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ABSTRACT

We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydro-
dynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along
magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of
∼ 200 Myr or shorter—in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such
as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of
galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes
the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the
magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our
simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to
� 10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs
on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely
to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters
have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically
interesting timescales.
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1. INTRODUCTION

X-ray observations of the intracluster medium (ICM) of re-
laxed galaxy clusters show a centrally peaked surface brightness
distribution. The observed temperatures and densities are high
enough that the plasma can have a cooling time much less than
500 Myr (Sarazin 1986). The standard isobaric cooling flow
model predicts mass dropping out of the X-ray_emitting ICM
at rates in excess of 100–500 M� yr−1. However, X-ray spec-
troscopic observations with Chandra and XMM-Newton have
ruled out classical cooling flows of material below 1 keV as it
would copiously emit lines such as Fe xvii that are not observed
(Peterson & Fabian 2006). Therefore, a mechanism is required
to heat the ICM to avert this cooling catastrophe.

The plasma in the ICM has temperatures of 1–15 keV and
number densities of 10−3 to 10−1 cm−3. The magnetic field
in the ICM is estimated to be in the range of 0.1–10 μG
depending on where the measurement is made (Carilli & Taylor
2002). Under these conditions, the Coulomb mean free path is
many orders of magnitude larger than the gyroradius; e.g., at
T = 3 keV, ne = 10−2 cm−3, and B = 1 μG, the mean free
path is λmfp ≈ 0.3 kpc, while the electron gyroradius is ρe ≈
108 cm. The mean free path is, however, smaller than the
temperature gradient scale length. As a result, a fluid description
of the ICM plasma, e.g., magnetohydrodynamics (MHD), is
appropriate, but the effects of anisotropic heat and momentum
transport must also be included. The Braginskii-MHD equations
(Braginskii 1965) are a modification of the standard MHD
equations to include anisotropic transport due to the magnetic
field.

Active galactic nucleus (AGN) feedback and conduction
from the thermal bath at large radii are two of the most
often discussed mechanisms for heating cool cluster cores.

1 Chandra/Einstein Fellow

This work shall only briefly consider the former. The latter,
thermal conduction, has been studied by many authors (e.g.,
Binney & Cowie 1981; Narayan & Medvedev 2001; Zakamska
& Narayan 2003; Guo et al. 2008). Because of uncertainties
associated with the magnetic geometry, the heat flux is often
parameterized as an effective thermal conductivity given as a
fraction, fSp, of the ideal (field-free) Spitzer heat flux. Previous
work, however, has not considered the dynamic consequences
of anisotropic conduction. The plasma in galaxy clusters is
unstable to two different convective instabilities driven by
anisotropic thermal conduction along magnetic field lines. The
first, the magnetothermal instability, or MTI (Balbus 2000;
Parrish et al. 2008), occurs when the temperature gradient and
gravity are in the same direction, as is true at large radii in galaxy
clusters. Well inside the cooling core, the heat-flux-driven-
buoyancy instability, or HBI, occurs where the temperature
gradient is in the opposite direction of gravity (Quataert 2008;
Parrish & Quataert 2008). The HBI occurs in the cooling
core of the ICM where the temperature increases outward.
Nonlinear simulations of the MTI and HBI have shown that
they significantly modify the thermal conductivity, because
they saturate by rearranging the magnetic field geometry. Thus,
determining the effective conductivity in the ICM requires
considering the back-reaction of the anisotropic heat flux on
the magnetic field geometry.

In this work, we examine the stability of the cooling cores
of galaxy clusters using three-dimensional MHD simulations
including anisotropic thermal conduction and cooling. In par-
ticular we assess the interplay between cooling and the HBI.
This paper is organized as follows. In Section 2, we summa-
rize the physics of the HBI and the thermal instability and their
nonlinear saturation in local calculations. In Section 3, we then
describe the equations of Braginskii-MHD and the numerical
tools we utilize to solve them. Section 4 presents our fiducial
cluster model (based on Abell 2199) in detail and examines its
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evolution over cosmic time. In Section 5, we examine a variety
of variations of our fiducial model including cluster halo pa-
rameters, magnetic field strength and geometry, and the central
cluster entropy. We also show a few experiments with a simple
AGN heating model (Section 5.7). Finally, in Section 6 we dis-
cuss the implications of this work for the cooling flow problem
and highlight some of our plans for future work.

In parallel to our work described here, Bogdanovic et al.
(2009) have conducted a similar study using similar numerical
methods. Their simulations start with different initial conditions
and cover a different part of parameter space but reach broadly
similar conclusions.

2. PHYSICS OF THE HBI AND COOLING

The linear physics of the HBI and its nonlinear evolution
are outlined in Quataert (2008) and Parrish & Quataert (2008),
respectively. We briefly review them here for clarity. The HBI
is a convective instability driven by a background heat flux
with the temperature gradient as the source of free energy.
In contrast, the entropy gradient drives the more familiar
Schwarzschild convection. For an arbitrarily oriented magnetic
field, the dispersion relation of the HBI is (Quataert 2008):

0 = ωω̃2 + iωcondω̃
2 − N2ω
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where N is the Brunt–Väisälä frequency,

N2 = − 1

γρ
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∂ ln S

∂z
, (2)

and
ω̃2 = ω2 − (k · vA)2 , (3)

where vA = B/(4πρ)1/2 is the Alfvén speed, and

ωcond = 2
5χ (b̂ · k)2 (4)

is the frequency for conduction to act on a given scale, with
b̂ being the unit vector directed along the magnetic field and
χ the thermal diffusivity2 in units of cm2 s−1. This dispersion
relation is written without loss of generality for a geometry in
which gravity and the initial atmospheric gradients are in the
ẑ-direction and the initial magnetic field lies in the x̂–ẑ plane.

For a weak magnetic field, Equation (1) has unstable solu-
tions for either sign of the temperature gradient. The case of
dT/dz > 0 corresponds to the HBI. For a weak, initially verti-
cal magnetic field (bz = 1, bx = 0), the growth rate of the HBI
is given by

ω2 ≈ −g

(
d ln T

dz

)
k2
⊥

k2
, (5)

where k⊥ is with respect to gravity. Qualitatively, one can
picture the HBI as being driven by regions of converging and
diverging perturbed magnetic field lines. Regions of converging
magnetic field are conductively heated and become buoyant.

2 The literature is not consistent regarding the use of χ and κ . We will use χ
to represent a true diffusion coefficient and κ to represent a conductivity in
units erg cm−1 s−1 K−1.

In local simulations, the HBI generates MHD turbulence and
a modest magnetic dynamo that amplifies the field. The most
prominent method by which the HBI saturates is via a significant
reorientation of the magnetic field geometry. The HBI takes
a largely vertical field and reorients it to become largely
horizontal. This fact is crucial for cluster cores since this
reorientation of the magnetic field can significantly reduce the
heat transport across an HBI unstable region.

