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Abstract

The low temperature of the hot bubbles observed in the wind
blown bubbles (WBB) remains a mystery for many years. It is as-
sumed that the heat conduction plays an important role in the cooling
of the hot bubbles. Meanwhile, in a stellar object such as WBB, the
magnetic field can be strong and highly tangled which results in the
anisotropic heat conduction which only allows the electrons to carry
thermal energy along the magnetic field lines. A natural question
is, in the situation such as a WBB, how would the heat transfer rate
which relates to the hot bubble cooling rate be related with the mag-
netic field structure? In this study, we start from two simple cases:
(1) field lines aligned with the hot bubble - cold shell interface; (2)
field lines perpendicular to the hot bubble - cold shell interface. We
explore the relation between the magnetic field topology and the heat
transfer rate by adding tangled field to the above configuration and
demonstrate that the degree of tanglement and the heat transfer rate
has a simple mathematical relation which matches well with the ana-
lytical calculation. This relation can be useful in determining the heat
transfer efficiency when there is a magnetic field in the environment
of astrophysical context.

keywords: magneto-hydrodynamics, planetary nebula, magnetic reconnec-
tion, wind blown bubbles, anisotropic heat conduction
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1 Introduction

The interface bounding hot and cold interstellar medium (ISM) exist in
astrophysics problems of various scales. The thermal conduction through
such interface is critical in determining the heating(cooling) process of the
materials behind the interface. However, the thermal conduction in ISM
is usually controlled by the magnetic field topology, which renders the
electrons to move freely only along the field lines. This results in a strong
thermal conductivity along the field lines and weak conductivity across
the field lines. When considering ISM, it is usually a valid assumption
that the electrons are totally inhibited from moving across field lines (Bra-
ginskii 1965, McCourt et al. 2010). Under this assumption, the interface
bounding the hot and cold materials will be significantly modified by the
presence of tangled magnetic field, creating small structures at the field
variation length scale. One typical example of such problems being the
wind blown bubbles (WBB) which are observed to have hot bubble with
observed temperature lower than expected (Zhekov et al. 2010). Many be-
lieve that heating through the hot bubble - cold shell interface via thermal
conduction may have induced the cooling of the hot bubble (Zhekov et
al. 1998, Zhekov et al. 2001). Meanwhile, the presence of the temperature
gradient and global field will continuously cause materials of the cold side
to evaporate, causing interface instabilities and mass mixing (Stone 2009),
which would further modify the magnetic field topology. Another exam-
ple is the unexpected slow cooling of the central galaxy core in the galaxy
clusters, for which many suggest is a result of thermal conduction (Rosner
et al. 1989, Balbus et al. 2008, Mikellides 2010). In the situation of intr-
acluster medium (ICM), the tangled magnetic field often renders a hight
anistropic thermal conductivity that may significantly change the temper-
ature and density profile (Narayan et al. 2001, Mikellides et al. 2010).
The key questions here are: (1) does the interface evolve into an instability
driven by the anisotropic thermal conduction or a steady state stabilized
by the anisotropic thermal conduction? (2) how fast is the thermal ex-
change between the hot and cold sides comparing to the isotropic thermal
conduction case? In this paper, we visit the various situations with differ-
ent magnetic field configurations imposed on a planar hot cold interface
and study the effect of the tangled magnetic field on the evolution of the
interface. Using ASTROBEAR code with anisotropic thermal conduction,
we run simulations with different initial setup. In section 2, we review the
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basic equations of MHD with anisotropic thermal conduction. Sections 3
and 4 provide detailed description of the simualtion setup, section 5 and
6 present the simulation results and analysis. In section 7, we apply the
simulation results to astrophysical problems at different scales: the WBB
cooling problem and the cooling flow problem in cores of galaxy clusters.
The appendix offers detailed information on the testing of ASTROBEAR
code.

2 MHD Equations with Anisotropic Heat Con-
duction

The MHD equations with anisotropic heat conduction are:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂(ρv)

∂t
+∇ · [ρvv + (p+

B2

8π
)I− BB

4π
] = 0, (2)
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8π
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where E denotes the total energy:

E = ε+ p
v · v

2
+

B · B
8π

(5)

and the internal energy:
ε =

p

γ − 1
(6)

with γ = 5/3. In our simulation, it is assumed that the heat flux is confined
to be parallel to the magnetic field lines. This assumption is valid when the
electron gyroradius is much smaller compared to the scale of the problem,
i.e. the magnetic field strength has a threshold to let the anisotropicity
to be effective. Under this assumption, the anisotropic heat flux can be
written as:

Q = −κ‖(∇T )‖ (7)
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where κ‖ is the classical Spitzer heat conductivity. We assume the heat con-
ductivity to be a constant throughout the simulation and will be writing it
simply as κ.

The ASTROBEAR code uses operator splitting method to treat the MHD
equations with heat conduction. The ideal MHD equations are solved with
the MUSCL primitive method with TVD preserving Runge-Kutta tempo-
ral interpolation, the result is then sent to the implicit linear solver utiliz-
ing High Performance Preconditioners (HYPRE) to solve the anisotropic
heat conduction equation. The linear solver requires temporal sub-cycling
technique to maintain its accuracy. The time step taken by the linear solver
can be written as:

tdiff =
ρl2

κ
(8)

where l is the minimum scale length of the temperature variation: l =
min(T/|∇T |). The code runs in parallel with fixed grid domain.

