd d̄α
R φ

†
(

uα

dα

)
L
+h.c.

is gauge invariant well. In the unitary gauge this is

gdvd̄RuL +gd
H√

2
d̄RdL +h.c

leading to a mass for the up quark.
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33.3.5. Neutrino masses. In the original version of the standard model,
there was no provision for neutrino masses. Now that we know at least two
of the neutrinos are massive, we must ask what is the minimal modification
that will include them? Of course the truth may be more complicated, or
elegant, but we must always start with the minimal model; that is the lesson
of the success of the standard model itself. Attempts to grand unify it have
so far not wored out well.

The simplest idea is to just imitate what we did for the down quarks.

g1ν ν̄1Rφ
†
(

l1
ν1

)
L
+h.c

leading to
mνe = g1νv.

This has got to be one of the smallest fundamental constants in all of
physics: g1ν < 2

2.5×1011 .

34. QUARK MIXING

34.1. The situation is complicated by the fact that the mass matrices
are not diagonal. Since the quarks of the different generations transform
the same way under SU(2)×U(1) a Yukawa coupling can mix them.

Thus we should think of the Yukawa couplings of the standard model as
3×3 matrices. There is one such matrix for the up quarks and another for
the down quarks.

ga
b

¯dRbφ
†
(

uLa
dLa

)
− ig̃a

b ¯uRbφ
T

σ2

(
uLa
dLb

)
+h.c.

They need not be diagonal in the same basis: they do not need to com-
mute. The unitary transformation that realates the bases where they are
diagonal is called the CKM matrix. (Cabibbo-Kobayashi-Mazkawa).

34.1.1. Number of degrees of freedom. It is useful to generalize to the case
where there are N generations and only put N = 3at the end. We can diag-
onalize each mass matrix by a unitary transformation

g =Udiag(m1, ⋅ ⋅ ⋅mN)U†

g̃ = Ũdiag(m̃1, ⋅ ⋅ ⋅ m̃N)Ũ
Each of the eigenvalues are distinct: no two quark masses are equal. The

ratio of these two transformations

V = Ũ−1U
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measures the mixing. It is the CKM matrix. But recall thatUand Ũ are
not unique. If we multiply them of the right by a diagonal unitary matrix, g
remains unaffected. That is, by a matrix which is diagonal and each entry
along the diagonal is a complex number of unit magnitude. Thus there is an
equivalence among CKM matrices.

Vab ∼Vabei[θa−θ̃b]

Of the N2independent parameters in V, we can remove 2N−1 this way.
(The minus one is because an overall constant added to the θ , θ̃ do not
matter. ) This leaves

N2− (2N−1) = (N−1)2

independent parameters. For the original case of N = 2, this only leaves
one parameter, the Cabibbo angle. In today’s realistic case N = 3 we have
4 independent parameters.

34.2. CP Violation. Of great importance in physics is the question: can
V be chosen to be real using the transformation above? The reason
this is so important is that a complex phase in V would lead to CP viola-
tion. Kobayashi and Mazkawa realized that for N = 3 this matrix cannot be
chosen to be real: there are only N(N−1)

2 parameters in a real unitray (i.e.,
orthogonal) matrix. Thus for N = 3,the CKM matrix has 4 independent
parameters, of which only three can be accounted for by a real orthogonal
matrix. The remaining complex parameter now provides a natural explana-
tion to the observed CP violation in physics.

34.3. Measuring the CKM mixing angles. The magnitudes of matrix el-
ements ∣Vab∣ can be measured using decay widths of the mesons containing
these quarks. The oldest example (Cabibbo mixing) is the decay of the
charged Kmesons. Many years of careful work has now pinned down all
these mixing angles. Along with the CP violation (observed in KK̄ andBB̄
oscillations) we now understand reasonably well the value of the CKM ma-
trix.

34.3.1. Double Coset spaces. What we are talking about here mathemat-
ically is the double coset space [U(1)]N ∖U(N)/ [U(1)]N . The parameter
count above is just the dimension of this “orbifold”. There is a standard
theory of these, but Kobayashi-Mazkawa reinvented the part they needed
on ther own.
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35. THE LAGRANGIAN OF THE STANDARD MODEL

35.1. All the phenomena of nature, except gravity, are described the
the Lagrangian of the standard model. The Lagrangian defines a partic-
ular quantum field theory. The precise definition of a quantum field theory
involves the mysterious procedure of renormalization; we only understand
it fully in perturbation theory.