In addition to driving the HBI, thermal conduction also has a
significant impact on thermal instability as originally shown in
Field (1965). The Field criterion states that wavelengths longer
than

λF =
[

T κ

nenpΛ(T )

]1/2

, (6)

are thermally unstable, where Λ(T ) is the cooling function
discussed later. For modes with wavelengths shorter than λF ,
the conduction time is shorter than the cooling time, and local
perturbations are stabilized. In the ICM, the plasma is often
locally stable to thermal instability, but unstable to global modes
even in the presence of conduction (Kim & Narayan 2003).
Equation (6) was derived under the assumption of isotropic
conduction. The results are similar for anisotropic conduction,
except that conduction can only stabilize perturbations with
short wavelengths along the magnetic field.

An interesting way to examine the physics of cooling in
clusters comes from the recent work of Voit et al. (2008),
who examined the role of the central entropy of the ICM as
an indicator of feedback and star formation in galaxy clusters.
The entropy is defined as K = kBT n

−2/3
e . In Voit et al. (2008),

the entropy profile for a cluster is fitted using

K(r) = K0 + K100

(
r

100 kpc

)α

, (7)

where K0 is approximately the central entropy, K100 is the power-
law normalization, and α > 0 is the power-law exponent. They
find that low entropy clusters, those with K0 � 30 keV cm2,
have stronger Hα emission, star formation indicators, and
AGN activity than higher entropy clusters, K0 � 30 keV cm2

(Cavagnolo et al. 2008). As a matter of terminology, clusters
with an inwardly decreasing temperature are referred to as cool-
core or relaxed clusters. Clusters with an isothermal or inwardly
increasing temperature profile are referred to as non cool-core
clusters.

These observational results can be qualitatively understood
in light of the Field criterion (Equation (6)). When cooling is
pure bremsstrahlung, the Field length becomes a function of
entropy, scaling as λF ∝ K

3/2
0 f

1/2
Sp . Thus, cooling can take

place on small length scales when the entropy is low. The HBI
decreases fSp, making smaller wavelengths unstable to cooling.
Fully nonlinear simulations, such as those presented here, are
needed to understand the combined dynamics of cooling and
the HBI.

3. METHOD

3.1. Equations of MHD with Anisotropic Heat Conduction

We solve the usual equations of ideal MHD with the addition
of a vector heat flux, Q, and a gravitational acceleration
g = −∇Φ:

∂ρ

∂t
+ ∇ · (ρv) = 0, (8)
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∂ B

∂t
− ∇ × (v × B) = 0, (11)

where the symbols have their usual meaning. The total energy
E is given by

E = ε + ρ
v · v

2
+

B · B

8π
, (12)

and the internal energy, ε = p/(γ − 1). We assume γ = 5/3
throughout.

The anisotropic heat flux is given by

Q = −nkBχC(T , n)b̂b̂ · ∇T , (13)

where the thermal diffusivity is given by the Spitzer value
(Spitzer 1962) and b̂ is a unit vector in the direction of the
magnetic field. The Spitzer thermal diffusivity is given by

χC(T , n) = 8 × 1031

(
T

10 keV

)5/2 (
n

5 × 10−3

)−1

cm2 s−1.

(14)
Note that χ is a thermal diffusivity, and it depends inversely on
the density. The Spitzer conductivity is κSp = nkBχC which
has only the well known T 5/2 dependence and no density
dependence.

The energy equation also includes heating (H) and cooling (L)
terms. The cooling function we adopt is from Tozzi & Norman
(2001) with the functional form

L = nenpΛ(T ), (15)

with units of erg cm−3 s−1. The temperature dependence is a fit
to cooling dominated by bremsstrahlung above 1 keV and metal
lines below 1 keV with

Λ(T ) = [C1(kBT )−1.7 + C2(kBT )0.5 + C3]10−22, (16)

where C1 = 8.6 × 10−3, C2 = 5.8 × 10−2, and C3 = 6.3 ×
10−2, for a metallicity of Z = 0.3 Z�, with units of [Ci] =
erg cm3 s−1. The majority of our runs do not include additional
heating terms. For these runs H = 0 in Equation (10).

In runs with heating, we adopt a heating profile of the form

H = H0e−(r/rH )2
, (17)

where rH is the scale radius of heating and the normalization is
chosen as

H0 = Ltherm

r3
Hπ3/2

, (18)

where Ltherm is the total thermal heating input. This model is
motivated by a simple description of AGN feedback. We discuss
simulations with heating in more detail in Section 5.7.

Table 1
Timescales in Model T1

Timescale Symbol Timea (Myr)

Sound crossing τS 45
Alfvén crossing (1 μG) τA 1.1 × 103

Conduction τcond 20
HBI growth τHBI 120
Cooling τcool 1.4 × 103

Note. a Evaluated for L = 50 kpc as volume-averaged quantities.

3.2. Timescales

We now discuss several of the key timescales in galaxy
clusters in order to provide some intuition for the important
physical processes (see Table 1). We examine these timescales
for volume-averaged quantities in our fiducial atmosphere of
A2199. The generation of the fiducial atmosphere is discussed in
Section 4.1. The volume-averaged sound speed is approximately
108 cm s−1, corresponding to a sound crossing time over 50 kpc
of τS ≈ 45 Myr. A weak magnetic field of 1 nG corresponds to
an Alfvén crossing time over 50 kpc of τA ≈ 1012 years.

For a more typical magnetic field of 1 μG, the Alfvén speed
is 4.4 × 106 cm s−1, leading to a crossing time across 50 kpc
of 1.1 Gyr. We will see shortly that the Alfvén timescale is
the longest timescale in the problem. For this cluster the central
magnetic beta, the ratio of thermal pressure to magnetic pressure
is β0 = 8πp/B2 ≈ 6,600 for B = 1 μG. Even for B = 10 μG,
the central magnetic beta is significantly greater than unity.
Further out in the core, where the thermal pressure has dropped,
the beta parameter is typically of order several hundred.

Also of interest is the heat conduction timescale. Our model
cluster has a volume-averaged thermal diffusivity of 〈χ〉 ≈
3.8 × 1031 cm2 s−1, which yields the scale-dependent conduc-
tion time

τχ = L2

χ
=

{
20 Myr (L = 50 kpc)
0.80 Myr (L = 10 kpc). (19)

The HBI growth time in the fast conduction limit is

τHBI =
(

d ln T

dr

dφ

dr

)−1/2

≈ 126 Myr. (20)

As we will see later, the HBI has an opportunity to grow
significantly compared to the average time between major
mergers, roughly 5 Gyr, for a typical cluster. The final timescale
of interest is the cooling time at the center of the cluster

τcool = γ

γ − 1

e

nenpΛ(T )
≈ 1.4 Gyr. (21)

This cooling time estimate is in general too long (by almost a
factor of 2), as it does not account for the increase in the cooling
rate as temperature decreases and the density and line emission
increase. Nonetheless, the cooling time is much longer than
the HBI growth rate for the fastest growing, short-wavelength
modes. Thus, the HBI growth is likely to play a significant role
in the thermal evolution of the cluster core.