3 Problem Description and Analytical Model

The problem involves a hot region representing hot material and a cold
region representing cold material which are separated by a thin planar in-
terface. The two regions are in pressure equilibrium. There is a magnetic
field in the environment. We will study how the magnetic field configura-
tion alters the heat transfer rate between the hot and cold regions.

Let us first consider two simple but illustrative cases: (1) a uniform mag-
netic field aligned with the normal direction of the interface; (2) a uniform
magnetic field perpendicular to the normal direction of the interface. In
case (1), because of the angle between the magnetic field and the tempera-
ture gradient is zero everywhere, the anisotropic heat conduction acts ex-
actly the same as isotropic heat conduction. Thermal energy would trans-
fer from the hot side to the cold side at a rate that only depends on the
temperature distribution. In case (2) however, the angle between the mag-
netic field and the temperature gradient is always 90◦, the thermal diffu-
sion term in the energy equation is always zero. Thus the interface would
stay unchanged. From the above two cases, we can see that if we define a
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heat transfer rate η that is normalized by the transfer rate in the isotropic
conduction case, namely:

η =
q

qi
(9)

then the average angle θ between the temperature gradient and the uni-
form magnetic field plays an important role in determining η. At θ = 0,
η = 1. At θ = π/2, η = 0.

Figure 1: The initial and steady state field configuration. (a): the initial field
forms complete loops that only allows heat transfer within the interaction region.
(b): the steady state field reconnects itself so that it allows heat transfer between
regions deeply into the hot and cold areas. We call the interaction region in (b)
the “field membrane” because it allows the heat transfer between the hot and
cold areas but the transfer is slower than the isotropic case since the heat flux is
confined on the field lines.

The field configuration we consider next can be described as: there is
a strongly tangled local field B0 whose average on the normal of the in-
terface is zero. There is also a global magnetic field Bd which is aligned
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with the normal of the interface. There are three cases one can think of:
(1) Bd � B0, (2) Bd is comparable with B0, (3) Bd � B0. In the first case
when the global field is strong, the magnetic field around the interface
merely deviates from the normal direction. Thus one can imagine that this
case would resemble case (1) in the uniform field situation and η should be
close to 1. In the third case when the global field is weak, one would expect
that there will be local energy redistribution, but the global energy trans-
fer should be slow. Thus there will be an expansion on the interface, but
the global temperature structure should remain unchanged and η should
be close to zero.

In the second case however, one can only guess that η should be some
value between zero and one. Another twist to the situation is the strucu-
ture of the magnetic field. Consider the weak global field case. If the field
is frozen into their positions, then one would imagine the region filled
with the tangled field can have energy redistribution depending on the
field topology, and then stay there since the field cannot move with the
fluid elements. But if the field is frozen into the fluid elements, which is
an assumption in ideal magneto-hydrodynamics calculation, one would
expect that the field lines would redistribute themselves to keep up with
the motion of the fluid elements. The question here is then: will this mo-
tion of field lines help the energy channeling or hamper it? If the feedback
is positive, one would expect an acceleration of the energy transfer in the
weak global field case, resulting in the destruction of the local field “wall”,
making the heat flux be able to penetrate through. Otherwise one would
expect the global behavior of the interface to be the same as the case when
the magnetic field is frozen into position, the local field “wall” would stay
for a much longer period of time.

We define the tangled field region surrounding the interface as the “in-
teraction region”. Fig.1.(a) shows the initial and steady state field config-
uration in such a tangled field interface situation. From the figure we can
see that initially the field forms a field wall since the field configuration
does not allow the energy transfer between the two ends of the interaction
region. But the steady state sees an expansion of the interaction region and
magnetic reconnection which allows the field to penetrate through the en-
tire region so that the field wall is destructed. In this paper, we will call
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the destructed field wall as the “field membrane”, which describes a sta-
ble region with tangled field distribution that allows a certain amount of
heat to penetrate through in terms of anisotropic heat conduction, as in
Fig.1.(b). We define the membrane’s ability to block heat transfer as the
“blocking rate”, denoted by Rblock. In the simple straight field situation
we proposed before, Rblock = 0 for the pure vertical field case, Rblock = 1
for the pure horizontal field case. One way to define Rblock is by defining
it as the ratio between the mean By strength against the mean total field
strength. Because of heat penetration, the thermal energy across the field
membrane will see a certain jump which is determined by Rblock. In the
following study, we will check whether our assumption of the formation
of field membrane is valid or not in the numerical simulation and quanti-
tatively discuss its effect on the energy transfer.

