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Abstract

The low temperature of the hot bubbles observed in the wind
blown bubbles (WBB) remains a mystery for many years. It is as-
sumed that the heat conduction plays an important role in the cooling
of the hot bubbles. Meanwhile, in a stellar object such as WBB, the
magnetic field can be strong and highly tangled which results in the
anisotropic heat conduction which only allows the electrons to carry
thermal energy along the magnetic field lines. A natural question
is, in the situation such as a WBB, how would the heat transfer rate
which relates to the hot bubble cooling rate be related with the mag-
netic field structure? In this study, we start from two simple cases:
(1) field lines aligned with the hot bubble - cold shell interface; (2)
field lines perpendicular to the hot bubble - cold shell interface. We
explore the relation between the magnetic field topology and the heat
transfer rate by adding tangled field to the above configuration and
demonstrate that the degree of tanglement and the heat transfer rate
has a simple mathematical relation which matches well with the ana-
lytical calculation. This relation can be useful in determining the heat
transfer efficiency when there is a magnetic field in the environment
of astrophysical context.

keywords: magneto-hydrodynamics, planetary nebula, magnetic reconnec-
tion, wind blown bubbles, anisotropic heat conduction
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1 Introduction

The interface bounding hot and cold interstellar medium (ISM) exist in
astrophysics problems of various scales. The thermal conduction through
such interface is critical in determining the heating process of the materials
behind the interface. However, the thermal conduction in ISM is usually
controlled by the magnetic field topology, which allows the electrons to
move freely only along the field lines. This results in a strong thermal
conductivity along the field lines and weak conductivity across the field
lines. When considering ISM, it is usually a valid assumption that the
electrons are totally inhibited from moving across field lines (Braginskii
1965, McCourt et al. 2010), giving the electron mean free path is much
greater comparing to the electron gyroradius. Under this assumption, the
interface bounding the hot and cold materials will be significantly mod-
ified by the presence of tangled magnetic field, creating small structures
at the field variation length scale. One typical example of such problems
being the wind blown bubbles (WBB) which are observed to have hot bub-
ble with observed temperature lower than expected (Zhekov et al. 2010).
Many believe that heating through the hot bubble - cold shell interface
via thermal conduction may have induced the cooling of the hot bubble
(Zhekov et al. 1998, Zhekov et al. 2001). Meanwhile, the presence of the
temperature gradient and global field will continuously cause materials
of the cold side to evaporate, causing interface instabilities and mass mix-
ing (Stone 2009), which would further modify the magnetic field topol-
ogy. Another example is the unexpected slow mass deposition rate of the
cooling flow in central galaxy cores, for which many suggest is a result of
global thermal conduction (Rosner et al. 1989, Balbus et al. 2008, Mikel-
lides 2010). In the situation of intracluster medium (ICM), the tangled
magnetic field often renders a high anistropic thermal conductivity that
may significantly change the temperature and density profile (Narayan et
al. 2001, Mikellides et al. 2010). The key questions here are: (1) does the
interface evolve into an instability driven by the anisotropic thermal con-
duction or a steady state stabilized by the anisotropic thermal conduction?
(2) how fast is the thermal exchange between the hot and cold sides com-
paring to the isotropic thermal conduction case taking into account the
dynamic feature of the interface? In this paper, we investigate the various
situations with different magnetic field configurations imposed on a pla-
nar hot cold interface and study the effect of the tangled magnetic field on
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the evolution of the interface. Using ASTROBEAR code with anisotropic
thermal conduction, we run simulations with different initial setup. In
section 2, we review the basic equations of MHD with anisotropic thermal
conduction. Sections 3 and 4 provide detailed description of the simual-
tion setup, section 5 and 6 present the simulation results and analysis. In
section 7, we apply the simulation results to astrophysical problems at dif-
ferent scales: the WBB cooling problem and the cooling flow problem in
cores of galaxy clusters. The appendix offers detailed information on the
testing of ASTROBEAR code.

2 MHD Equations with Anisotropic Heat Con-
duction

The MHD equations with anisotropic heat conduction are:

∂ρ

∂t
+∇ · (ρv) = 0, (1)
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4π
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where E denotes the total energy:

E = ε+ p
v · v

2
+

B · B
8π

(5)

and the internal energy:
ε =

p

γ − 1
(6)

with γ = 5/3. In our simulation, it is assumed that the heat flux is confined
to be parallel to the magnetic field lines. This assumption is valid when the
electron gyroradius is much smaller compared to the scale of the problem,
i.e. the magnetic field strength has a threshold to let the anisotropicity
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to be effective. Under this assumption, the anisotropic heat flux can be
written as:

Q = −κ‖(∇T )‖ (7)

where κ‖ is the classical Spitzer heat conductivity. We assume the heat con-
ductivity to be a constant throughout the simulation and will be writing it
simply as κ.