3.3. Numerical Tools

For our simulations we use the Athena MHD code (Gardiner
& Stone 2008; Stone et al. 2008) combined with the anisotropic
conduction methods of Parrish & Stone (2005) and Sharma &
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Table 2
Initial Properties of Nonlinear Runs

Run M0 (M�) Rs (kpc) Rc
a (kpc) Ti (keV) To (keV) B0 (G) K0 (keV cm2)

R1 3.8 × 1014 390 20 2 5 10−9, radial 15.5
T1b 3.8 × 1014 390 20 2 5 10−9, tangled 22.4
T1-HB 3.8 × 1014 390 20 2 5 10−6, tangled 22.4
T1-256 3.8 × 1014 390 20 2 5 10−9, tangled 22.4
T2 1.1 × 1015 520 26 4 9.5 10−9, tangled 31.1
T3 3.8 × 1014 390 20 1 6 10−9, tangled 5.46
E1 3.8 × 1014 390 20 3 5 10−9, tangled 43.6
E2 3.8 × 1014 390 20 4 5 10−9, tangled 83.1
E2-NCc 3.8 × 1014 390 20 4 5 10−9, tangled 83.1
E2-HB 3.8 × 1014 390 20 4 5 10−6, tangled 83.1
E3 3.8 × 1014 390 20 4.5 5 10−9, tangled 122.

E3-NCc 3.8 × 1014 390 20 4.5 5 10−9, tangled 122.

H1d 3.8 × 1014 390 20 2 5 3.5 × 10−6, tangled 14.0
I1e 3.8 × 1014 390 20 2 5 10−9, radial 1.5
Iso1 3.8 × 1014 390 20 4.5 4.5 10−9, tangled 52.5
Iso2 3.8 × 1014 390 20 4.5 4.5 10−9, tangled 154.

Notes.
a Softening radius of NFW halo (Equation (24)).
b Fiducial run.
c No conduction.
d Simulation includes additional heating (see Section 5.7).
e Isotropic conduction only.

Hammett (2007). In particular, we use harmonic averaging of the
conductivity and the monotonized central difference limiter on
transverse heat fluxes to ensure stability. The heating, cooling,
and thermal conduction are operator split and sub-cycled with
respect to the MHD time step. The cooling simulations are
implemented with a temperature floor of T = 0.05 keV, below
which UV lines become important, and the cooling curve fit is
no longer accurate. This temperature floor prevents the cooling
catastrophe from going to completion.

Most of the simulations in this work are done on uniform
Cartesian grids of (128)3. One high-resolution run is done at
(256)3. We use modified reflecting boundary conditions for
all MHD variables, in which the pressure and density are
extrapolated in the ghost zones, but the other variables are
reflected. This prevents the gravitational source term from
introducing a spurious acceleration at the boundary. For the
temperature boundary condition, we introduce a thermal bath at
r � rmax with a fixed temperature Touter. For almost all of our
runs rmax = 200 kpc. This thermal bath physically represents
the massive thermal energy available in the ICM outside the
cluster core. Since we simulate the entire cluster in a Cartesian
geometry, there is no inner boundary condition at the cluster
center.

To seed multiple modes of the HBI and break symmetry, we
add Gaussian white noise perturbations to the initial velocity
field such that the applied perturbation is everywhere a fixed
fraction of the sound speed, typically ≈ 1%. In the absence
of the HBI, cooling, or an applied perturbation, we find that
we can hold hydrostatic equilibrium to better than one part
in 104.

All of our runs, unless otherwise noted, are run to a time of
9.5 Gyr, a large fraction of the age of the universe. In a small
number of runs, the simulations do not go to completion as a
result of very severe cooling flows concentrating large quantities
of mass into the central few zones of the grid. These exceptions
are noted.

4. FIDUCIAL SIMULATION

4.1. Initial Conditions

To introduce the phenomenology of the HBI in cluster cores,
we begin by discussing a simple fiducial calculation based on
observations of the galaxy cluster Abell 2199 as discussed in
Zakamska & Narayan (2003) and Johnstone et al. (2002). This
fiducial run is identified as T1 in the table of runs (Table 2). Our
initial conditions for the cluster core are obtained by construct-
ing a spherically symmetric atmosphere in both hydrostatic and
thermal equilibrium. We have found that it is quite advantageous
to start from thermal equilibrium. Runs without thermal equi-
librium experience thermal fronts propagating from the bound-
aries. Starting in thermal equilibrium produces a much more
physical initial condition. The equations for this equilibrium are

dP

dr
= μmHP

kBT

dφ

dr
, (22)

1

r2

d

dr

(
r2fSpκ

dT

dr

)
= nenpΛ(T ) − H, (23)

where fSp is the initial effective thermal conductivity and
the heating function is neglected for our fiducial case. Our
potential is chosen to be a softened Navarro–Frenk–White
(NFW) potential with a dark matter density distribution given
by

ρDM = M0/2π

(r + rc)(r + rs)2
, (24)

where M0 is the scale mass, rs is the scale radius, and rc
is the softening radius (Navarro et al. 1997). The potential
softening is important for numerically maintaining a very
accurate hydrostatic equilibrium. The potential is given by

φ = −2GM0

{
rc

(rs − rc)2

[
ln

(
1 + r/rc

1 + r/rs

)
+

ln (1 + r/rc)

r/rc

]

− rs(rs − 2rc)

rc(rs − rc)2

ln(1 + r/rs)

r/rc

}
. (25)
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Figure 1. Temperature, density, and pressure of our fiducial initial condition
are chosen to roughly correspond to those observed in Abell 2199. We initialize
tangled magnetic fields for this simulation.

The plasma is modeled as a fully ionized ideal gas with
μ = 0.617 and μe = 1.176.

We solve Equations (22) and (23) as a two-point boundary
value problem with the constraints of matching T at both the
inner (Ti) and outer (To) boundaries. As these are a third-order
system of equations, we choose a further symmetry constraint,
namely, that the heat flux vanishes at the center. This system of
equations is slightly stiff, but generally is soluble with a shooting
method with a good initial guess. We only solve these ODEs
to establish our initial condition. The subsequent evolution of
the equilibrium is calculated using the full system of partial
differential equations (PDEs) for MHD, Equations (8)–(11).