4 Simulation Setup

To study the hot - cold interface energy transfer in circumstances such
as the WBB, we construct the initial condition by setting up a hot - cold
interface at pressure equilibrium. We will express the simulation parame-
ters in computational units. Later we will see that our simulation can be
used to describe certain real astrophysical situations once correct scaling
parameters are chosen. The temperature follows the distribution:

T (x) = T0(1− x2)1/2.5 (10)

in the region of 0 < x < 1 − 10−5 with T0 = 100 in computational units.
The temperature distribution is plotted in pseudo color in Fig.2.(a). The
region 0.4 < x < 0.5 is the interaction region we defined in the previous
section since it contains the sharp temperature gradient that would trigger
the energy transfer process. At the two sides, the temperature is set to be
constant and continuous from the ends of the interaction region. During
the simulation, we are only interested in the region where the heat transfer
can have a noticeable impact during the simulation run time. In other
words, we will focus ourselves on the region surrounding the hot - cold
interface, not regions deeply into the hot material. The horizontal length of
the simulation domain is 0.1 in computational units. The thermal pressure
is set to be in equilibrium:

P (x) = P0 (11)
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with P0 = 100 in computational units. The density distribution is set up
by the perfect gas law, namely:

ρ(x) =
P (x)

T (x)
(12)

For the Spitzer diffusion constant, we use the approximation of κ = κc T
2.5
mid,

where κc is the classical conductivity, and Tmid is taken to be the middle
value of temperature across the interface, which is about 0.6T0.

In our study, we choose the field configuration:

Bx = Bd +B0 sin(nπ y/λ), (13)

By = B0 sin(nπ x/λ) (14)

where n and λ are the mode number and wavelength of the tangled field
respectively, B0 = 10−3 in computational units, and Bd can take various
values but it is in general 1 order of magnitude smaller comparing to B0.
This field configuration creates a locally tangled field surrouding the in-
terface. We can use ratio

R = Bd/B0 (15)

to describe the straightness of the magnetic field. R = 0 case indicates
totally confined field lines, in which the field lines form sets of complete
loops. R = ∞ case indicates straight field with all the field lines go from
the hight temperature region to the low temperature region without any
twist. One can imagine that with 0 < R < 1, the field lines will be twisted
and form sets of circles, but some of the loopss are incomplete so that some
of the field lines still go from the hot region into the cold region which
become channels for energy transfer. In our simulation, we will consider
cases with R = 0.0, 0.2, 0.4, 0.6, 1, 2, 4, ∞. Fig.2.(a), Fig.4.(a) and Fig.5.(a)
show the magnetic field configuration for initial R values of 0.0, 0.4, 1.0.

We use fixed boundary condition on the x direction: the pressure, den-
sity and temperature at the two ends are fixed to their initial values so as
the magnetic field. By this boundary condition, the two ends on the x axis
can be seen as the regions deeply into the hot and cold regions, whose ther-
mal dynamic variables stay constant. On the y axis, we use the periodic
boundary condition.
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There are five parameters involved in the simulation:

1. Magnetic β. β has little effect on diffuson since the field lines only
determine the direction of the diffusion, but an extremely large β (weak
field, or equivalently, the sound speed is much greater than the Alfv́en
speed) may affect the anisotropicity of the system. By contrast, an ex-
tremely small β may result in pressure imbalance in the initial condition.
In our simulations, β falls in the range that it does not cause a strong pres-
sure imbalance (the magnetic pressure is 10−8 in magnitude comparing to
the thermal pressure), and also does not affect the anisotropicity (effective
gyroradius is about 10−5 of the scale of the problem considered).

2. Tangle vs straight measure: R = Bd/B0. IfR is large, the local tangled
field can mostly be ignored, we would get high energy transfer efficiency,
and vice versa.

3. Ratio of the diffusion time scale and the hydrodynamic time scale:
r = tdiff/thy. By simple physics consideration, we can have:

r =
ρCs l

κ
(16)

where l is the characteristic scale length of temperature: l = min( T
|∇T |),

Cs is the sound speed, κ is the linear diffusion constant. The initial kick
is driven by the diffusion, the later evolution of the system depends on
the value of r. If r is much smaller than 1, diffusion would dominate the
initial phase and the pressure equilibrium may be broken by the fast en-
ergy transfer, if r is large, then the pressure equilibrium is well maintained
throughout the entire process and the energy transfer may be viewed as
a slow relaxation process. In the cases when the two time scales are com-
parable, both effects are present. In our simulation, r ≈ 0.3 initially, so
that the diffusion would trigger the heat transfer and pressure imbalance
fastly at first. Then the hydrodynamics process would catch up and be-
come faster than the diffusion process as a result of the decreasing of the
temperature gradient and the fast expansion of the interface.

4. Ratio between the temperature scale length and the wavelength of
the tangled field: h = 2 π l/λ = k l where l follows the same definition as
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that in the previous paragraph. h = 0 marks the situation of no tangled
field, which means there is nothing inhibitting the energy transfer. As
h gets larger, the field becomes more confined, the energy is harder to
transfer in the tangled field region, but a large h value may also result in
a large chance of magnetic reconnection. The number of modes may also
affect the result. We currently only look at the single mode case in which
the spectrum is a delta function.

5. Mean global energy transfer rate: η = 1/tbal, where tbal can be de-
fined as the time needed for the hot region and cold region to reach a
certain degree of temperature equilibrium.

