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1,4

, Christopher S. Reynolds
1
, Steven A. Balbus

2
, and Ian J. Parrish

3,5
1 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA; tamarab@astro.umd.edu, chris@astro.umd.edu
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ABSTRACT

We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect
of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow
the three-dimensional magnetohydrodynamics of cooling cluster cores and capture the effects of anisotropic
heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters
or the presence of active galactic nuclei (AGNs). Our model clusters can be divided into three groups
according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an
intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled
cores that are reminiscent of real cluster cores show evolution toward thermal collapse on a timescale which
is prolonged by a factor of ∼2–10 compared with the zero-conduction cases. The principal effect of the
HBI is to re-orient field lines to be perpendicular to the temperature gradient. Once the field has been
wrapped up onto spherical surfaces surrounding the core, the core is insulated from further conductive heating
(with the effective thermal conduction suppressed to less than 10−2 of the Spitzer value) and proceeds to
collapse. We speculate that, in real clusters, the central AGN and possibly mergers play the role of “stirrers,”
periodically disrupting the azimuthal field structure and allowing thermal conduction to sporadically heat the core.
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1. INTRODUCTION

The temperature structure of the intracluster medium (ICM)
in central regions of galaxy clusters is bimodal. The non-cooling
core clusters have isothermal ICM cores with low densities
and hence long radiative cooling times. On the other hand,
the central regions of the ICM in cooling core clusters have
radiative cooling times that can be as short as 108 yr. Within the
cooling radius (the location where the radiative cooling time is
comparable to the Hubble time and hence the age of the cluster),
the temperature decreases with decreasing radius (Peterson &
Fabian 2006). Given the short cooling time, it is profoundly
puzzling that the cores of these clusters have not undergone a
cooling catastrophe. The current paradigm is that the central
active galactic nucleus (AGN) heats the ICM; this remains one
of the most direct arguments for “AGN feedback.” However,
early work (Binney & Cowie 1981) highlighted the possible
role that thermal conduction may play in these clusters.

Our understanding of the action of thermal conduction in
atmospheres such as the ICM is undergoing a revolution.
Because the ICM plasma is very dilute, thermal conduction
will act in a very anisotropic manner, occurring essentially
unchecked along magnetic field lines but being very strongly
suppressed perpendicular to field lines. This elementary fact
has profound implications for the dynamics and structure
of the ICM (or, indeed, any dilute plasma atmosphere). As
shown by Balbus (2000), the anisotropy of conduction fun-
damentally alters the Schwarzschild criterion for convection—
rather than requiring an inverted entropy gradient, convection
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in such an magnetohydrodynamic (MHD) atmosphere will
occur whenever the temperature gradient is inverted, due to
the magneto-thermal instability (MTI; see Parrish & Stone
2005, 2007, for the first numerical studies of this instability).
Parrish et al. (2008) studied the effect of the MTI in the outer
regions of clusters, where temperature decreases with radius,
and found that the temperature profile of the ICM can be sub-
stantially modified on timescales of several billion years. The
instability drives field lines to become preferentially radial lead-
ing to conduction at a high fraction of the Spitzer conductivity.

The ICM cores of cooling core galaxy clusters will be stable to
the MTI (since the temperature in such cores is increasing with
radius). However, Quataert (2008) has discovered a related insta-
bility (the heat flux buoyancy instability; HBI) which acts when
the temperature is increasing with radius. Based on local sim-
ulations of the HBI in three-dimensional stratified atmosphere,
Parrish & Quataert (2008) found the HBI induces MHD tur-
bulence and can somewhat amplify the magnetic field in the
plasma. They also discovered that, in the plane–parallel geom-
etry that characterizes all local simulations, the instability sat-
urates when the lines of magnetic field are re-oriented in such
a way as to suppress the heat transport across the temperature
gradient.

Guided by the results from the local simulations, Balbus &
Reynolds (2008) suggested that MHD turbulence driven by the
HBI may be important in regulating the conduction of heat into
ICM cores and could mediate the stabilization of the cooling
cores. They hypothesized that the presence of radiative cooling
and the spherical (as opposed to planar) geometry would prevent
field-line re-orientation from completely insulating the core
from the conductive heat flux. They also highlighted the fact
that HBI-driven turbulence would create a convective heat flux
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that removes heat from the cool core (i.e., it acts as a cooling
term in the energy equation).

In this paper, we present global models of cooling core
clusters in which we explore the role of heat conduction
and the HBI on the evolution of these cores. The results of
our simulations suggest that the HBI alone cannot regulate
and stabilize a cooling core. We have followed the nonlinear
evolution of the HBI in the inner ∼few × 100 kpc in clusters,
and found that it is ubiquitous and rearranges the lines of the
magnetic field in such a way that they are wrapped around the
core. This results in dramatic suppression of the heat conduction
below the Spitzer value. Consequently, within context of these
simple models (which do not include AGNs or realistic cluster/
dark matter dynamics), heat conduction can significantly delay
but cannot prevent the catastrophic core collapse in real clusters.
In Section 2, we briefly review the equations and timescales
governing the problem of heat conduction in cluster cores as
well as the numerical setup used in simulations. In Section 3,
we present results from a parameter space study of cooling
core clusters and then focus on a specific model of a core
resembling that in the Perseus cluster. We discuss our results,
approximations, and observational consequences in Section 4,
and present our conclusions in Section 5.

2. SIMULATIONS

Using the three-dimensional MHD code Athena (Stone et al.
2008), we have carried out simulations of thermally conducting
ICM cores which incorporate the effects of anisotropic thermal
conduction. We run two classes of simulations. Firstly, we con-
duct a suite of simulations aimed at mapping out the behavior of
clusters as a function of position in the two-dimensional param-
eter space (tcool/tdyn, tcond/tdyn), where the cooling timescale
tcool, conduction timescale tcond, and dynamical timescale tdyn
are defined in Section 2.3. These simulations describe “theorist
clusters” in the sense that no particular physical parameters (e.g.,
density, temperature and timescales) are implied, with only di-
mensionless ratios being relevant. We shall refer to these as our
“parameter space survey simulations.” Second, we shall con-
duct simulations that are specifically tailored to describe phys-
ically realistic clusters. We shall refer to these as our “physical
clusters/simulations.”

We must note one peculiarity of these (or indeed any) sim-
ulations of “idealized” galaxy clusters. In removing our model
clusters from their cosmological setting, the computational com-
plexity of the problem is reduced enormously. Indeed, it is cur-
rently infeasible to perform a cosmological simulation which
resolves the small-scale physics relevant to our study. However,
it is important to realize that galaxy clusters are dynamically
young objects and, through the accretion of subclusters and
groups, are still in the process of forming. Any ab initio model
for the thermodynamic state of the ICM must acknowledge the
cosmological setting. Neglecting the cosmological setting has
two consequences for our work. First, real systems will possess
dynamics related to merging substructures that is not captured
in our treatment. The effects of neglecting this phenomenon
will be discussed in Section 4. Second, there is no well-defined
choice of “physical initial conditions” for our model clusters.
We must be content with forming well-defined initial conditions
that describe gross aspects of the systems under consideration.
We describe our choice of initial conditions below. The fact that
our results agree well with those of Parrish et al. (2009), who
employ a rather different choice of initial condition, suggests a
robustness to these choices.