For our fiducial model, we use a physical initial magnetic field
geometry, that of tangled magnetic fields. First, in constructing
the two-point boundary value for our initial conditions, we
set fSp = 1/3. Second, the initial fields are tangled with a
Kolmogorov spectrum using the method outlined in detail in
Section 4.2 of Parrish et al. (2008). We initialize the fields in
Fourier space as

Ã(k) = Ã0

(
k

kpeak

)−α

, (26)

where kpeak is chosen as the wavenumber corresponding to
2–4 times the grid scale. We also choose a low-k cutoff
corresponding to wavelengths of 1/2–1/4 of the domain size.
We randomize the phase and use the fast Fourier transform
to calculate the vector potential in real space. We choose
α = −17/6, the appropriate k-space scaling for the one-
dimensional power spectrum of Kolmogorov turbulence. Our
last step in initializing the magnetic field is to difference the
vector potential to calculate a manifestly divergence-free initial
field. The normalization of the magnetic field for our fiducial
run is such that 〈|B|〉 = 10−9 G.

Our model cluster, Abell 2199, has an inner temperature
of roughly 2 keV and a temperature of 5 keV near 200 kpc
(Johnstone et al. 2002). The gravitational potential is fitted to
an NFW profile with a scale radius of rs = 390 kpc, a softening

Figure 2. Time evolution of the volume-averaged magnetic and kinetic energy
in our fiducial run, T1. A very weak magnetic dynamo is present. After 2.7 Gyr,
the plasma has reached the temperature floor leading to a significant inflow and
magnetic field increase due to flux freezing.

radius of rc = 20 kpc, and a mass of M0 = 3.8 × 1014 M�.
Figure 1 shows the fiducial atmosphere that results from these
parameters. The central density in our thermal equilibrium
model is slightly lower than the observed value.

4.2. Evolution of the Fiducial Case

The evolution of our fiducial cluster model prominently
illustrates the physics of the HBI and cooling in the galaxy
cluster core. This evolution is best understood through a variety
of diagnostics. First, in Figure 2 we show the time evolution
of the magnetic and kinetic energies in the cluster. There is a
very weak magnetic dynamo in the first 2 Gyr or so due to the
HBI. The initial drop in magnetic energy is due to reconnection.
After � 3 Gyr, the core loses central pressure support, inflow
begins, and the kinetic energy increases. Correspondingly, the
magnetic energy is amplified through flux freezing leading to
a maximum increase of Δ〈B2〉 ≈ 2.5. We define the magnetic
energy amplification at the final simulation time, tf , as

Δ〈B2〉 ≡ 〈B2〉(tf )

〈B2〉(t = 0)
, (27)

where the angle brackets denote a volume average. The kinetic
energy dominates the magnetic energy at all times. Figure 2
shows that the HBI is not a strong source of magnetic field
amplification in cluster cores.

The real hallmark of the HBI is the reorientation of the
magnetic field geometry. Figure 3 shows the evolution of
the volume-averaged angle of the magnetic field with respect
to the radial direction from its initial tangled state (θ = 60◦) to a
final saturated state of 74.◦6. The angles given here and in Table 3
are volume averages over the entire cluster. The reorientation
of the magnetic field is quite dramatic and takes place on just
a few Gyr. Concomitantly, Figure 4 shows the evolution of the
azimuthally averaged radial temperature profile. We typically
bin the temperature into 5 kpc radial bins. As the magnetic
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Figure 3. Evolution of the volume-averaged angle of the magnetic field with
respect to the radial direction in run T1. θ = 0◦ is radial. θ = 60◦ corresponds
to a random magnetic field. The magnetic field becomes significantly more
azimuthal due to the HBI.

Table 3
Saturation of Nonlinear Runs

Run Δ〈B2〉 max〈θB〉 minfSp tcool (Gyr)a tcc (Gyr)b

R1 15.0 65◦ 0.13 0.82 4.0
T1 2.5 74◦ 0.07 1.4 2.7
T1-HB 1.05 74◦ 0.06 1.4 2.7
T1-256c 5.9 77◦ 0.03 1.4 2.4
T2c 1.5 75◦ 0.06 1.1 3.2
T3 2.5 74◦ 0.08 0.20 1.5
E1 2.3 75◦ 0.07 3.0 3.5
E2 2.3 76◦ 0.05 5.9 5.7
E2-NC 2.2 53◦ 0.48 5.9 4.0
E2-HB 0.47 74◦ 0.08 5.9 7.0
E3 2.2 77◦ 0.05 9.3 > 9.5
E3-NC 4.1 50.◦6 0.55 9.3 5.9
H1c 0.30 72◦ 0.09 1.3 > 6.0
I1 1.3 24◦ 1.0 0.82 none
Iso1 6.1 67◦ 0.17 2.6 1.7
Iso2 1.74 76◦ 0.06 12.8 > 9.5

Notes.
a Initial cooling time at the innermost radii (∼5 kpc).
b Time of Cooling Catastrophe, when the inner grid point has reached the cooling
floor (see Section 4.2).
c Run time is less than 9.5 Gyr.

geometry evolves to be more azimuthal, the thermal conduction
from outside the core begins to shut off and the temperature
starts to fall. At ∼ 2.7 Gyr, the central temperature has hit the
cooling floor of 0.05 keV–an effective proxy for the cooling
catastrophe. We do not remove gas from the grid after hitting
the temperature floor, and thus, we never see a true “cooling
flow.” We define the time of the cooling catastrophe, tcc, to be
when the average temperature of the inner bin has reached the
temperature floor.

We can explore the magnetic field amplification in slightly
more detail. We bin the magnetic field into radial bins, and

Figure 4. Azimuthally averaged radial temperature profiles in run T1. The HBI
effectively shuts off conduction leading to the cooling catastrophe that occurs
around 2.7 Gyr. The temperature is fixed at 5 keV beyond 200 kpc.

Figure 5. Amplification of the magnetic energy (Equation (28)) in radial bins
during run T1. The HBI produces only a modest dynamo, which is most effective
near ∼100 kpc. The central amplification of the field at late times is primarily
due to flux freezing during the cooling catastrophe.

then for each bin, j, we calculate the local amplification of the
magnetic energy as

Δ(B2)j ≡ B2
j (t)

B2
j (t = 0)

. (28)

Figure 5 shows the amplification as a function of radius at
several times. The HBI amplifies the energy most efficiently
in the middle of the core, just beyond 100 kpc. The high fields at
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Figure 6. Evolution of the components of the heat flux normalized to the instan-
taneous fiducial (field-free) heat flux (Equation (29)) in a shell centered at 100±
40 kpc in run T1. The heat flux is separated into conduction (solid line), con-
vection (dashed line), and mass advection (dotted line). The final saturated
conductive heat flux has a Spitzer fraction of 7%.

late times in the central region are primarily due to flux freezing
as the density increases in the core.