Next let us develop a simple mathematical expression for the heat trans-
fer rate. Consider a slab with a sharp temperature interface aligned with
the y direction and an average temperature gradient aligned on the x direc-
tion. There is an interaction region surrounding the temperature interface
with tangled magnetic field in it. Define the global temperature gradient
as |∇T |g = (Thot−Tcold)/(T0 L), where the subindices “hot” and “cold” de-
note the characteristic temperatures of the hot and cold regions, T0 is a nor-
malization factor which makes |∇T |g having dimension of 1/length, L is
the width of the interaction region. Then the energy transfer efficiency de-
pends on how much the x component of the fieldBx can penetrate through
the interaction region. In other words, the averaged heat transfer rate from
the hot region to the cold region should be:

q = D
|∇T |g

∫
Bx dx dy∫

|B| dx dy
(17)

where D is a constant that depends on neither the magnetic field nor the
temperature distribution, |B| is the local field strength. Using Eqs.(12),
(13) and (14), we find the approximated relation

q ≈ D
|∇T |g R√

1 +R2
(18)

Meanwhile, in the isotropic heat conduction case, the heat transfer rate
purely depends on the temperature gradient:

qi = D |∇T |g (19)
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Deviding Eq.(17) by Eq.(18), we get the heat transfer efficiency:

η =
R√

1 +R2
(20)

Thus if the initial temperature profiles are identical for different field con-
figurations, i.e. if |∇T |g are the same for the cases we are looking at, we
can calculate the energy tranfer rate from situations with various field con-
figuration and normalize them by the heat transfer rate of the isotropic
heat conduction case to obtain the heat transfer efficiency. Later we will
plot the heat transfer efficiency (η) against the field configuration (R) in
our simulation results to verify relation Eq.(19).

If magnetic reconnection happens during the transfer process then chan-
nels can be opened up and the energy exchange process can be accelerated,
we would expect the actual curve of η vs R to be higher than the value
Eq.(19) predicts at regions where R is low. Meanwhile, at regions of high
R, the analytical prediction and the real physical outcome should both ap-
proach the horizontal line η = 1, which denotes perfect efficiency. We can
also write Eq.(19) in its general form:

η =
|
∫

B ·G dx dy|∫
|B| dx dy

(21)

where G denotes the averaged global temperature gradient.

5 Simulation Result

We choose field set up with values R = 0.0, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0
to run the simulations. The simulation run time is taken to be 1.2 which
corresponds to 0.6 million years in real units. The initial cuts of temper-
ature and magnetic field lines for R = 0.0, 0.4, 1.0 are shown in Fig.2.(a),
Fig.4.(a) and Fig.5.(a) respectively. Fig.3.(a) shows the initial cut of the
density distribution in the R = 0.0 run. We also run simulations with
purely horizontal magnetic field lines which is equivalent to the R = ∞
case and purely vertical field lines. The rest frames in Fig.2 to Fig.5 are
from the later stages of the evolution, and the final frames always display
the steady state of the runs.
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Figure 2: Evolution of temperature distribution with R = 0.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.

In Fig.6, we plot the mean cut temperature Tc against the x position for
selected evolution time. Tc is obtained by averaging the temperature on
the y direction, because the question we are interested in is how the heat
transfer would perform along the x axis. Since initially the anisotropic
heat conduction is faster than the hydrodynamic process, the energy dis-
tribution around the hot - cold interface will see a fast change until about
t = 0.4. This energy transfer is mostly confined to the interaction region
for the low R runs, because in these cases there are little to no field lines
that can penetrate through the entire interaction region.

During this initial heat exchange phase, the thermal energy quickly re-
distribute itself in the interaction region as well as the density. As we can
see from Fig.2.(b), islands at x = 0.48 are formed by materials bounded by
the magnetic field lines, since they cannnot exchange heat with the envi-
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Figure 3: Evolution of density distribution with R = 0.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 4: Evolution of temperature distribution with R = 0.4. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 5: Evolution of temperature distribution with R = 1.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.

ronment.

The mass flow from the cold material pushes the interface, being heated
up and forming an evaporation which is subject to interface instability be-
cause of the materials being accelerated to super-Alfven speed at the inter-
face. This instability does not grow further but rather suppressed because
the field lines are tangled rather than straight. There are also holes formed
in between the spikes at around x = 0.4 because the thermal energy is in-
hibitted from flowing out of them. The magnetic field lines, which forms
complete sets of circles in the R = 0.0 case, begin to distort. We can see
that the field lines are distorted heavier in the low density part of the inter-
action region rather than in the high density part, because of the different
speed they gain during the density redistribution. At time t = 0.8, we ob-
serve that the field lines surrounding the holes at x = 0.4 reconnect, mak-
ing the thermal energy of the outter part of the holes begins to exchange.
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Field lines that run from the high temperature region on the left side to the
low temperature region deeply into the interaction region begin to emerge,
causing the energy exchange to be possible between the hot side and the
cold side. This phenomenon is more apparent in Fig.2.(d), which marks
the final state of the thermal energy exchange. We also see that there are
little difference between Fig.2.(c) and Fig.2.(d), because at the later stage
of the process, the magnetic field configuration is approaching the steady
state by which we mentioned as “field membrane” earlier in this paper. It
is impossible for the temperature gradient to drive the material to move
further at the steady state since the field membrane allows a certain de-
gree of temperature jump to happen across it. This effect is also apparent
by comparing Fig.6.(c) with Fig.6.(d), in which we observe that the mean
cut temperature distribution changes little for all the different R values in-
vestigated. The mean cut temperature Tc sees a sharp jump in the region
of x = 0.35 ∼ 0.5, but is relatively smooth on the two sides. Because
except for the interaction region which later becomes the field membrane
and induces a temperature jump, the two sides of the domain are mainly
governed by the heat conduction under horizontal magnetic field, which
is identical to the situation of isotropic heat conduction.