The ASTROBEAR code uses operator splitting method to treat the MHD
equations with heat conduction. The ideal MHD equations are solved with
the MUSCL primitive method with TVD preserving Runge-Kutta tempo-
ral interpolation, the result is then sent to the implicit linear solver utiliz-
ing High Performance Preconditioners (HYPRE) to solve the anisotropic
heat conduction equation. The linear solver requires temporal sub-cycling
technique to maintain its accuracy. The time step taken by the linear solver
can be written as:

tdiff =
ρl2

κ
(8)

where l is the minimum scale length of the temperature variation: l =
min(T/|∇T |). The code runs in parallel with fixed grid domain.

3 Problem Description and Analytical Model

The problem involves a hot region and a cold region which are sepa-
rated by a thin planar interface. We will study how the magnetic field
configuration alters the heat transfer rate between the hot and cold regions
in presence of anisotropic heat conduction.

We begin by considering two simple but illustrative cases: (1) a uniform
magnetic field aligned with the normal direction of the interface; (2) a uni-
form magnetic field perpendicular to the normal direction of the interface.
In case (1), because of the angle between the magnetic field and the tem-
perature gradient is zero everywhere, the anisotropic heat conduction acts
exactly the same as isotropic heat conduction. In case (2) however, the an-
gle between the magnetic field and the temperature gradient is always 90◦,
thus the interface would stay unchanged. If we define a heat transfer rate
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η that is normalized by the transfer rate in the isotropic conduction case,
namely:

η =
q

qi
(9)

then the average angle θ between the temperature gradient and the uni-
form magnetic field plays an important role in determining η. At θ = 0,
η = 1. At θ = π/2, η = 0.

Figure 1: The initial and steady state field configuration. (a): the initial field
forms complete loops that only allows heat transfer within the interaction region.
(b): the steady state field reconnects itself so that it allows heat transfer between
regions deeply into the hot and cold areas. We call the interaction region in (b)
the “field membrane” because it allows the heat transfer between the hot and
cold areas but the transfer is slower than the isotropic case since the heat flux is
confined on the field lines.

We now consider the following configuration: there is a strongly tangled
local field B0 whose average on the normal of the interface is zero. There
is also a global magnetic field Bd aligned with the normal of the interface.
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If Bd � B0, the magnetic field around the interface merely deviates from
the normal direction and η should be close to 1. If Bd � B0, one would
expect that there will be local energy redistribution, but the global energy
transfer should be slow. Thus the global temperature structure should
remain unchanged and η should be close to zero although an expansion of
the interface will still occur.

If Bd and B0 are comparable, η should be between zero and one. η in
this case will change throughout the evolution since the strucuture of the
magnetic field will be modified by the heat transfer. One may ask whether
the feedback from magnetic field topology evolution will amplify the en-
ergy channeling by creating more channels or shut it down eventually. If
the feedback is positive, one would expect a continuous increase on the
overal heat flux and expansion of interface in the weak global field case,
resulting in the locally connected field loops to reconnect to the global field
structure, making the heat flux be able to penetrate. Otherwise one would
expect the isolated local field loops to stay for longer period of time.

From now on we will call the tangled field region the interaction region.
Fig.1.(a) shows the initial and steady state field configuration in such a
tangled field interface situation. From the figure we can see that the ini-
tial field configuration forms a ”wall” which does not allow the energy
transfer between the two ends of the interaction region. But the steady
state sees an expansion of the interaction region and magnetic reconnec-
tion which allows the field to penetrate through the entire region so that
the field wall is destructed. In this paper, we will call the destructed field
wall as the “field membrane”, which describes a stable region with tan-
gled field distribution that allows a certain amount of heat to penetrate
through in terms of anisotropic heat conduction, as in Fig.1.(b). In the fol-
lowing study, we will check whether our assumption of the formation of
field membrane is valid or not in the numerical simulation and quantita-
tively discuss its effect on the energy transfer.
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4 Simulation Setup

To study the hot - cold interface energy transfer in circumstances such
as the WBB, we construct the initial condition by setting up an interface at
pressure equilibrium. The temperature follows the distribution:

T (x) = T0(1− x2)1/2.5 (10)

in the region of 0 < x < 1 − 10−5 with T0 = 100 in computational units.
Later we will see that our simulation can be used to describe certain real
astrophysical situations once correct scaling parameters are chosen. The
temperature distribution is plotted in Fig.2.(a). The region 0.4 < x < 0.5
is the interaction region we defined in the previous section. At the two
sides, the temperature is set to be constant and continuous from the ends
of the interaction region. During the simulation, we are only interested
in the region where the heat transfer can have a noticeable impact during
the simulation run time. In other words, we will focus ourselves on the
region surrounding the interaction region, not regions deeply into the hot
material. The horizontal length of the simulation domain is 0.1 in compu-
tational units. The thermal pressure is set to be in equilibrium:

P (x) = P0 (11)

with P0 = 100. The density distribution is set up by the perfect gas law,
namely:

ρ(x) =
P (x)

T (x)
(12)

For the Spitzer diffusion constant, we use the approximation of κ = κc T
2.5
mid,

where κc is the classical conductivity, and Tmid is taken to be the middle
value of temperature across the interface, which is about 0.6T0.