Finally, Figure 6 shows a post hoc calculation of the heat
fluxes. See Section 5.3 of Parrish et al. (2008) for a full
discussion of the heat flux diagnostics. We calculate the
heat fluxes as a shell average within the radial range of
r = 100 ± 40 kpc. We begin by defining a fiducial heat flux
to be the radial flux through the shell if the conduction were
isotropic at the Spitzer value, namely:

Q̃r = −nkBχC(T , n)
dT

dr
. (29)

This value is the same as the heat flux with anisotropic
conduction and purely radial magnetic field lines. We calculate
the conductive heat flux and normalize to the fiducial value to
calculate the Spitzer fraction, or effective conductivity, defined
as

fSp ≡ Qcond/Q̃r , (30)

where Qcond is given by Equation (13). We also define a flux
due to mass advection

Qadv = γ

γ − 1
kB(〈n〉〈T 〉〈vr〉 + 〈T 〉〈δnδvr〉) , (31)

where angle brackets denote shell averages. The final component
of the heat flux is the convective heat flux given by

Qconv = γ

γ − 1
kB(〈n〉〈δvr δT 〉 + 〈vr〉〈δnδT 〉

+ 〈δnδT δvr〉) , (32)

where δ refers to the local deviation from the mean of a quantity,
e.g. δvr ≡ vr − 〈vr〉. The first terms of Equations (31) and (32)
are the dominant terms.

Figure 7. Evolution of the azimuthally averaged temperature profile for run
I1 with purely isotropic conduction. Thermal instability leads to an almost
isothermal state.

The initial Spitzer fraction for tangled magnetic fields is
fSp ≈ 1/3 due to the average over the random field geometry.
From run to run there is some variation in this initial value
as there is mode power on scales larger than our averaging
volume. As the HBI grows, the heat flux is reduced significantly,
eventually saturating at fSpitz = 0.07 (Figure 6). This dramatic
reduction in heat flux leads to the cooling catastrophe. As the
core cools and loses pressure support, the advective heat flux
increases as mass is transported inwards. It is interesting to note
that the convective heat flux is very small, especially during the
HBI phase of the evolution.

For comparison purposes, we also run our fiducial model
with purely isotropic conductivity and radial magnetic fields
(run I1 in Table 1). The HBI is not present for purely isotropic
conduction. Figure 7 shows the evolution of the azimuthally
averaged temperature profile—the cluster reaches an almost
isothermal temperature profile with no hint of the cooling
catastrophe. At fixed pressure, the thermal instability can lead
to either runaway heating or runaway cooling. This is easy to
see by examining the form of the cooling term and conduction.
In the bremsstrahlung regime, cooling scales as T −3/2 at fixed
pressure, while the conduction term scales as T 7/2. For the
case illustrated here, as the temperature is perturbed upwards,
conductive heating increases much more rapidly than cooling.
Thus, the thermal runaway drives the cluster toward an almost
isothermal profile. In this simulation, there is a small amount of
noise which randomizes the field a very small amount, hence
〈θB〉 = 0 in Table 3.

To summarize the fiducial case, we begin with a cluster core
in hydrodynamic and thermal equilibrium. If thermal conduc-
tion were isotropic, the central temperature would latch onto the
heating branch of the thermal instability, continuing to rise. In-
stead, the HBI begins to act on a 100 Myr timescale, reorienting
the magnetic field geometry, and reducing the effective thermal
conductivity from the outer part of the cluster. As the cluster
center becomes denser and cooler, a thermal runaway proceeds,
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Figure 8. Volume-averaged angle of the magnetic field with respect to the
radial direction for run R1. θ = 0◦ corresponds to a radial magnetic field. The
magnetic field geometry is significantly rearranged reaching a maximum of
approximately 65◦ from radial. θ (t = 0) = 0 due to discretization errors.

leading to a cooling catastrophe on a timescale comparable to
the initial cooling time in the core of the cluster.

5. VARIATION OF PARAMETERS

In order to fully understand the behavior of the HBI in galaxy
clusters, we now turn to an exploration of parameter space.
Table 2 lists the various runs in which we vary the cluster
properties, magnetic field strength and geometry, and the central
entropy of the cluster. The following sections describe each of
these experiments.

Table 3 lists the saturation properties of these runs. The
magnetic field amplification, Δ〈B2〉, is given as a volume
average over the cluster. The maximum of the magnetic field
angle, max〈θB〉, is the maximum in time of the volume-averaged
magnetic angle. Likewise, minfSp, is the minimum in time of
the shell-averaged heat flux.

5.1. Radial Magnetic Fields

To assess the importance of the initial magnetic field geome-
try, we consider a split monopole radial magnetic field such that
B(r) = Bc(r/r0)−2 sgn(z). This geometry is useful for illustrat-
ing the effects of the HBI on the equilibrium state. We choose a
mean magnetic field of 1 nG in order to minimize the effects of
magnetic tension on the equilibrium state. The resulting initial
condition has a slightly higher central pressure and density than
our fiducial case. In general, the atmosphere is in the rapid con-
duction limit on all but the largest scales. The choice of radial
magnetic fields gives conduction the best chance of thermally
stabilizing the cluster.

The evolution of the HBI in the radial field simulation is
quite similar to that of our fiducial case. Initially the atmosphere
is in thermal equilibrium with radial fields. Figure 8 shows
the evolution of the volume-averaged magnetic field from the
initially radial (θ ≈ 0◦) geometry. The HBI mode grows rapidly
on a timescale of ∼ 100 Myr and reorients the magnetic field

Figure 9. Azimuthally averaged radial temperature profiles in run R1. After
initially spending time on a heating branch, the HBI shuts off conduction leading
to the cooling catastrophe around 3.6 Gyr.

Figure 10. Time evolution of the components of the heat flux normalized to the
instantaneous fiducial heat flux (Equation (29)) in a shell centered at 100±40 kpc
for run R1. The heat flux is separated into conduction (solid line), convection
(dashed line), and mass advection (dotted line). The final saturated conductive
heat flux is ∼13% of the field-free (Spitzer) value.

to have 〈θ〉 � 60◦ in just over 4 Gyr. Figure 9 shows the
resultant evolution of the temperature profile. The atmosphere
initially latches onto a heating branch of the thermal instability,
peaking at a central temperature of just over 3 keV at 1.1 Gyr.
In the absence of the HBI, it would continue to evolve to an
almost isothermal state as in run I1. Instead, however, the cluster
undergoes a cooling catastrophe after 4 Gyr.