For the cases of R = 0.4, there are field lines that penetrate the en-
tire interaction region from the start. By observing the evolution of the
magnetic field lines at about x = 0.38, we find that there are still mag-
netic reconnection happenning, which causes the magnetic blobs to merge.
The observed behavior resembles the process displayed by Fig.(1). When
R = 1.0, we can hardly find temperature islands that are bounded by mag-
netic blobs. The topological evolution of the field lines is better decribed
as being straightened.

6 Discussion

We first analyze the evolution of heat flux. We plot the evolution of
average heat flux per cell for different R values in Fig.7.(a). The two pro-
cesses in effective are the temperature equilibration between the two re-
gions and the evolution magnetic field topology. From Fig.7.(a), we can
see that the average heat flux for R = ∞ remains zero, which indicates
that the field structure inhibits heat transfer completely across the inter-
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Figure 6: Evolution of mean cut temperature averaged on y direction with dif-
ferent R values labeled by different colors. The cuts are at (a): t = 0.0, the initial
state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 7: (a) top left: time evolution of mean heat flux at the interface, (b) top
right: time evolution of average temperature difference between the hot and cold
regions, (c) bottom left: time evolution of interface width, (d) bottom right: time
evolution of the mean value of |curlB|

face. For cases with R > 1, heat flux decreases throughout the evolution
because of the temperature equilibration. For the other R values, espe-
cially those of R < 0.5, a phase of heat flux amplification is observed. This
is caused by the magnetic reconnection occurred in the early phase of the
evolution tends to open up channels for heat to transfer from hot region
to cold region. At the late stage of the evolution when there are enough
channels opened up, the temperature equilibration becomes the dominat-
ing effect which leads to a similar decreasing pattern as to those R > 1
cases. The similarity between the R > 2 cases and the R = ∞ case is pre-
dicted by Eq.(20): as the global field getting strong, the inhibition imposed
by the local tangled field tends to be ignorable.
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We next analyze the two contributing physics processes in detail. The
temperature equilibration across the interface is plotted in Fig.7.(b). It
shows the difference between the averaged temperature at the hot side
and the cold side. One significant feature in Fig.7.(b) is that the tempera-
ture difference decrease to a steady value Tend in all cases. This resembles
the percolation of a membrane which allows a density jump to happen
when filtering two fluids and inspires us to define the field structure at
the interface the field membrane. We also observe that the larger R is, the
faster the energy transfer, and the smaller the temperature difference at
the final steady state.

Next we consider how much the interface expands during the energy
transfer. Fig.7.(c) shows the distance required for the temperature to drop
80 percent at the interface. Except for the vertical field case where no heat
transfer is allowed, the interface is expanding for all different R values at
a different rate. The expansion for all the cases of nonzero R approach
a steady value which is also a characteristic feature of the temperature
equilibration evolution.

We now analyze the second process in the evolution: how the mag-
netic field configuration is changed by the energy equilibration process.
Throughout our simulations, the local magnetic field is initially a set of
complete loops surrounding the interaction region. Once the energy trans-
fer begins, the interaction region tends to expand as discussed previously.
This expansion stretches the field lines on the x direction and results in
the distortion of these circular loops, which eventually induces the mag-
netic reconnection which oppens up channels connecting the hot and cold
regions. In our analysis, we use JB = |curlB| as a characteristic value
measuring the degree of magnetic field tanglement. Fig.7.(d) shows the
evolution of the mean value of the strength of curlB in the interaction re-
gion. We observe that in the vertical and straight field case, |curlB| remains
constant, this is because the field configuration does not change during the
process. |curlB| decrease to a fixed value forR ≥ 2 cases, meaning the field
in these cases is straightened by the stretching of the interaction region as
seen in Fig.7.(c). For the R ≤ 1 cases, |curlB| increase. This is due to the
energy deposted into magnetic field in the interface instabilty with low R.
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Figure 8: (a) Comparison on evolution of local field energy in terms of Bx and
By. Circles corresponds to the B2

x/2 curve, stars corresponds to the B2
y/2 curve.

The different colors denote various R values. (b) Eccentricity of the ellipses con-
structed by assigning the mean values of local |Bx| and |By| to the major and
minor axes, respectively. The set of curves show different evolution patterns for
different R values.