2.1. Equations

The fundamental equations of the analysis are

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

ρ
∂v

∂t
+ ρ(v · ∇)v = (∇ × B) × B

4π
− ∇p + ρg, (2)

∂B

∂t
= ∇ × (v × B), (3)

∂e

∂t
+ ∇ · (ev) = −p∇ · v − ∇ · Q − n2

eΛ(T ), (4)

where ρ is the mass density, v is the fluid velocity, B is the
magnetic field vector, g is the gravitational acceleration, p is
the gas pressure, e is internal energy density, Q is the heat
flux, and Λ(T ) is a cooling function, ne is the electron number
density, and T is the temperature. We adopt an equation of
state p = (γ − 1)e = ρT/μmp, with γ = 5/3, adequate for
monoatomic gas. We have ignored viscous terms in the equation
of motion in this work; these will be considered in a future study.

In the absence of magnetic fields, we take the electron thermal
conductivity to be given by its Spitzer value (Spitzer 1962):

χ = χs ≈ 1.84 × 10−5T 5/2

ln λ
erg s−1 cm−1 K−1, (5)

where the Coulomb logarithm ln λ is ∼30–40 for conditions
in a cluster cooling flow. The local conductive heat flux will
then be given by Q = −χ∇T . If such efficient conduction
operated unimpeded, radiative loses within massive ICM cores
would be more than balanced by the conduction of heat from
the outer portions of the ICM in all but the lowest mass clusters.
This would eliminate the possibility of a cooling flow or,
indeed, any significant departure from isothermality (Binney
& Cowie 1981; Fabian et al. 2002; Voigt et al. 2002). However,
magnetic fields of any plausible astrophysical strength will
strongly suppress transport of electrons across their line of force.
Thermal conduction is expected to be efficient along field lines,
and suppressed perpendicular to the field lines. The form of the
heat flux under these conditions is

Q = −χ b̂ (b̂ · ∇T ), (6)

where b̂ is a unit vector in the direction of the magnetic field.
Assuming a spherical temperature gradient, the radial heat flux
can be expressed as Q · r̂ = −χ (b̂ · r̂)2 ∂T /∂r . For conve-
nience, we will define a thermal diffusivity, κ = χT/p =
κaniso (n0/n)(T/T0)5/2, where κaniso has dimensions of a diffu-
sion coefficient (cm2 s−1), and n0 and T0 are fiducial values for
the electron number density and temperature, respectively.

Anisotropic thermal conduction is implemented in the Athena
code via a split operator approach with subcycling (Parrish &
Stone 2005). Subcycling ensures stability of the integration
and is used whenever the Courant time step for conduction
falls below that used for hydrodynamic equations. The thermal
conduction time step is evaluated as δtcond = 0.5 (δx)2/κmax,
where κmax = κaniso for T0 = 1, and δx is the size of a resolution
element. The thermal conduction term is implemented using
the method of monotonized central difference limiters (Sharma
& Hammett 2007) which prevents unphysical heat flow from
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colder to hotter regions that may arise as a numerical artifact in
a variety of algorithms.

In this work, we adopt two forms for the optically thin
radiative cooling function; both are introduced into the Athena
code using operator splitting as explicit source terms. The
majority of our parameter space survey simulations employ a
very simple “bremsstrahlung” form for the cooling function,
n2

eΛ = α n2T 0.5. We control the strength of radiative cooling and
hence the cooling timescale via the parameter α. On the other
hand, our physical cluster simulations use the Tozzi & Norman
(2001) approximation for the cooling function that incorporates
the effects of free–free and line cooling:

n2
e Λ = (

C1(kBT )−1.7 + C2(kBT )0.5 + C3
)
nine, (7)

where (kBT ) is in units of keV, and ni is the ion number
density. For mean metallicity of Z = 0.3 Z�, C1 = 8.6 × 10−3,
C2 = 5.8 × 10−2, and C3 = 6.4 × 10−2, and the units of Λ are
10−22 erg cm3 s−1. Mean molecular weight corresponding to
this metallicity in case of a near complete ionization is μ = 0.59.

2.2. Numerical Setup and Initial Conditions

The simulations were performed in a Cartesian coordinate
system (x, y, z) with a cubic spatial domain defined by x =
±L/2, y = ±L/2, z = ±L/2, where L = 1. Unless otherwise
stated the nominal numerical resolution used is 1003.

All of our simulations have an initial density distribution
that is described by a β-model, ρ(r) = ρ0(1 + (r/r0)2)−0.75,
where r2 = x2 + y2 + z2. The temperature distribution is
initially isothermal with temperature T0. We choose to work
in units where ρ0 = 1, r0 = 0.1, and T0 = 1. The underlying
gravitational potential is assumed to be dominated by the dark
matter, and is static throughout the simulations with the form

Φ = −3c2
s

4γ
ln

[
1 +

(
r

r0

)2
]

, (8)

where cs is the speed of sound corresponding to temperature T0.
This form corresponds to hydrostatic equilibrium in the initial
isothermal ICM density distribution.

The simplicity of an isothermal hydrostatic atmosphere makes
it a compelling choice of initial condition. However, the as-
trophysical systems of interest have ICM cores that display a
positive temperature gradient. Furthermore, the interesting dy-
namics is driven by temperature gradients. Thus, we employ a
pre-cursor simulation where, starting from the isothermal state,
we create a cool core in the atmosphere by allowing radia-
tive cooling in the absence of conduction. This continues until
the core reaches a temperature of Tc ≈ 0.3–0.4T0, similar to
the range observed in cores. The density and magnetic field are
allowed to evolve self-consistently during this initial cooling
phase. We then use this cool-core state as the starting point for
the full simulations (i.e., those including the anisotropic con-
duction and associated dynamics).

Note that cluster cores initialized in this way are not in ther-
modynamic equilibrium and that anisotropic conduction is not
matched to exactly balance radiative cooling at the start of the
full simulation (for alternative approach starting from thermo-
dynamic equilibrium see Parrish et al. 2009). While realistic
cluster cores are most likely not in thermodynamic equilibrium
either, they experience more gradual thermal histories compared
to that created in our simulations. We will discuss the effect of
this feature later, along with the description of results.

The initial magnetic field strength is typically chosen so that
the average value of the plasma parameter (i.e., the ratio of
thermal pressure to magnetic pressure) is β = 8πp/B2 ∼
102–103. We explore several different scenarios for the initial
structure of magnetic fields. First, we define field-line geometry
given by the form

Bx = B0√
3

cos(π y) cos(π z), (9)

By = B0√
3

cos(π x) cos(π z), (10)

Bz = B0√
3

cos(π x) cos(π y). (11)

This initial geometry is self-consistently evolved within an
isothermal core until field lines assume loosely tangled geometry
while retaining the large-scale character given by the initial
form. This field configuration is then used as a part of the initial
conditions. These models are representative of an idealized
scenario in which anisotropic conduction initially operates
efficiently by transporting heat from the outer, hotter regions
of a cluster to the cooler core center. Hereafter, we denote this
class of models by “T.” In this model, the constant B0 is the
initial amplitude of the magnetic field. Second, we examine
models with tangled purely azimuthal field lines, i.e., a field
structure that is initially wrapped onto surfaces of constant r. In
this scenario, we investigate the evolution of cool cores when
the initial field geometry is set up to inhibit heat conduction
toward the core. We use these models to test the hypothesis that
spherical collapse and MHD turbulence driven by the heat flux
instability can regulate field-line insulation and drive a reverse
convective thermal flux (Balbus & Reynolds 2008). Defining
a spherical polar coordinate system (r, θ, φ), where θ = 0 is
aligned along the z-axis, we employ an azimuthal field structure
defined by

Bθ = 2B0(1 + sin(2πr/r1)) sin θ cos(2φ), (12)

Bφ = 2B0(1 + sin(2πr/r2)) sin(3θ )

− B0(1 + sin(2πr/r1)) sin(2φ) sin(2θ ), (13)

Br = 0. (14)