The driver of this cooling catastrophe is easily seen from
Figure 10, which plots the heat fluxes as a function of time at
100 kpc. As the HBI rearranges the magnetic geometry, the
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Figure 11. Color scale shows the temperature in keV and the arrows represent the magnetic field unit vector in the x–y plane for run R1 with an initially radial field.
The plots are at t = 0, 1.6, 4.8, and 9.5 Gyr (from left to right and top to bottom). As the magnetic field becomes more azimuthally wrapped, the cluster core reaches
the cooling floor.

(A color version of this figure is available in the online journal.)

Spitzer fraction plummets to fSp ≈ 0.13. Having reduced the
contact with the thermal bath at large radii, cooling becomes
dominant in the core and the central temperature starts decreas-
ing rapidly. This cooling drives mass inflow to small radii giving
rise to the large inward advective flux at late times. At all times,
the convective heat flux is small compared to both the saturated
conductive heat flux and the mixing length estimate. Figure 11
shows the overall evolution of this cluster in a two-dimensional
slice taken at z = 0. As the magnetic field lines wrap in the
azimuthal direction, the central temperature decrease is easily
observed.

The cooling catastrophe’s vigor is driven by two complemen-
tary properties of the cooling curve. First, at fixed pressure,
the cooling increases as the temperature declines at the center
of the cluster. Second, below 1 keV, line emission from metals
like iron and oxygen becomes increasingly important, scaling as
L ∝ T −1.7. Thus, once gas has cooled below 1 keV, the cooling
is much harder to reverse. Observations show very few clusters
with central temperatures below 1 keV.

5.2. Strong Magnetic Fields

In the previous sections, we have demonstrated the evolution
of the HBI in clusters for weak magnetic fields. Under these
conditions, magnetic tension is not significant. We now consider
a more realistic magnetic field of 1 μG. See Carilli & Taylor
(2002) for a review of cluster magnetic field measurements.
When the tension force becomes comparable to the buoyancy
time, the HBI growth is suppressed at small scales. For example,
for B = 1 μG in our fiducial cluster, magnetic tension becomes
important on scales smaller than 5–20 kpc depending on the
location in the cluster.

The cluster evolution of this case (labeled run T1-HB) is
similar to the weaker magnetic field tangled case. The maximum
field strength we can simulate in this constant field model is
limited since a modest field at the center can be dynamically

important and low-β several scale heights out from the center.
For run T1-HB we find that there is a modest amount of
numerical reconnection that dissipates some of the initial
magnetic energy. A very weak dynamo leads to a maximum
magnetic energy increase of only 5%. The maximum magnetic
field angle and minimum heat flux are quite similar to the lower
field case. In addition, the cooling catastrophe occurs at almost
exactly the same time. Thus, a constant 1 μG magnetic field
provides very little stabilization for our fiducial cluster.

It is interesting to examine the magnetic field geometry in
this simulation from a different perspective, namely, how the
average magnetic field angle varies versus radius. This is shown
in Figure 12. Initially, the angle is distributed as a random
variable about 60◦. At 1.3 Gyr, the HBI has had somewhat
more than 10 growth times to significantly increase the average
angle and decrease the conductivity. By 2.2 Gyr, radial infall
from inhomogeneously cooling material has straightened the
magnetic field out within 30 kpc, enhancing the radial heat
flux. This idea was suggested by Balbus & Reynolds (2008)
as a mechanism for opposing the HBI and slowing the cooling
catastrophe. Unfortunately, by the time the magnetic field has
been straightened out, the plasma within 20 kpc has a mean
temperature of 0.2 keV and a mean density of 〈ne〉 ≈ 1.5 cm−3.
This corresponds to an increase in cooling from the initial
equilibrium of L/L0 ≈ 350. Meanwhile, the average angle in
this region is about 50◦, implying that the effective conductivity
has only increased a factor of 1.7 over the initial value—clearly
not enough to stabilize the equilibrium. Similar behavior is
found for all of our runs that reach a cooling catastrophe.

5.3. Dependence on Cluster Parameters

We now consider the effect of varying the cluster parameters,
as exemplified by runs T2 and T3 in Table 2. We will only
compare the tangled magnetic field geometries since that is the
most physically relevant set-up. Run T2 is modeled on Abell
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Figure 12. Shell-averaged magnetic field angle vs. radius for run T1-HB. At
2.2 Gyr, radial inflow has partially reoriented the field line radially at ∼20 kpc.

2390, a hot, massive cluster. This NFW halo has a larger mass
and scale radius. The core temperature rises from a central
temperature of 4 keV to an outer temperature of 9.5 keV at
300 kpc. We choose the softening radius to be approximately
1/20 of the scale radius as we did for our fiducial case. The
dependence of our results on cluster mass and temperature is
small. The HBI growth time and central cooling time for our
model of A2390 are 130 Myr and 1.1 Gyr, respectively, similar
to our fiducial run. This run evolves in a similar way to run
T1, reaching the cooling catastrophe in 3.2 Gyr with similar
saturated parameters. Due to the vigor of the cooling catastrophe
in this more massive case, the run does not reach 9.5 Gyr, as
most of the mass has collapsed to the central few zones.

In run T3, we examine the effect of changing the initial
thermal profile but not the NFW parameters. This run is the
same as the fiducial case but the temperature now initially varies
from 1 to 6 keV. The physics of how the magnetic geometry is
modified remains very similar; however, the cooling catastrophe
occurs at an earlier time of 1.5 Gyr. The primary reason for this
is that the higher initial central density and lower temperature
make this cluster cool faster to the temperature floor. Thus, we
see only a very weak dependence on the cluster parameters,
mostly being driven by the initial location on the cooling curve.

5.4. Dependence on Central Entropy

Motivated by the discussion of the role of central entropy in
Section 2, we have undertaken a parameter study in central
entropy. The runs T1, E1, E2, and E3 form a monotonic
progression of central entropy from 22.4 to 122 keV cm2. We
have effected the entropy variation by modifying the initial
central temperature while maintaining thermal equilibrium. We
fit our cluster entropy profiles with a power law of the form
of Equation (7). The parameter K0 is typically within 10%–
20% of the central entropy. The primary difference evident in
examining Table 3 is that the time of the cooling catastrophe
increases as K0 increases—reaching a maximum of just over
10 Gyr for the highest entropy case with nG magnetic fields (run

Figure 13. Azimuthally averaged temperature profiles for our high entropy
(85 keV cm2) and high magnetic field (1 μG) run (E2-HB). The HBI-driven
cooling catastrophe is significantly stabilized. The cluster does not hit the
cooling floor until 7.0 Gyr.

E3). This phenomenon is easy to understand since the central
cooling time itself increases as K0 increases.