35.2. It is a Yang-Mills Theory with gauge group SU(3)×SU(2)×U(1)
, a scalar field and a set of spin 1

2 fields. The theory is specified by the
representations of the scalar and fermion fields; and the couplings among
them. The three states SU(3) symmetry is labelled by ‘ color’; SU(2)is
called weak isospin and the U(1)is called weak hypercharge. We denote the
corresponding gauge fields by a set of vector fields: Aα

µβ
, each component

of which is a traceless hermitean 3×3 matrix; W a
µb, whose components are

traceless hermitean 2×2 matrices; and Yµ each component of which is just
a real function.

35.3. The scalar field is invariant under SU(3); it is in the fundamen-
tal (doublet) representation of SU(2); has hypercharge one. That is, φ

transforms as (1,2,1) : the trivial representation of color, the defining rep-
resentation of SU(2)and of hypercharge one.

This means that if g ∈U(2) = SU(2)×U(1)/Z2, the scalar field trans-
forms as the doublet φ → gφ . The covariant derivative on scalars is

∇µφb = ∂µφb + i[W a
µb +Yµδ

a
b ]φa

35.4. There are two kinds of fermions: quarks and leptons whose left
and right-handed components couple differently to gauge bosons, as
listed below.

(1) The left-handed quarks qαbA where α = 1,2,3 labels the fundamen-
tal representation of color SU(3); b labels the fundamental repre-
sentation of weak isospin SU(2); the hypercharge 1

3 ; and A = 1,2,3
labels the generations.

γ5q = q, ∇µqαbA = ∂µqαbA + i
[{

W a
µb +

1
3

Yµδ
a
b

}
δ

β

α +Aβ

µα

]
qβaA

(2) The left-handed leptons lbA are trivial under color; in the fundamen-
tal of weak isospin; and has hypercharge −1.

γ5l = l, ∇µ lbA = ∂µ lbA + i
{

W a
µb−Yµδ

a
b

}
laA
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(3) The right-handed up-quarks uαA are in the fundamental of color; are
trivial under weak isospin; and has hypercharge 4

3

γ5u =−u, ∇µuαA = ∂µuαA + i
[

Aβ

µα +
4
3

Yµδ
β

α

]
uβA

(4) The right-handed down-quarksdαA are also fundamental in color;
trivial under weak isospin; and hypercharge

γ5d =−d, ∇µdαA = ∂µdαA + i
[

Aβ

µα −
2
3

Yµδ
β

α

]
dβA

(5) The right-handed charged leptons eAare trivial under both color and
weak isospin; and have hypercharge −2.

γ5e =−e, ∇µeA = ∂µeA + i
[
−2

3
Yµ

]
eA

(6) The right-handed neutrinos νA are trivial under color and weak isospin,
as well as of zero hypercharge. They do not couple to any gauge
bosons at all.

γ5ν =−ν , ∇µνA = ∂µνA

35.5. The Lagrangian can then be written down.

L =
1

4α1
Y µνYµν +

1
4α2

W µνWµν +
1

4α3
FµνFµν + ∣∇φ ∣2− λ

4

[
φ

†
φ − v2

]2
+

q̄αbAiγµ
∇µqαbA + ūαAiγµ

∇µuαA + d̄αbAiσγ
µ

∇µdαbA+

l̄αbAiγµ
∇µ lαbA + ēAiσ µ

∇µeA + ν̄
Aiγµ

∂µνA+

+
1
v ∑

A
MAūαA

φaε
abqαbA +

1
v ∑

AB
M̃BV B

A d̄αA
φ

†bqαbB+

1
v ∑

A
mAēA

φaε
ablbA +

1
v ∑

A
m̃AUB

A ν̄
A
φ

†blbB

Note that the right-handed neutrinos do not couple to any gauge bosons.
The basis is chosen so that mass matrix of the up quarks is diagonal, with
entries MA. Then those of the down quarks will be the diagonal matrix M̃
times the CKM matrix V which is a unitary matrix; because of the freedom
to choose phases for the basis of quarks, V is defined only modulo a left
and a right action by diagonal unitary matrices: V ∈U(1)N∖U(N)/U(1)N .
Similarly, the mass matrix of the charged leptons is chosen to be diagonal,
leading to a neutrino mixing matrix U ∈U(1)N∖U(N)/U(1)N . The dimen-
sion of the double coset space U(1)N∖U(N)/U(1)N is (N−1)2.
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35.6. The parameters are α1,α2,α3,λ ,v,MA,M̃A,V B
A ,mA, m̃A,UB

A . That is
5+ 4N + 2(N− 1)2 = 2N2 + 7 parameters where N is the number of gen-
erations. For N = 3 these are 25 parameters. Most of them are known to
reasonable accuracy: the unknown parameters are the Higgs mass (λ )and
all except two combinations of m̃A,UA

B in the neutrino sector: only the two
combinations of the neutrino masses and mixing angles that give neutrino
oscillation lengths are known.