We refer to these as “A” models. Here, B2
0 = 8π p/β, r1 = 0.1,

and r2 = 0.087 are coherence lengths defining characteristic
scales on which the magnetic field vector changes the direction.
Finally, we examine a modification of the tangled azimuthal
field model in which we include a radial component in the form
of a split monopole

Br = sign
Br0

r2 + ε
, sign =

{
1 if z > 0
−1 otherwise. (15)

We shall refer to these as our “AR” models. The constant ε � r0
is a small number chosen to avoid a singularity at the origin. We
use this simple setup to study cases in which the magnetic field
at the very center of a cool core may be tangled and enhanced
in the process of spherical collapse. We test to which extent
such fields provide a local magnetic support as well as channel
the heat within a small volume of the core. All initial magnetic
field geometries are self-consistently evolved during the initial
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Figure 1. Examples of the geometry of magnetic field lines immediately after the initial radiative relaxation phase in which the cool core is imprinted into the initial
conditions. Left: large-scale, loosely tangled magnetic field lines used as a part of initial conditions in T-models. Right: tangled azimuthal field lines with spatially
variable φ and θ components used in A-models. Fields lines in AR-models appear very similar except for the addition of the split monopole term at the center. Both
panels show the slice through the x–y-plane of a cluster center. Arrows mark the direction of magnetic field vectors, and colors indicate field strength. The orientation
of vectors in the corners of figure representing A-model is the visualization artifact that arises for very weak fields.

(A color version of this figure is available in the online journal.)

precursor simulation in which the cool core is imprinted into
the initial condition. For illustration, slices through the “T” and
“A” field geometries (at a time just after the initial radiative
relaxation of the model cluster) are shown in Figure 1.

We complete the specification of our simulations by describ-
ing the boundary conditions. The velocity boundary conditions
at the interface of the active and ghost zones are zero-gradient
outflow, and the pressure and density of the gas are extrapolated
from the active zone into the ghost zone so as to maintain hydro-
static equilibrium in the ghost zones. This choice of boundary
conditions ensures stability and prevents spurious sound waves
from developing at the boundaries. The temperature is fixed to
the virial temperature T0 on a spherical shell at a radius r = L/2.
Thus, while the dynamics are followed in the full cubical do-
main, only the interior of the r = L/2 sphere is physically
interesting. Early experimentation with applying temperature
boundary conditions at the edge of the cubic domain revealed
behavior that appeared to depend upon the overall orientation
of our Cartesian domain. Thus, we chose to impose thermal
boundary conditions on a spherical surface in order to emulate
hot intercluster plasma surrounding the cool core.

2.3. Characteristic Timescales

For our parameter space survey, we catalog our simulated
clusters according to their characteristic dynamical, conduction,
and cooling timescales. These are defined (in code units) by

tdyn = R

cs

≈ 0.39√
μ

, (16)

tcond = R2

κ

T0

ΔT
≈ 0.036

κaniso μ
, (17)

tcool = e

n2
eΛ

≈ 0.27
μ

α
, (18)

where tdyn is calculated for the cooling core radius R = L/2 =
0.5 and the average speed of sound in the region with virial
temperature T0 = 1, γ = 5/3, and μ = 1 or 0.59, as specified
for a given run. When calculating tcool, we evaluated the shortest
timescale corresponding to the core center where typically
Tc ≈ 0.3 and ρc ≈ 3 at the beginning of a simulation. In
Equation (17), κ was evaluated for an average density in the
core region 〈ρ〉 = 0.1 and virial temperature.6 According to
the theory of linear growth applied to the weak magnetic field
regime, the plasma is unstable to HBI on the local dynamical
time whenever the vector of the magnetic field is aligned with
the temperature gradient and unbridled conduction is allowed in
the direction of gravity. In the limit when lines of the magnetic
field are preferentially oriented across the temperature gradient,
this condition is modified by a factor (b̂ · r̂) in such way that

tHBI =
(

d ln T

dr

dΦ
dr

)−1/2 ∣∣∣b̂ · r̂

∣∣∣−1
, (19)

(Quataert 2008). For the values of the initial magnetic field used
in simulations the Alfvén timescale is typically much longer
with respect to the above timescales and thus, Alfvén waves
are not expected to play a significant role during the phase
characterized by the HBI instability and radiative cooling.

3. RESULTS

We have performed an extensive suite of simulations. Our
primary set of 36 simulations (our parameter space survey
simulations) represents a systematic exploration of the depen-
dence of the cluster core evolution on ratios of the characteristic
timescales (i.e., tcool/tdyn and tcond/tdyn), and the magnetic field
geometry. The cooling and conduction timescales are controlled
via the parameters α and κaniso. Table 1 defines this set of models.

6 Note that the expression commonly used in literature to estimate tcond omits
factor T0/ΔT and thus, refers to the shortest timescale for heat conduction.
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Table 1
Value of κaniso in Models

Model B-Field B1a B2 TNb B3 B4
Structure (α = 0) (α = 0.01) (α ≈ 0.1) (α = 0.3) (α = 1)

1 T 0.1
2 T 0.025 0.025 1 1
3 T 0.05 0.05 10 10

4 A 0.01
5 A 0.025 0.025 0.0 0.1
6 A 0.1 0.05 0.1 1 1
7 A 1 1 10 10

8 AR 0.01 0.01 0.01
9 AR 0.025 0.025 0.025 0.1
10 AR 0.1 1 1
11 AR 1 10 10

Notes.
a B1–4: models with the bremsstrahlung cooling function, n2

eΛ = αn2T 0.5, and
μ = 1.
b TN: models with the Tozzi–Norman cooling function for metallicity Z =
0.3 Z� and μ = 0.59.

We explore three field geometries (the T, A, and AR geometries
of Section 2.2) and five cooling laws (B1–4+TN; this includes
the zero-cooling case α = 0). For each choice of field geom-
etry and cooling law, two to four simulations are performed
with different degrees of thermal conduction. Thus, we can
map out the behavior of clusters as a function of their position
on the two-dimensional parameter space (tcool/tdyn, tcond/tdyn)
and, furthermore, assess whether the initial field geometry can
influence/change the eventual state of the cluster for a given po-
sition on the (tcool/tdyn, tcond/tdyn)-plane. We refer to individual
models from Table 1 according to their alphanumeric tag con-
sisting of the letter abbreviation corresponding to the magnetic
field structure (T, A, or AR), a model number (1–11), and the
descriptor of the cooling function (B1−B4 or TN). According
to this convention, a model with a purely azimuthal initial mag-
netic field geometry, κaniso = 0.025, and no radiative cooling
is marked as A5B1. Note that this study includes but it is not
limited to the part of the parameter space occupied by realistic
clusters.

We expect the HBI to be active; hence, one could readily en-
visage a scenario in which field-line re-orientation (by the HBI)
completely insulates the central region from the conductive heat
flux, which would prevent complete equilibration of core. How-
ever, as we shall see, while field-line re-orientation does occur, it
never completely insulates the core. Figure 2 shows the models
on the two-dimensional parameter space (tcool/tdyn, tcond/tdyn).
The results of our simulations clearly divide this parameter
space into three regions depending upon the ratio tcool/tcond.
If tcool/tcond � 102, cooling appears to be too weak to sustain
any significant temperature gradient against the action of con-
duction, and all simulated cluster cores become approximately
isothermal. On the other hand, if tcool/tcond � 25, our simulated
clusters always undergo a cooling catastrophe, although it can be
appreciably delayed by the action of HBI-regulated conduction.
In the intermediate regime (25 � tcool/tcond � 102), clusters can
evolve to either an isothermal state or undergo a cooling catas-
trophe depending upon the initial magnetic field configuration.
These are the only outcomes; none of our simulated clusters
achieved a non-isothermal quasi-steady state.