It is interesting to compare these runs to several high-entropy
simulations without conduction, runs E2-NC and E3-NC. These
runs have cooling but no thermal conduction. First, it is clear
that the central cooling time estimated by Equation (21) is
an overestimate compared to the actual time of the cooling
catastrophe. For example, run E3 has a predicted cooling
timescale of 9.3 Gyr but in fact reaches a cooling catastrophe
without conduction in 5.9 Gyr. Second, these runs without
conduction show that even though the effective conductivity
is reduced by the HBI, the time to a cooling catastrophe is
significantly longer than in the absence of conduction. In the case
of run E3, thermal conduction delays the cooling catastrophe
from 5.3 Gyr to >9.5 Gyr.

We now consider runs T1-HB and E2-HB which have higher
magnetic fields of 1 μG. In the former, the low entropy run,
magnetic tension does very little to stabilize the HBI resulting
in a cooling catastrophe at almost the same time as the 1 nG
case. In the latter, the high entropy run, magnetic tension plays
a more significant role and increases the time of the cooling
catastrophe from 5.7 Gyr (the low field case) to 7.0 Gyr
(the higher field case). Figure 13 shows the evolution of the
temperature profile for run E2-HB. The cooling is especially
slow when the temperature is high. In fact, the time to reach the
cooling catastrophe, ∼ 7 Gyr, is longer than the typical time
between major mergers for galaxy clusters ∼4–5 Gyr (Cohn &
White 2005).

How does a cluster reach the high entropy states for which
the cooling catastrophe can be avoided? Cluster mergers may
provide shocks that heat the cluster and boost its entropy. In
addition, strong AGN feedback may increase the cluster entropy
enough to slow the cooling instability, even in the presence of
the HBI.
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5.5. Isothermal Initial Conditions

As further exploration of the important physics in clus-
ters, we present the results of two simulations, runs Iso1 and
Iso2, that are initialized with isothermal temperature profiles at
4.5 keV. Our usual approach of imposing thermal equilibrium
(Equation (23)) does not work in this case, and the central den-
sity becomes a free parameter for constructing the hydrostatic
equilibrium. By definition, the initial state is not in thermal equi-
librium. The other initial parameters are the same as our fiducial
case.

Run Iso1 has an initial central density of ne0 = 2.5 × 10−2,
which corresponds to an entropy of 52.5 keV cm−1 and a
cooling time of 2.6 Gyr. By virtue of this short cooling time
and the action of the HBI, the core experiences the cooling
catastrophe at 2.1 Gyr. By lowering the central density by a
factor of 5 to ne0 = 5 × 10−3, run Iso2 has a central entropy of
∼ 154 keV cm2 and a cooling time of 12.8 Gyr. After 9.5 Gyr,
this run has developed a slightly relaxed core (Ti ≈ 4.1 keV),
but is very far from the cooling catastrophe.

Starting from the non-equilibrium initial condition, we see
very similar qualitative behavior to our equilibrium model. Runs
with short cooling times develop both the cool core and the HBI
quickly, and runs with long cooling times are much more stable.
In our isothermal clusters the state is merely transient, as even
clusters with long central cooling times and high entropy would
eventually evolve into relaxed, cool-core clusters.

5.6. Resolution Dependence

We perform one high-resolution simulation of our fiducial
case, T1-256, which is a (256)3 tangled field simulation. We
terminate this run at 6.3 Gyr (2/3 of the normal run time) in
light of the large processor time required. All of the qualitative
results discussed thus far hold up at higher resolution. We do see
some minor differences resulting from the increased resolution:
smaller scales are now available on which the HBI can act. The
HBI both amplifies the magnetic energy slightly more and is
able to reach an even larger average magnetic field angle. The
final volume-averaged magnetic field angle of 77◦ corresponds
to an incredibly azimuthally wrapped magnetic field with a tiny
effective conductivity of fSp ≈ 0.034. This precipitates the
cooling catastrophe on a slightly shorter timescale.

5.7. Experiments with Central Heating

Surveys of galaxy cluster cores consistently find X-ray
cavities or bubbles filled with radio emitting plasma or cosmic
rays (e.g., Bı̂rzan et al. 2004; Dunn & Fabian 2006). These
structures indicative of feedback are especially prevalent in
clusters with short central cooling times, roughly the same
population of low entropy clusters mentioned previously. In an
effort to understand the interplay between the HBI and heating,
we proceed with a preliminary analysis of heating in cluster
cores.

A number of groups have proposed cosmic rays from a
central AGN as a heating mechanism. In particular, streaming
cosmic rays can excite Alfvén waves which nonlinearly Landau
damp to heat the plasma (Loewenstein et al. 1991). Guo
& Oh (2008) have demonstrated in one-dimensional models
that a combination of parameterized cosmic ray feedback and
conduction can prevent significant cooling for a Hubble time.
For our test problems, our heating luminosity is parameterized
as in Equation (17) with the initial normalization set by
Equation (18), motivated by Chandran (2005). These heating

Figure 14. Thermal evolution of our fiducial atmosphere with heating in the
central 20 kpc, run H1. The cooling catastrophe is pushed outward in radius.

functions are generic and do not discriminate among cosmic ray
or mechanical energy injection.

The feedback dynamics of the cluster core is qualitatively
simple. As the core cools, the accretion rate onto the super-
massive (∼ 109 M�) black hole at the center of the cD galaxy
increases. As Ṁ increases, the feedback heating increases, slow-
ing the cooling. If heating becomes too effective, the accretion
ceases, and a feedback loop is established. Thus, a simple static
heating model is insufficient, and we instead implement a rough
time-variable version. Namely, we sum the cooling luminosity
within the heating effective radius, rH , at t = 0,

L0 =
∫ rH

0 L(r)4πr2dr

4πr3/3
. (33)

We then calculate the cooling luminosity in a similar way at
every time step and scale the initial heating luminosity to the
current cooling luminosity as

H(t) = L(t)

L(t = 0)
H0. (34)

This methodology is not ideal, but given that we cannot resolve
the Bondi radius on our grid, it is preferable to extrapolating the
central density and temperature down to the Bondi radius; and it
ensures we have an approximate feedback mechanism. It should
be noted that this heating model can be numerically unstable
when the cooling instability has progressed, and large feedback
heating is added within a small region. We will improve
this treatment in future work. As an example calculation, we
take our fiducial atmosphere and add a total initial heating
luminosity of Ltherm = 1043 erg s−1 with a characteristic radius
of rH = 20 kpc. We construct an initial thermal equilibrium
such that heating, cooling, and thermal conduction all balance.
This run, labeled H1, has a very interesting thermal evolution
as is shown in Figure 14.