The local field distrotion can be clearly demonstrated via studying the
energy evolution of magnetic energy stored in forms of Bx and By. In
Fig.8.(a), we plot the evolution of mean magnetic energy stored in the ver-
tical field, namely B̄2

y/2, comparing to that stored in the mean horizontal
field B̄2

x/2. Notice that to exclude the influence of the global field, here we
only count in the tangled field part. From Fig.8.(a), we observe that the By

energy decrease while the Bx energy either increase or stay stable for all
cases. The magnetic energy evolution can thus be viewed as a conversion
of field energy from vertical pointing to horizontal pointing. However,
reader needs to pay attention to the fact that this conversion may not con-
serve the total magnetic energy of the local tangled field, because of the
existence of the induced interface instability and magnetic reconnection.
By comparison, in the R > 1 cases, the thermal energy and local mag-
netic energy would both decrease and add to the kinetic energy of the
material surrounding the interface, because of the fast diffusion caused
by the strong global field. The distortion of the local field loops can also
be demonstrated by plotting the mean eccentricity of the field loops. In
Fig.8.(b), we plot the mean eccentricity evolution. For all cases, the mean
eccentricity is zero initially because of the circular shape of the field loops.
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Later in the evolution, large R cases tends to evolve into a state of large
eccentricity at the steady state. This is due to the fast expansion of the
interface induced by the strong global field. To summarize the character-
istics of the magnetic field topological evolution, large R value induces
more distorted local field loops and less tangled total field with the fast in-
terface expansion, while small R values results in less eccentric local field
loops but with more tangled total field and strong magnetic reconnection.

Figure 9: (a) The ratio of magnetic energy stored in terms of B2
y/2 against the

total magnetic energy. The set of curves show different evolution patterns for
various R values. (b) The steady state blocking rate versus temperature jump.
The blocking rate is obtained by calculating the proportion of mnagnetic energy
stored in terms of By agains the total magnetic energy. The point (0, 0) corre-
sponds to the horizontal field situation, when there is neither temperature jump
nor any blocking mechanism; while the point (1, 1) corresponds to the vertical
field situation, when the temperature jump is kept at the initial state value.

In Section 3, we proposed that the interaction region would evolve into
a stable field membrane that allows a certain amount of heat flux to pen-
etrate through and introduced a parameter Rblock to describe the blocking
rate of it. We also proposed that Rblock in our field configuration can be
defined as the ratio of the mean By strength against the mean total field
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strength. We denote this ratio by Ry. Thus we have:

Ry =
B̄y

¯|B|
(22)

We next look at how doesRy evolve with time in our simulations. Fig.9.(a)
shows how the ratio ofBy energy evolves with time. The decsending curve
demonstrate that the ability for blocking the heat transfer is reduced by the
mixing. At the end of the simulation, Ry is relatively stable which denotes
a steady state as discussed before. Fig.9.(b) plots the steady state block-
ing rate against the relative temperature jump observed at the interface
for the final state. Notice that the temperature jump is normalized by the
initial temperature contrast across the interface. Therefore point (0, 0) on
the figure corresponds to the horizontal field situation when there is no
temperature jump and no field structure that would block the heat flux.
Point (1, 1) denotes the vertical field situation when both the temperature
jump and the field configuration stay at its initial state. Fig.9.(b) shows an
ascending feature that agrees with our physics intuition that the greater
the ratio of By energy in the total magnetic energy, the less transparent the
field membrane would be. It should be mentioned that although both Ry

and Eq.(20) describe the efficiency of the heat transfer through a magne-
tized interface, the definition of Ry does not contradict Eq.(20). The reason
is that the heat transfer efficiency is latter is an approximate equation and
should be used as a rule of thumb to determine the energy transfer effi-
ciency since it only depends on the relative strength of the local tangled
field and the global field. By contrast, Eq.(22) depends on detailed field
configuration and orientation. After addressing the evolution of the local
tangled field, we finally come to the heat transfer rate in our simulations.
Next we will verify how well Eq.(20) can approximate the heat transfer
efficiency in our simulations.

To compute the estimated heat transfer rate in the simulation, we find
out the average value of the slope in Fig.7.(b), and compare it to the an-
alytic model in Section 4. Although the equilibration rate represented by
the slope of the curves in Fig.7.(b) is changing throughout the evolution,
we can choose the early phase of the evolution when the field configura-
tion has not been modified significantly and comptute the averaged heat
transfer rate. By comparing the heat transfer rate under various situations
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Figure 10: heat transfer rate observed in the simulation compared with the ana-
lytic model

with different R values and the ideal heat transfer rate with magnetic field
parallel to the gradient. We can then find out the heat transfer efficiency
under different field topologies. From Fig.10, we can see that the two agree
quite well except for the situation when R is below 0.2. The simulation re-
sult does not converge to point (0,0) but ends at an interception on the y
axis. This interception indicates that even if there are few to no channels
for energy transfer initially, the magnetic reconnection can open up chan-
nels and allow the heat transfer to happen. Eq.(20) is valid for predicting
the cooling rate of the hot material throughout the early phase of the heat
equilibration process. It also offers us insights on the strength of the local
field strength around the interface once we know the cooling rate and the
global magnetic field strength.