In the rest of this section, we shall describe these results
in detail and, in particular, examine the role of the HBI in
influencing the thermal evolution of the cluster core.

Figure 2. Illustration of the parameter space of clusters explored in this study
shown in terms of cooling and heat conduction time, normalized to the dynamical
time. Also marked are corresponding values of κaniso and α (for a list of values
used in simulations see Table 1). Filled circles, diamonds, and squares represent
T, A, and AR-models, respectively. A combination of symbols signifies that
different magnetic field configurations were simulated at the same value of α and
κaniso. Letter “P” marks the location of the Perseus-like model. The investigated
parameter space includes but it is not limited to that of realistic clusters which
occupy the range 1 � tcool/tdyn � 10 and few × 0.1 � tcond/tdyn � 10.

(A color version of this figure is available in the online journal.)

3.1. Clusters with an Isothermal Final State

As an extreme case, we first describe the evolution of cool
cores in models without radiative cooling, α = 0 (also referred
to as “B1” models). The fact that these clusters evolve to an
isothermal state is not as trivial as it first appears. Recall that
our full-up simulations start with a cool core (and hence a
positive temperature gradient) already imprinted on the ICM
atmosphere. We expect the HBI to be active and, hence,
one could readily envisage a situation in which field-line re-
orientation by the HBI completely insulates the core from the
conductive heat flux and hence prevents complete equilibration
of the core. As we will see, field-line re-orientation does indeed
occur but never completely insulates the core.

Table 2 (B1 column) shows the time taken for each of the non-
cooling models to achieve an approximately isothermal state.
Cores with loosely tangled field lines, captured in T-models,
evolve to isothermal state on significantly shorter timescales
with respect to the cores in models A and AR, where the field-
line geometry is preferentially azimuthal. Figure 3 shows the
evolution of the core temperature and mean angle between
magnetic field lines and the radius unit vector, r̂ , in three models
representing different magnetic field geometries, T2B1, A5B1,
and AR9B1, all at the same value of κaniso = 0.025. The core
temperature was measured at the center of the core, whereas
the angle 〈θB〉 is calculated as a volume average of cos−1(b̂ · r̂),
and it indicates the alignment of the field lines with the global
temperature gradient.7 As expected, the action of the HBI is
most apparent in the tangled field model (T2B1) where we see
a rapid re-orientation of the field lines from 〈θB〉 ≈ 57◦ to
〈θB〉 ≈ 71◦. The corresponding effective thermal conductivity

7 The region of the cluster core outside of 0.3 L is not taken into account in
the calculation of 〈θB〉, in order to focus on the field structure closer to the core
center and avoid effects of the boundaries.
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Figure 3. Left: evolution of the core temperature in T2B1 (solid), A5B1 (dashed), and AR9B1 (dash-dot) models, respectively. Right: evolution of the mean angle,
〈θB 〉, between the lines of the magnetic field and the radius unit vector (same models), indicating the alignment of the field lines with the global temperature gradient.

Table 2
Time Scale (in tdyn) for Core Evolution Towards Collapse (C) or Isothermal

State (I)

Model B-Field B1 B2 TN B3 B4
Structure (α = 0) (α = 0.01) (α ≈ 0.1) (α = 0.3) (α = 1)

1 T 12 (C)
2 T 70 (I) > 1000 (C) 80 (C) 10 (C)
3 T 60 (I) 80 (I) < 3 (I) < 3 (I)

4 A > 500 (I)
5 A 500 (I) 380 (C) 30 (C) 8 (C)
6 A 240 (I) 510 (C) 160 (C) 18 (C) 5 (C)
7 A 50 (I) > 700 (I)a 20 (I) 13 (C)

8 AR > 500 (I) 420 (C) 90 (C)
9 AR 500 (I) 560 (C) 110 (C) 8 (C)
10 AR 230 (C) 20 (C) 5 (C)
11 AR > 700 (U)b 20 (I) 25 (C)

Notes.
a A7TN: evolution of the core that initially headed toward collapse was reversed
to evolution toward the isothermal state.
b AR11TN: the final state for this model appears undetermined (U) at the end
of the simulation.

is (b̂ · r̂)2 ≈ 0.25 of the Spitzer value but decreases as the field
lines are re-oriented. Once the core has equilibrated, the HBI
is no longer driven and the field lines become more disoriented
again leading to a final value between 〈θB〉 ≈ 60◦–70◦. A similar
final field orientation results in the A- and AR-models (i.e., the
azimuthal initial field configurations). In these cases, the core
takes substantially longer to equilibrate, however, with the initial
heat flux corresponding to only ∼0.02 of the Spitzer value. In
comparison, the timescale for unbridled conduction in this set
of models is tcond ≈ 3.7 tdyn.

Given the same initial geometry of magnetic field lines, the
cores with higher values of κaniso evolve toward isothermal-
ity on shorter timescales. The behavior of models shown in
Figures 4 and 5 confirms this general expectation, summarized
in Equation (17). Figure 4 shows the evolution of the core tem-
perature and orientation of the magnetic field lines in T-models,
T2B1, and T3B1. Similarly, Figure 5 shows the evolution for
four A-models, A4B1, A5B1, A6B1, and A7B1.

Interestingly, these non-cooling cores remain rather kinemati-
cally quiescent throughout the entire evolution, and the magnetic
field does not play a significant role in subsequent dynamical
evolution of the core. Figure 6 shows that the early evolution of

the magnetic and kinetic energy density exhibit different behav-
iors in T- and A-models. In the T-models, the volume-averaged
magnetic and kinetic energy increase over time due to the ac-
tion of the HBI; it appears that a weak and short-lived dynamo
may be established. The A- and AR-models, on the other hand,
show a monotonic decrease in the kinetic and magnetic energy
densities as the non-equilibrium azimuthal magnetic fields relax
and numerically reconnect. In both panels the components of
energy density are normalized to the internal energy density of
the gas and, hence, the kinetic and magnetic energy represent
a small fraction (∼10−4) of the internal energy. This implies
that cores are kinematically quiescent and that even after it has
been enhanced (T-models), the magnetic field is not sufficiently
strong to be dynamically important.

In fact, these qualitative results are borne out even when there
is cooling present provided it is weak and much slower than the
heat conduction in the sense that tcool/tdyn > 102. Examples
of such behavior are models T3B3, A7B3, and AR11B3, all of
which evolve toward isothermal final state.

3.2. Clusters Which Undergo Catastrophic Collapse

Real cooling core galaxy clusters do not have isothermal
ICM atmospheres and hence, while this avoids the cooling
catastrophe, it must not be considered a physical outcome. The
more interesting case are those clusters in which cooling is
too effective to allow an isothermal state to be achieved. As
already mentioned, all of our model clusters with tcool/tdyn < 25
undergo an eventual cooling catastrophe; Table 2 lists the time
taken for the model clusters to either undergo catastrophic
collapse (C) or equilibrate to an isothermal state (I). We now
discuss the collapsing clusters in more detail.

To illustrate many of the dynamical aspects of these collapsing
clusters, we discuss run T2B2 in detail. Figure 7 (solid line)
shows the evolution of the core temperature together with
the average field-line orientation for run T2B2. At t = 0,
the core is not in a state of thermal balance, with conductive
heating overwhelming the radiative cooling. The core is rapidly
heated from T ≈ 0.4T0 almost to a state of isothermality
(T ≈ 0.85T0). The HBI is clearly playing a role during this
early heating event, as revealed by the rapid re-orientation of
the field geometry toward an azimuthal configuration (Figure 8).
After this early heating event, an approximate balance between
conductive heating and radiative cooling is maintained for a
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Figure 4. Left: evolution of the core temperature in T2B1 (solid) and T3B1 (dashed) models, respectively. Right: evolution of the 〈θB 〉 for the same two models.