The HBI proceeds very slowly for this simulation since the
initial average magnetic field is 3.5 μG, strong enough to ex-
ert significant tension. What is especially interesting about this
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run is that the centrally concentrated feedback heating drives a
minimum in the temperature profile at ∼20 kpc after 5.4 Gyr of
evolution. This type of profile, with a minimum slightly offset
from the center, is actually observed in some clusters (Sanderson
et al. 2006). The cooling flow region seems to be simply pushed
outward from the center of the cluster, perhaps evidence that an
additional volumetric heating component is needed. The heating
power at 6 Gyr has increased only modestly to a new value of
6.6 × 1043 erg s−1. Due to the combination of heating and the
HBI the cooling catastrophe occurs much later than the initial
central cooling time of 1.3 Gyr. Unfortunately, we are not able
to follow this run to completion as the sharp temperature dis-
continuity combined with the rapid cooling that follows leads to
numerical instabilities. While not necessarily thermally stable,
this run demonstrates that cluster cores with heating and the HBI
can remain stable for longer than the time between major merg-
ers, although not necessarily a Hubble time. In general, it appears
that the combination of magnetic fields of �1 μG (to slow the
HBI) and a modest amount of AGN feedback significantly slow
the cooling catastrophe, even for low-entropy clusters.

6. DISCUSSION AND CONCLUSIONS

The plasma in the ICM of galaxy clusters is dilute and
magnetized with a mean free path large compared to the
gyroradius. Under these conditions, heat transport is anisotropic
along magnetic fields. This results in the ICM being unstable
to the HBI in regions where the temperature increases outward
(Quataert 2008). The cores of galaxy clusters also often have
short cooling times of � 500 Myr. In order to understand the
thermal evolution of galaxy clusters with cooling and the HBI,
we have performed three-dimensional time-dependent MHD
simulations of galaxy clusters cores.

Isolated galaxy clusters evolved with magnetic fields,
anisotropic conduction, and cooling share a number of common
properties. We begin with a cluster that is in both hydrostatic
and thermal equilibrium. After ∼ 100 Myr, the HBI begins to
rearrange the magnetic field geometry in the cluster core; the
magnetic field saturates with an average angle between the mag-
netic field and the radial direction of ∼75◦. Second, as the mag-
netic geometry is rearranged to be tangential to the temperature
gradient, the magnetic field exerts a thermally insulating effect,
reducing the effective radial thermal conductivity to � 10% of
the Spitzer value. Finally, having reduced the thermal conduc-
tion from the outer parts of the cluster, and lacking another heat
source, the core proceeds to a cooling catastrophe on a timescale
comparable to the initial central cooling time.

We have studied a number of different parameter variations
and find several interesting trends. Motivated by the observa-
tional work of Voit et al. (2008), we have explored the effects
of different initial entropies. For larger central cluster entropies,
the time of the cooling catastrophe is delayed to more than
9.5 Gyr for our highest entropy cluster (122 keV cm2). In ad-
dition, we find that stronger magnetic fields, � 3.5 μG, can
suppress the HBI via magnetic tension forces. The onset of the
cooling catastrophe can thus be delayed in these higher magnetic
field calculations.

We have also carried out initial calculations of the effects
of heating on the ICM using a parameterized heating function
in which the total heating power is proportional to the total
rate of cooling in the central 20 kpc. Despite some difficulty
with numerical instabilities inherent in the method, we find that
modest heating rates of 1043 erg s−1 can substantially delay the

cooling catastrophe to � 5 Gyr, longer than the time between
major cluster mergers. There is, however, some evidence that
centrally concentrated heating may simply move the cooling
catastrophe further out in the core (Figure 14).

Observations and simplified theoretical models both suggest
that there are two distinct quasi-stable cluster states (Voit et al.
2008; Guo & Oh 2008; Cavagnolo et al. 2009). High entropy,
fairly isothermal cluster cores have long growth times for both
the Field instability and the HBI. The longer central cooling
times require less conductive heating to balance cooling. These
thermal states are long-lived even in the absence of mergers.
By contrast, low entropy relaxed clusters (cool-core clusters)
with short central cooling times are unstable to both the Field
instability and the HBI. As we have shown, this population of
clusters cannot be stabilized by conduction alone and must have
an additional feedback mechanism, plausibly the central AGN
but potentially other sources. Observations of cool core clusters
with central entropies K0 � 30 keV cm2 show a number of feed-
back indicators, including Hα emission indicative of cool gas at
104 K, radio emission indicative of AGN feedback, and optical
color gradients indicative of central star formation in the BCG
(Cavagnolo et al. 2008; Voit et al. 2008). High entropy clusters,
in which conduction is more important, generally show none of
these feedback indicators. Our simulations of these high entropy
clusters show that they are thermally stable for cosmologically
long timescales, and that conduction provides a significant sta-
bilizing effect, e.g. runs E2 and E3 (see Tables 2 and 3).

It may be possible for clusters to transition between these
two populations. Relaxed clusters may be promoted to high en-
tropy clusters by significant heating, such as a major merger or
an especially energetic feedback event. Recent work shows that
disruption of cool cores in a merger is possible at cosmologically
early times but difficult at late times (Burns et al. 2008). Alter-
natively, isothermal moderate entropy clusters can eventually
become relaxed cool-core clusters over long timescales.

A key task for future work is to better understand the proposed
heating mechanisms for low entropy clusters. In particular, bub-
bles and jets from an AGN are far from geometrically isotropic.
Not only must the heating be locally efficient, but the heat-
ing must then be distributed by some mechanism azimuthally
around the cluster core to prevent a cooling catastrophe. The
enhanced azimuthal heat transport from the HBI may play a
significant role in redistributing local AGN heating throughout
the cluster core.

In future work, we will examine these heating mechanisms
in more detail including the relevant physics. For the case of
buoyant bubbles, there are many unanswered questions about
the disruption time of the bubbles. This shredding is governed
by Rayleigh–Taylor and Kelvin–Helmholtz instabilities. In the
full Braginskii-MHD treatment, momentum is transported by
ions anisotropically along magnetic field lines. If the bubbles
are indeed draped by magnetic fields, then the RT and KH insta-
bilities will be modified by an anisotropic Braginskii viscosity.
Cosmic rays may play a role in directly heating the plasma by
exciting Alfvén waves (Guo & Oh 2008). Additionally, cos-
mic rays in the buoyant bubbles may also drive convection and
heating through driving nonlinear Alfén waves (Sharma et al.
2009). Finally, galaxy wakes in a full cosmological context can
also provide heating to the ICM (Conroy & Ostriker 2008).
They may also increase the importance of thermal conduction
by competing with the HBI to reorient the magnetic field.

A key lesson of this work is that it is difficult to character-
ize the ICM plasma as having a single thermal conductivity
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parameterized by a constant fSp. Buoyancy instabilities such
as the HBI and MTI directly modify the magnetic geometry
and self-consistently evolve the system to a new state that may
enhance or suppress the effective conductivity. In the cores of
galaxy clusters, the HBI suppresses thermal conduction from
the large heat reservoir at large radii. In the absence of AGN
feedback or very large magnetic fields in cluster cores, it appears
that conduction alone cannot solve the cooling flow problem.
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