In summary, the average total flux is in general a decreasing function
for all R values, the curve also has an inital increasing phase which de-
notes the stage of strong magnetic reconnection. The average temperature
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difference decreases to a constant value Tend which is a function of initial
R. Because of this feature, the magnetized interface can be viewed as an
“energy membrane” that allows a certain energy jump to happen. The
width of the interface expands to a fixed value during the simulation. The
term that describes the structural change of the magnetic field is JB. It de-
creases to a constant value for large R cases while increases to a constant
value for small R values. The steady state blocking rate Ry is a function
of R which can give us information about the structure of the steady state
energy membrane. One can relate the steady state temperature jump Tend
to the blocking rate Ry. We proved that Eq.(20) can be used to estimate
the energy transfer rate in the case of complex field topology. It should
be mentioned that Eq.(20) is a thumb of rule that can easily determine
the heat transfer efficiency by considering the relative strength of the local
field and the global field.

7 Astrophysical Applications

The problem of magnetically modified hot - cold interface exist in many
astrophysical contexts. One significant problem being the observed low
temperature of the hot bubble in a Wind Blown Bubble (WBB) formed by
a stellar wind. The WBB is predicted to have hot bubbles with a charac-
teristic temperature greater than 2 kev, but the temperature observed from
X ray emission detections is located at the 0.5 kev to 1 kev range (for de-
tails of observed NGC 6888, see Zhekov S.A. et al. 2010). This seemingly
unnatural low temperature can be related to radiative cooling, or heat con-
duction. By scaling our computational data with the real physics data and
putting into simulations, we find out two facts that are important in deter-
mining the actual temperature history of the WBB evolution: (1) the heat
conduction existing in the WBB is strong enough to alter the evolution and
impose an important influence on the temperature of the expanding hot
bubble and the cold shell bounding it; (2) the magnetic field in the WBB,
usually in the mili-Gauss range, is much stronger than the field strength
in the simulations. Thus the magnetic field in a realistic WBB is usually
strong enough to change the behavior of heat conduction. Since the heat
transfer does not directly depend on the magnetic beta, we can thus ap-
ply our analysis to the hot bubble - cold shell interface if we approximate
the interface to be planar and stationary, which is accurate as the radius
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of WBB being much greater than the scale of the problem considered. We
also assume that the global magnetic field is mostly radial. The computa-
tional parameters used in our simulations and the real physics parameters
typical in a WBB is listed in the first two columns of Tab.1. We choose the
domain length to be 0.1 pc, which is about 4 percent of the radius of the
actual WBB. Tab.1 shows that by choosing the proper scaling, our simula-
tion fits well with the data observed in a typical WBB. Therefore, the con-
clusions we draw by analysing the simulation results and the analytical
expressions, especially Eq.(20), can be used in analysing real WBB evolu-
tion.

Variables Computional Units WBB Galaxy
Number Density 1 1 cm−3 10−2 cm−3

Temperature 100 1 kev 10 kev
Domain Length 0.1 0.1 pc 100 pc

Local Field Strength 10−3 2−8Gauss 2( − 9)Gauss
Global Field Strength 10−4 2−9Gauss 2−10Gauss

Evolution Time 1.2 60, 000 yrs 1.3Myrs
Heat Conductivity 10−2 2× 10−18 cm s g−1K−2.5 1× 10−17 cm s g−1K−2.5

Another important conclusion is that there exist a tangled field structure
at the interface between the shell and the bubble, resulting in suppression
of the thermal conduction and preventing the interface to expand further
and turning into an isothermal distribution. One would also expect that
dense spikes may stem from the cold shell side during the thermal en-
ergy transporting and evaporation phase because of the interface insta-
bilty, leaving behind dense cold clumps bounded by magnetic field lines.
The mass deposition onto the galaxy cores in clusters of galaxies, which
is mainly induced by radiative cooling, would result in a cooling catastro-
phe if there is no certain heating mechanisms to heat up the cores of the
central galaxies. However, the thermal conduction of the cool core clusters
is unstable in that it may be either too weak to revert a cooling catastrphe
or too strong so that it results in an isothermal temperature profile (Guo
et al. 2008). The steady state of the local tangled field provide a possible
solution to this problem since the temperature profile is controlled by the
tangled field topology at the boundary of the central cluster. The tangled
field provide a way of thermal exchange while preventing overheating.
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We scale the parameters in our simulation so that they match the cooling
flow problem in ICM. One key difference is, in the ICM scenario, the cool-
ing at the cool core cluster would reduce the cold side temperature profile
to induce a further change at the boundary field membrane steady state.
This may compose the topic of further numerical studies in this series.

8 Future Works

The future works of this study may include a multi-mode study, which
investigates the impact of the spacial spectrum of the magnetic field dis-
tribution on the heat transfer efficiency and the topological evolution of
the thermal dynamic variables. The interception on the y axis in Fig.13
indicates the R = 0 case heat transfer efficiency. It may be related to the
mode number: the larger the mode number, the easier for the field to re-
connect itself thus the higher the R = 0 tranfer rate. So considering the R =
0 case, there may be a dispersion relation that connects the efficiency to the
mode number. When there are multiple modes or spectrum is continuous,
it would be useful to predict how the efficiency would depend on the spec-
trum. We also know that the radiative cooling would be effective once the
temperature is above 104 k. Since in our simulation the temperature has an
order of magnitude of 107 k, the cooling would have a noticeable influence
on the evolution. Another possible direction is to run the simulation of
the hot cold interface with anisotropic heat conduction, radiative cooling,
turbulence and gravity present.