Figure 5. Left: evolution of the core temperature in four A-models: A4B1 (solid), A5B1 (dashed), A6B1(dash-dot), and A7B1 (dash-3-dot), respectively. Right: same
four models, evolution of 〈θB 〉.

Figure 6. Evolution of the kinetic (solid) and magnetic (dashed) energy density in two T-models shown in Figure 4 (left) and four A-models from Figure 5 (right)
without radiative cooling. Both components of energy density are normalized to the instantaneous internal energy density.

duration of ∼300tdyn. Eventually, azimuthal field-line wrapping
reduces the conductive heat flux to the point where the core
temperature starts to decrease. This slow collapse will end in
a cooling catastrophe, in this case at some time t > 1000tdyn.
For comparison, the nominal cooling timescale for this group
of models set by the value of α and calculated according to
Equation (18) is tcool ≈ 69 tdyn. Thus, we see that thermal
conduction can dramatically increase the time taken for the

cluster to undergo the cooling catastrophe even when the HBI is
inducing azimuthal field-line wrapping within the cluster core.

As may be expected, cores with initially loosely tangled
fields (T-models) evolve toward collapse on timescales longer
than cores with initially azimuthal fields (A- and AR-models).8

8 Even in the A-model, the field configuration at the start of the full
simulation is not perfectly azimuthal due to field distortions imprinted during
the precursor simulation in which the cool core is formed.
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Figure 7. Left: evolution of core temperature in models with different magnetic field structure, all with κaniso = 0.025 and α = 0.01: T2B2 (solid), A5B2 (dashed),
and AR9B2 (dash-dot). The nominal cooling timescale for this group of models set by the value of α is tcool ≈ 69 tdyn. Right: same models, evolution of magnetic
field orientation.

Figure 8. Final orientation of the magnetic field lines in model T2B2, 800
dynamical times after the beginning of the simulation. Large-scale, loosely
tangled magnetic field lines with 〈θB〉 = 58◦ are used as a part of the initial
conditions in this model, as illustrated in the left panel of Figure 1. Traces of the
initial topology are still present at late times in the strongest component of the
field; however, most of the lines are wrapped around the core as a consequence of
HBI. The final value of 〈θB〉 = 85◦. Figure shows a slice through the x–y-plane
of a cluster center.

(A color version of this figure is available in the online journal.)

Furthermore, the AR-model clusters (which include a split
monopole term to the initial field configuration and hence
possess a significant radial field in the core regions) have a
collapse that is delayed with respect to A-models. Figure 7
compares the evolution of core temperature and 〈θB〉 in models
T2B2, A5B2, and AR9B2, characterized by different initial
magnetic field structure and identical cooling and conduction
(κaniso = 0.025 and α = 0.01). In A and AR-models, the
field orientation starts at 〈θB〉 ≈ 80◦; this permits sufficient
conductive heat flux to raise the core temperature to T ≈
0.5–0.6T0. However, the action of the HBI further increases the
field-line orientation to 〈θB〉 > 85◦ and insulates the core which
proceeds to collapse. The cores in models A5B2 and AR9B2
collapse in 380 and 560 dynamical times after the beginning of

Figure 9. Evolution of the kinetic (solid) and magnetic (dashed) energy density
for models T2B2 (ending at 1000 tdyn), A5B2 (380 tdyn), and AR9B2 (560 tdyn).
Both components of energy density are normalized to instantaneous internal
energy density and comprise a small fraction of it.

the simulation, respectively, compared with the collapse on a
timescale of > 1000tdyn for model T2B2.

As was the case for the non-cooling clusters, the modeled
cooling cores remain kinematically quiescent, and the magnetic
field never plays a direct dynamical role. The evolution of
kinetic and magnetic energy density for models T2B2, A5B2,
and AR9B2 is shown in Figure 9. The kinetic and magnetic
energy are a small fraction of the internal energy of the gas and
the core region. Velocities remain very subsonic, v < 10−2cs .
Independent of the assumed initial geometry of the field lines,
the HBI does not result in significant field amplification.

The fact that the cores remain (relatively) kinematically
quiescent results in very little convective heat flux. To see
this, Figure 10 shows the evolution of the radial convective,
conductive, and advective heat flow for models T2B2 and A5B2
within a sphere of radius r = 0.1 along with the total radiative
loses and the fiducial value of unbridled conductive heat
luminosity at the Spitzer value, for comparison. To construct
these quantities, we start with the radial components of the
advective, convective, and conductive heat fluxes defined by
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Figure 10. Evolution of luminosity components in models T2B2 (left panel) and A5B2 (right) measured within the sphere of radius of 0.1 from the center of the
cluster. Each component is marked with a different line: anisotropic heat conduction (solid), radiative (dashed), convective (dash-dot), advective (dash-3dot), and
fiducial value of unbridled heat conduction at the Spitzer value (thick, long-dashed), all in arbitrary units. The heat flux at the full Spitzer value was divided by the
factors of 5 (left panel) and 10 (right) in order to show it alongside of other components. Negative fluxes are inflowing and vice versa.

Qadv = γ

γ − 1
kB (〈n〉〈T 〉〈vr〉 + 〈T 〉〈δnδvr〉) , (20)

Qconv = γ

γ − 1
kB (〈vr〉〈δnδT 〉 + 〈n〉〈δnδT 〉

+〈δnδT δvr〉) , (21)

Qcond = − χ (b̂ · r̂)2 ∂T /∂r. (22)

Here, vr is the radial component of the velocity field. The
fluctuations (δvr , δn, δT ) were defined as relative to a mean
calculated on the surface of the sphere. We then integrate
these components across the surface of the spherical shell
r = 0.1 to obtain relevant luminosities plotted in Figure 10.
The convective heat flux acts as a cooling term for the core
(Balbus & Reynolds 2008) but remains significantly smaller
than the other heat fluxes. As expected, the conductive heat
component initially decreases as the HBI wraps the lines of the
magnetic field around the core. At later times (t > 600 tdyn),
it starts increasing again as a consequence of radial field-line
stretching in the process of core collapse, which once again
“unlocks” heat conduction along the temperature gradient. Note
that trends in evolution of luminosity components in T- and A-
models appear qualitatively similar; however, there is about an
order of magnitude difference in the magnitude of conductive
luminosity between the two. This is a consequence of an early,
efficient suppression of anisotropic heat conduction by magnetic
field lines in model A5B2 in comparison to T2B2. In both runs
the field lines eventually saturate at an angle of 〈θB〉 ≈ 85◦–88◦,
in such a way suppressing the conductive heat flux to a fraction
of only (b̂ · r̂)2 ≈ 10−3 of the Spitzer value throughout the core
volume. Apart from unbridled heat conduction, the largest of
the remaining four components of luminosity in both models
is the radiative cooling. In terms of luminosity magnitudes,
radiative cooling is followed by advective luminosity which
can be interpreted as heating of the core in the process of
adiabatic compression, which is in turn followed by anisotropic
conduction and convective luminosity.

As stated at the beginning of this section, the parameter space
is occupied by three distinct groups of systems which end up in
either catastrophic collapse (tcool/tcond � 25), isothermal state
(tcool/tcond � 102), or as border line cases. Border line cases

represent the transition population between the collapse and
isothermal group of objects, and their final state is determined
by the structure of the magnetic field. The behavior of borderline
cases is illustrated by comparing models T3B2 and A6B2 (which
differ only in their initial field structure), where the former
evolves to the isothermal state in 80 tdyn and the latter collapses
after 510 tdyn. Another example is provided by models T3B4,
A7B4, and AR11B4, of which only the core in the T-model
evolves toward the isothermal state, while those in A- and AR-
models collapse. Cores in models A7TN and AR11TN are also
border line cases given that both evolve on very long timescales
and that they seem to hang on a very edge between collapse and
isothermality. Interestingly, the core in A7TN initially evolves
toward collapse, but after ∼300 tdyn the temperature curve
reverses toward isothermal. The core temperature in AR11TN
reminds relatively flat until late time in the simulation and its
final state undetermined. The cause of different outcomes in
these two models is probably stochastic, driven by a slightly
different evolution of the magnetic field, and it underlines the
role of the field structure in these transition population of objects.
The values of tcool/tcond for TN, B2, and B4 border line cases
are 26, 38, and 75, respectively. We also find that cores with
tcool/tcond < 25 evolve toward collapse regardless of their
initial field geometry (T2, A6, and AR10 in the case of both
B3 and B4 runs but also T2B2 and A5B2), while those with
tcool/tcond � 250 all evolve toward the isothermal state (T3B3,
A7B3, and AR11B3).

3.3. Models of Physical Clusters

In order to offer a more intuitive interpretation of the role
of the HBI for a portion of the parameter space populated
by real clusters, we present a second group of calculations
where we scale simulation parameters specifically to match the
cooling core of a rich galaxy cluster. We mark the position
of these models with the letter “P” in (tcool, tcond) space in
Figure 2. It is worth noting that characteristic timescales of
real cooling core clusters occupy the range 1 � tcool/tdyn � 10
and few × 0.1 � tcond/tdyn � 10, which places them in the
collapse region of Figure 2.

Specifically, we consider a cluster characterized by a virial
temperature of kT0 = 7 keV, initial core temperature of
kTc ≈ 3 keV, and core radius of R0 = 100 kpc; these properties
are reminiscent of the Perseus cluster. The gas number density
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Figure 11. Left: evolution of temperature in the core of a cluster for models P1 (solid), P2 (dashed), and P5 (dash-dot) models. Right: same for P5 only, starting from
an isothermal core at virial temperature of 7 keV.

Table 3
Models of Perseus-like Cluster

Model B-Field Resolution κaniso Δtcollapse

Structure (N3) (κSpitz) (Gyr)

P1 A 100 1 9
P2 AR 100 1 10.5
P3 A 200 1 8
P4 A 64 1 6
P5 A 100 0 2

in the modeled core is n0 = 0.03 cm−3 (somewhat lower than
in Perseus), and the speed of sound is cs ≈ 900 km s−1 in
the core center. The core cools radiatively according to the
Tozzi–Norman cooling function (Tozzi & Norman 2001). For
this cluster, we ran a set of models spanning different magnetic
field configurations and simulation resolutions, as detailed in
Table 3. In this group of models, we test the evolution of the
cores with predominantly azimuthal magnetic field geometry, a
scenario that allows us to calculate a lower limit on the life
time of conducting cores. With the exception of model-P5,
the (anisotropic) heat conduction is set to the Spitzer value
(Equation (5)) and mediated by the magnetic field in all models.
Model-P5 is a pure radiative collapse model (κaniso = 0) given
for comparison. The (initial) characteristic timescales for this
system are tdyn ≈ 1.3 × 108 yr, tcond ≈ 4.1 × 107 yr, and
tcool ≈ 2 Gyr. We assume initial values of plasma parameter
and the strength of the radial component of the magnetic field
to be β = 103, Br = 0 and Br = 3μG, for A- and AR-models,
respectively.

The collapse of conducting cores is postponed by a factor of
∼2–10 with respect to the timescale for pure radiative collapse.
The cores in models P1 and P2 evolve through an initial heating
of the core during which time the HBI re-orients the field lines
in order to reduce the conductive heat flux. Figures 11 and 12
show the evolution of the core temperature and 〈θB〉 in P1-
and P2-models along with the pure radiative collapse case, for
comparison. The core with the initial temperature of ∼3 keV,
in the absence of heat conduction heads toward collapse in only
tcool ≈ 2 Gyr (model P5). The cores in P1 and P2 models
evolve through the initial rise in temperature, have a phase of
uniform evolution approximately linear with time, and in the
final 2 Gyr dominated by radiative cooling behave similarly to

the pure radiative collapse case. As remarked in the previous
section, the initial rise in the core temperature in models with
heat conduction is a consequence of non-equilibrium initial
conditions. The intermediate phase of steady, quasi-linear decay
of the core temperature is specific to conducting cores and is
absent in the case of a pure collapse model. The presence of
the HBI is indicated by the high value of 〈θB〉 = 87◦ shown
in the left panel of Figure 12, in contrast to the pure radiative
collapse scenario P5 (right panel) which does not maintain the
azimuthal structure of the field. The field-line re-orientation
appears to saturate at 〈θB〉 ≈ 87◦ and, from then on, the
core undergoes a gradual decline in core temperature until it
reaches a temperature of kT ∼ 2–3 keV. After that time, the
core temperature decreases more rapidly due to the onset of
line cooling within the TN-cooling function, and the cooling
catastrophe is reached ∼2 Gyr later. Indeed, this final stage in
the conducting core models is very similar to the pure radiative
collapse case, conduction having very little effect.

If real cluster cores are similar to the cores modeled here,
they are likely to be observed precisely during the long gradual
decline phase (although compared with model clusters during
this phase, real clusters have a larger fractional temperature
decrease as one heads into the core). In model-P1, this phase
starts from 1 Gyr after the beginning of the simulation (at which
time the core has a temperature of 5 keV) and the core collapses
8 Gyr later. In model P2, the life time of the core is extended
due to the presence of a split monopole, with collapse occurring
9.5 Gyr after the start of this decline phase. A pure cooling
simulation starting from a temperature of 5 keV undergoes the
cooling catastrophe in approximately 4 Gyr. Thus, even starting
off with rather azimuthal field geometries, thermal conduction
delays the thermal collapse of the cluster core by at least a factor
of 2.

It follows from the findings in the previous section that the
longest lived cooling cores are those with large-scale magnetic
fields (represented by T-models). In order to estimate the factor
by which core collapse is postponed in these models, we consult
our grid of models outlined in Tables 1 and 2. It is possible to
infer that T-model cores collapse on timescales 2–5 times longer
with respect to the cores with predominantly azimuthal fields
(A-models), as illustrated in examples of model pairs: T2B2–
A5B2, T2B3–A6B3, and T2B4–A6B4. Hence, if T-model cores
evolve 2–5 times longer than A-model cores, and Perseus-like
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Figure 12. Left: evolution of 〈θB 〉 in P1 (solid) and P2 (dashed) models in the central 60 kpc region. Right: same, except for P4 model (pure radiative collapse).
Spherical collapse in the absence of HBI leads to smaller 〈θB 〉 and does not maintain the azimuthal orientation of the magnetic field lines.

Figure 13. Evolution of mean kinetic (solid) and magnetic (dashed) energy
density in P1(shorter) and P2 (longer) normalized to mean instantaneous energy
density.

A-model cores evolve on timescales ∼2 tcool, than the overall
evolution of collapsing cores can be prolonged by a total factor
of ∼2–10 tcool.

As found in Sections 3.1 and 3.2, these model clusters cores
are characterized by an absence of strong turbulence or a
magnetic dynamo effect. The magnetic and kinetic energies
uniformly decrease in P1 and P2 models (Figure 13) and are
only a small fraction of ∼10−5–10−4 of the internal energy.
Figure 14 shows the distribution of velocity magnitude in the
x–y-plane containing the core center. The highest velocities in
the core are of the order of 30 km s−1 and are visibly associated
with the magnetic field structure. As the relative strength of the
magnetic field decreases in the process of core collapse, the
core center becomes kinematically more quiescent with respect
to the initial velocity distribution.