Appendix: Code Test

We use the magneto-thermal instability (MTI) problem to test the ac-
curacy of the ASTROBEAR code with anisotropic heat conduction. The
problem involves setting up a 2D temperature profile with uniform grav-
ity pointing on the y direction. The domain is square with length of 0.1 in
compuational units. The temperature and density profiles are:

T = T0 (1− y/y0) (23)
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ρ = ρ0 (1− y/y0)2 (24)

with y0 = 3. The pressure profile is set up so that the fluid can be bal-
anced under uniform gravity with gravitational acceleration g = 1 in com-
putational units. We also set T0 = 1 and ρ0 = 1 in computational units.
There is a uniform magnetic field on the x direction with field strength
B0 = 1.0× 10−3 in computational units. The anisotropic heat conductivity
is set to be κ = 1× 10−4 in computational units. We use the pressure equi-
librium condition for the top and bottom boundaries, that is, the pressure
in the ghost cells are set up so that its gradient can balance the gravita-
tional force. On the x direction, we use the periodic boundary condition.

Figure 11: Field line evolution of magneto-thermal instability. (a): initial state.
(b): t = 75τs. (c)t = 150τs. (d):t = 250τs.

27



Initially, the domain is in pressure equilibrium. We then seed a small
velocity perturbation:

vper = v0 sin(nπ x/λ) (25)

with v0 = 1 × 10−6 and λ = 0.5. This perturbation will cause the fluid
elements to have a tiny oscillation on y axis as well as the field lines. Once
the field lines are slightly bent, they open up channels for heat to transfer
on the y direction thus allowing the heat on the lower half of the domain
to flow to the upper half. It can be shown that this process has a positive
feedback so that once the heat exchange happens, more channels will be
openned up for heat conduction. Therefore this process forms an instabil-
ity whose growth rate can be verified according to the linear theory on the
growth rate of weak field stratified atmosphere. We use τs to denote the
sound crossing time for the initial state. Fig.11 shows the time evolution
of the field lines at various stages in our MTI simulation.

Figure 12: (a): ln vy against evolution time in τs. (b): calculated growth rate
against evolution time in computational units. Initially the growth rate is stable
around the theoretical value 0.4 and then decreases sharply after t = 200, which
indicates the evolution has entered the nonlinear regime.

We study the MTI growth rate by considering the acceleration of the
fluid elements. The mean speed on the y direction for the fluid should
follow the exponential growth:
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vy = vpere
γ t (26)

where vper is the strength of the initial velocity perturbation applied, γ
denotes the growth rate in the linear regime. We obtain the growth rate
γ by plotting ln vy against the evolution time and then measuring the lo-
cal slope through a certain time span. The ln vy vs t curve is plotted in
Fig.12.(a), which shows a nice linear relation. We plot the growth rate
against evolution time. It should be stable around the theoretical value 0.4
initially and then decrease sharply due to the nonlinear effect. Fig.12.(b).
shows that the simulation meets our expectation fairly well.

Next we look at the energy evolution in the linear regime. The mean
kinetic energy should first stay stable and then enter into an exponential
growing phase until it hits a cap at around t = 200 which denotes the start-
ing of the nonlinear phase. The evolution of magnetic energy should fol-
low similar pattern as to the kinetic energy evolution, but lagged behind.
In Fig.13, we plot the time evolution of the mean kinetic and magnetic
energy evolutions. The results confirms the physical intuition quite well.

The dispersion relation of MTI can be expressed as a function of

φ = (γ − 1)
κ k2

Nρmid
(27)

where k = 2π/λ, N is the Brunt − V äsälä frequency. Here we use the
mid value of ρ. We can plot the MTI growth rate against φ to obtain the
dispersion relation shown in Fig.14.(a).

Finally we study the impact of magnetic tension on the MTI growth
rate. A strong initial field would provide a tension force that tends to sta-
bilize the exponential growth. Thus intuitively the growth rate would be
negatively correlated to the initial Alfv́en speed. When the Alfv́en speed
approaches the value threshold value γmax/k, we would expect a strong
stabilizing tension to kill the instability growth. We use the stabilizing
parameter as a function of

η =
k2v2A
γ2max

(28)
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Figure 13: (a): evolution of mean kinetic energy. (b): evolution of mean magnetic
energy.

Figure 14: (a): the dispersion relation of MTI linear growth. (b): impact of field
tension on the growth rate
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Here vA is the initial maximum Alfv́en speed, γmax is the maximum
possible growth rate which can be derived from the mid values of the ini-
tial temperature and pressure profiles. We plot γ against ln η in Fig.14.(b).
We see that the field tension becomes increasingly effective as η approach-
ing 1.
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