Modeled Perseus-like cores exhibit the strongest heat con-
duction and heat flux buoyancy instability within the radius of
∼20 kpc—a distance comparable to the half-depth radius of
the core where the temperature gradient is steepest. Figure 15
shows the evolution of five luminosity components in units of
erg s−1 calculated for a sphere of radius of 20 kpc in model

P1. Note that during the first ∼1 Gyr of evolution, anisotropic
heat conduction overcompensates for the radiative losses and
that this phase is coincident with the initial rapid rise of the core
temperature seen in Figure 11. Between 1 and 7.5 Gyr, radiative
losses are comparable to but larger than the rate of heat con-
duction and in this period core temperature steadily declines. In
the remaining period of evolution, the rate of radiative cooling
becomes �2 times larger than the anisotropic heat conduction,
and the core evolves toward collapse in the fashion similar to a
pure radiative collapse scenario. The rate of energy transported
by convection is consistently ∼2 orders of magnitude lower than
that of the anisotropic conduction, and it acts as a cooling term
throughout the simulation. Also included in Figure 15 is the
fiducial rate of unbridled heat conduction at the Spitzer value
(thick, long dash line), plotted for comparison—because this
component of luminosity is significantly larger than the others,
we divided it by a factor of 10 in order to show it in the same
plot.

Models P1, P3, and P4 constitute a crude numerical resolution
study for these models. In order to characterize the effect of
numerical resolution on our results, we choose the run P1 with
the numerical resolution of 1003 as a baseline model. With the
tangled azimuthal field structure and characteristic coherence
lengths of r1 = 0.1 and r2 = 0.087, this run is a good
choice for resolution study, because the resolution effects are
potentially more severe than in the runs with large scale, loosely
tangled field. We carried out calculations equivalent to P1, at
a higher resolution of 2003 (run P3) and a lower resolution
of 643 (run P4). Interestingly, we find that stepping up the
numerical resolution leads to a non-monotonic evolution of the
collapse timescale (Figure 16). This behavior can be explained
by the effect of resolution on magnetic field orientation (right
panel of Figure 16). Higher resolution captures the finer, radial
structure of tangled field lines in addition to the dominant
azimuthal component, resulting in the lower initial value of
〈θB〉. This results in a highest rate of heat conduction in model
P3 (0.04, 0.054, and 0.01 of the Spitzer value for P1, P3, and
P4, respectively) and a more rapid re-orientation of the field
lines due to HBI when compared to the moderate-resolution
model P1. The consequence of rapid HBI evolution in the model
core P3 is that it also collapses before the core in P1. On the
other hand, heat conduction in model P4 is initially at such a
low level that its evolution proceeds fairly similar to a pure



222 BOGDANOVIĆ ET AL. Vol. 704

Figure 14. Snapshots from P1 model of the Perseus cluster showing the distribution of velocity magnitude at 500 Myr (left) and 3.5 Gyr (right) after the beginning of
the simulation. Figures show the slice through the x–y-plane of a cluster center. A velocity unit corresponds to 820 km s−1, implying that highest velocities are of the
order of 30 km s−1. The apparent symmetry in velocity distribution is a consequence of initial symmetry in magnetic field geometry.

(A color version of this figure is available in the online journal.)

Figure 15. Evolution of luminosity components in model P1 measured within
a sphere of radius of 20 kpc. Each component is marked with a different line:
anisotropic heat conduction (solid), radiative (dashed), convective (dash-dot),
advective (dash-3dot), and a fiducial value of unbridled heat luminosity at the
Spitzer value (thick, long-dashed). The heat flux at the full Spitzer value was
divided by a factor of 10 in order to show it alongside of other components.
Negative fluxes are inflowing and vice versa.

radiative collapse and thus, occurs on a shorter timescale that
in models P1 and P3. Progressing from the simulation with
643 resolution toward the higher end, the discrepancy in overall
evolution time of the core decreases from ∼2 Gyr to ∼1 Gyr,
indicating convergence. Based on this, we estimate that core
evolution in most affected models in our calculations can be
prolonged by ∼1 Gyr.

4. DISCUSSION

Heat conduction is, in principle, capable of providing a large
fraction of the energy necessary to prevent the core collapse in
clusters of galaxies—indeed, the potential importance of con-
duction has been discussed ever since the realization that ther-
mal collapse was a problem for ICM atmospheres (Binney &

Cowie 1981). However, attempts to solve the cooling flow prob-
lem with thermal conduction face several challenges. Because
of a steep temperature dependence of Spitzer conductivity, heat
conduction is expected to play a lesser role in low-mass clusters
and groups of galaxies, where most of the gas is below 5 keV
(Best et al. 2007; Zakamska & Narayan 2003). Even unbridled
Spitzer thermal conduction cannot offset radiative loses in these
low-mass systems. Hence, heat conduction cannot be a single
solution to the cooling flow problem across the full range of
masses, and additional sources of heat are needed to stabilize
cooling flows in at least these lower mass systems. Even in
hot systems where conduction is potent, previous studies have
highlighted fine-tuning problems (Nulsen et al. 1982; Bregman
& David 1988). Under the assumption that a tangled magnetic
field essentially acts as a scalar suppression factor for isotropic
conduction, and that the suppression factor f is a fixed parameter,
Kim & Narayan (2003) show that f must be fine-tuned in order to
obtain a thermal quasi-equilibrium resembling real cooling core
clusters. Even then, this equilibrium is unstable with a growth
time ∼2–5 Gyr.

Our results indicate that the presence of the HBI even further
undermines the role of heat conduction because of its tendency
to stifle conduction by rearranging the lines of the magnetic
field to be orthogonal to the temperature gradient. We find that
only systems with a large disparity in characteristic timescales,
tcool/tcond � 102, can avoid the cooling catastrophe by evolving
to the isothermal state. Systems reminiscent of real clusters, with
tcool/tcond � 25 evolve toward thermal collapse on timescales
�10 tcool. For many cooling core clusters (such as Perseus), this
is significantly shorter than a Hubble time, hence rendering heat
conduction alone incapable of rescuing the core from collapse.

That said, we do find that conduction can significantly
increase the time to thermal collapse, i.e., a significant energy
is conducted into the core before the field-line re-orientation by
the HBI seals it off and enables it to collapse. At this point,
we must acknowledge the missing ingredients in our idealized
cluster models. A quiescent cluster core can be significantly
disturbed by cosmologically induced dynamics (e.g., subcluster
mergers) and/or powerful outbursts from a central AGN. Either
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Figure 16. Effect of numerical resolution on evolution of the core temperature (left) and 〈θB 〉 (right) in P1 (solid), P3 (dashed), and P4 (dash-dot) runs carried out at
resolution of 1003, 2003, and 643, respectively.

of these events will disrupt the azimuthal nature of the field and
may partially reset the evolution being described by our models.
Thus, while thermal conduction seems unable to stabilize
cooling cores alone, it may still be the primary agent heating
cluster cores provided that it is enabled by subcluster mergers or
AGNs. Note that this is a very different role than that normally
envisaged for AGNs in cooling cluster clusters; if correct, AGNs
are stirrers and not heaters.

An interesting property of our models is the absence of strong
turbulent motions. With plasma motions at ∼10–30 km s−1

modeled collapsing cores are kinematically quiescent in com-
parison with realistic cores, which exhibit turbulent velocities
in the range ∼100–200 km s−1 over comparable spatial scales
(Conselice et al. 2001; Hatch et al. 2006). This highlights the
necessary role of the central AGN and cluster mergers as stirrers
of the intercluster plasma.

Both observational and theoretical studies of the cooling
problem have established that the mechanism responsible for the
stability of cooling cores has to be gentle, spatially distributed,
and physically reminiscent of diffusion (Kim & Narayan 2003;
Fabian et al. 2003). This is an intrinsic property of heat
conduction but is more difficult to understand in pure AGN-
heating scenarios. For example, simple shock heating by AGN
jets fails to stabilize cooling flows in pure hydrodynamic
simulations (Vernaleo & Reynolds 2006) unless a high degree
of turbulent heat diffusion is postulated (Brüggen et al. 2009).
In addition, Nagai et al. (2007) find that the entropy of the gas
in cooling cores is surprisingly low—at 10s of keV cm2 the
gas is on a brink of catastrophic collapse and yet maintained
in that state over a large fraction of the Hubble time. This
presents a challenge for any mechanism which would heat the
gas via strong turbulent motions or shocks, as it is expected to
result in a much higher value of entropy than that observed.
The implication of this discovery is that an unusually delicately
balanced feedback mechanism operates in cooling cores and
that heat conduction in combination with additional mechanisms
may play an important role.

Another implication of the ubiquity of HBI is that clusters
with cool cores may exhibit a characteristic magnetic field struc-
ture, where field lines are wrapped around the core and have a
predominantly azimuthal structure. Although our model clusters

never completely forget about their initial magnetic field (i.e.,
T-models and A-models can be recognized even at late time), the
wrapping of field lines into spherical shells is ubiquitous. The in-
stability drives the field lines to almost orthogonal position with
respect to the temperature gradient, 〈θB〉 ≈ 80◦–90◦. This has
several consequences. First, it creates exactly the kind of mag-
netic field geometry envisaged in models of AGN blown bubbles
that invoke “magnetic draping” (Ruszkowski et al. 2007). In
these models, a bubble of relativistic plasma which is buoyantly
rising in the ICM atmosphere is stabilized to Rayleigh–Taylor
and Kelvin–Helmholtz instabilities by a layer of strong magnetic
field that has been swept up on its leading edge. It is suggested
that this mechanism is responsible for the surprising stability
of “ghost cavities” in the ICM of the Perseus cluster, and is
an alternative to models that invoke plasma viscosity (Reynolds
et al. 2005). Second, this characteristic field-line geometry leads
to the most direct observable predictions/manifestations of the
HBI in the ICM. Magnetic fields in the ambient ICM can be
probed via the rotation measure (RM) of polarized radio sources
in the background.

The RM is an integral measurement of the effect that
magnetic fields impart on the orientation of the plane of an
electromagnetic wave traveling through the plasma. Hence, an
azimuthal field structure would produce a characteristic radial
dependence in the observed RM: it would vanish at the projected
cluster center, and peak at some projected radius within the
cooling core. We calculate this effect for our Perseus-like models
using the expression RM = 812 rad m−2

∫
ne B · dl, where

ne is the electron number density in units of cm−3, B is the
vector of the magnetic field in units of μG, and l is the depth
of the magnetic screen in kiloparsecs. Figure 17 shows an
illustrative calculation of the RM for model P2. We find that
in Perseus-like models the magnetic field with mean strength of
〈B〉 ∼ 0.1 μG produces RM of order ∼100 rad m−2. The HBI-
wrapped field also produces a characteristic spatial structure to
the RM map. Future observatories with the radio instruments
such as Square Kilometer Array should provide the sensitivity
needed to identify and study background sources with sufficient
areal density to map out these RM patterns. Note however that
our calculation accounts for the RM arising from the core of
a cluster but does not take into account the effect of magnetic
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Figure 17. Rotation measure maps calculated for model P2 for a line of sight along x-axis. The color bar indicates the RM intensity which ranges from (−max, max),
where max = 150, 110, 95, 120, 170, 265 rad m−2 for each panel in the time sequence, respectively.

(A color version of this figure is available in the online journal.)

structures and plasma in the outer parts of a cluster. Therefore,
if the cluster field strength is dominated by the magnetic fields
in the core, this effect may be measurable.

5. CONCLUSIONS

We have performed simulations of cooling cores in clusters
of galaxies with the aim to study the role of anisotropic heat
conduction and recently discovered HBI on the thermodynamic
evolution of cores. Our models focus on the base state of cluster
cores and do not take into account physics of the central AGNs
or dark matter or ICM substructure resulting from hierarchical
merging of subcluster units. We explore the parameter space of
cooling and conduction timescales as well as different magnetic
field configurations. We summarize our most important results
as follows.

1. The parameter space of modeled systems can be divided
into three distinct groups of models where collapsing cores
occupy the parameter range tcool/tcond � 25 and isothermal
cores exhibit tcool/tcond � 102. The range between these
two groups is occupied by a class of systems whose final
state is determined by the configuration of magnetic field
lines.

2. The efficiency of heat conduction along the lines of mag-
netic field ranges between ∼10−3 and 0.2 of the Spitzer
value, depending on the initial structure of the magnetic
field and evolutionary stage of the core.

3. Modeled conducting cores that correspond to real clusters,
exhibit evolution toward core collapse slower by a factor
of ∼2–10 with respect to the timescale for a pure radiative

collapse. For many cooling core clusters (such as Perseus),
this is significantly shorter than a Hubble time, implying
that heat conduction alone cannot rescue the core from
collapse. The extent to which core collapse is postponed
in our models is a function of the initial magnetic field
topology, where systems with higher values of tcool/tcond
ratio and field configurations amenable to conduction result
in longer collapse time scales.

4. Magnetic field lines in cores in which HBI is actively
operating rearrange themselves in such way that the final
value of 〈θB〉 ≈ 80◦–90◦. In contrast, cores that are not
characterized by HBI have 〈θB〉 ≈ 60◦–70◦. If seen in
observations, the alignment of field lines across the global
temperature gradient would provide a strong evidence for
the existence of MHD instabilities in clusters, which have
so far only been considered theoretically.

5. Heat flux buoyancy instability operating in modeled cores
is not characterized by a strong turbulence and results in
kinematically quiescent cores. A related consequence of
this property is that MHD turbulence driven by the heat
flux instability does not drive a convective thermal flux
sufficient to regulate the core collapse. This finding is
interesting in light of observational and theoretical studies
of the cooling problem which have established that the
mechanism responsible for the stability of cooling cores
has to be gentle and spatially distributed in order to agree
with the low levels of entropy observed in some cooling
cores and implies that heat conduction in combination with
additional mechanisms may play an important role for the
cooling problem.
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The prospects for future work are numerous, and they stem
from the need to design more realistic models of cooling cores
and also to understand the interplay of MHD instabilities with
other mechanisms operating in clusters. Future studies will be
needed to address the evolution of cool core clusters within the
cosmological framework and consider the effects of minor and
major mergers on gas mixing, kinematically and MHD-driven
turbulence, field-line tangling, AGN fueling, and the overall
thermodynamic state of a cluster. On the other hand, they will
also need to disentangle the effects of plasma transport processes
and magnetic fields via simulations that incorporate full MHD as
well as viscosity, thermal conduction, and cosmic ray diffusion.

Note that in parallel to this work, Parrish et al. (2009) carried
out an independent study of cool cluster cores with HBI. Parrish
et al. (2009) focus on a portion of the parameter space occupied
by real clusters and consider the role of central entropy and AGN
heating for the final thermodynamical state of a cluster core.
Given different approaches, the two studies complement each
other and in the areas of overlap arrive to similar conclusions.
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