In our study, we choose the field configuration:

Bx = Bd +B0 sin(nπ y/λ), (13)

By = B0 sin(nπ x/λ) (14)

where n and λ are the mode number and wavelength of the tangled field
respectively, B0 = 10−3 in computational units, and Bd can take various
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values to reflect the gradually changing global field comparing to B0. This
field configuration creates a locally tangled field surrouding the interface.
We use ratio

R = Bd/B0 (15)

to describe the ”tangleness” of the magnetic field. R = 0 indicates locally
confined field lines, R = ∞ indicates straight field with all the field lines
go from the hight temperature region to the low temperature region with-
out any twist. One can imagine that with 0 < R < 1, the field lines will
be twisted and form sets of circles, but some of the loopss are incomplete
so that some of the field lines still go from the hot region into the cold
region which become channels for energy transfer. In our simulation, we
will consider cases withR = 0.0, 0.2, 0.4, 0.6, 1, 2, 4, ∞. Fig.2.(a), Fig.4.(a)
and Fig.5.(a) show the magnetic field configuration for initial R values of
0.0, 0.4, 1.0.

We run the simulation with standar resolution 2048 cells on the x axis in
fixed grid. Runs with doubled resolution are also carried out, the results
of which demonstrate no significant difference comparing to the standard
resolution runs. We use fixed boundary condition on the x direction: the
pressure, density and temperature at the two ends are fixed to their initial
values so as the magnetic field. By this boundary condition, the two ends
on the x axis can be seen as the regions deeply into the hot and cold re-
gions, whose thermal dynamic variables stay constant. On the y axis, we
use the periodic boundary condition.

There are five parameters involved in the simulation:

1. Magnetic β. β has little effect on diffuson since the field lines only
determine the direction of the diffusion. However, extremely large β may
affect the anisotropicity of the system. By contrast, extremely small β may
result in pressure imbalance in the initial condition. In our simulations, β
falls in the range that it does not cause a strong pressure imbalance (the
magnetic pressure is 10−8 in magnitude comparing to the thermal pres-
sure), and also does not affect the anisotropicity (effective gyroradius is
about 10−5 of the scale of the problem considered).
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2. Tangle vs straight measure: R = Bd/B0. IfR is large, the local tangled
field can mostly be ignored, we would get high energy transfer efficiency,
and vice versa.

3. Ratio of the diffusion time scale and the hydrodynamic time scale:
r = tdiff/thy. By simple physics consideration, we have:

r =
ρCs l

κ
(16)

where l is the characteristic scale length of temperature: l = min( T
|∇T |),

Cs is the sound speed, κ is the linear diffusion constant. The initial kick
is driven by the diffusion, the later evolution of the system depends on
the value of r. If r is much smaller than 1, diffusion would dominate the
initial phase and the pressure equilibrium may be broken by the fast en-
ergy transfer, if r is large, then the pressure equilibrium is well maintained
throughout the entire process and the energy transfer may be viewed as
a slow relaxation process. In the cases when the two time scales are com-
parable, both effects are present. In our simulation, r ≈ 0.3 initially, so
that the diffusion would trigger the heat transfer and pressure imbalance
fastly at first. Then the hydrodynamics process would catch up and be-
come faster than the diffusion process as a result of the decreasing of the
temperature gradient and the fast expansion of the interface.

4. Ratio between the temperature scale length and the wavelength of
the tangled field: h = 2 π l/λ = k l where l follows the same definition as
that in the previous paragraph. h = 0 marks the situation of no tangled
field, which means there is nothing inhibitting the energy transfer. As
h gets larger, the field becomes more confined, the energy is harder to
transfer in the tangled field region, but a large h value may also result in
a large chance of magnetic reconnection. The number of modes may also
affect the result. We currently only look at the single mode case in which
the spectrum is a delta function.

5. Mean global energy transfer rate: η = 1/tbal, where tbal can be de-
fined as the time needed for the hot region and cold region to reach a
certain degree of temperature equilibrium.

9



A mathematical expression for the heat transfer rate can be derived by
considering a slab with a sharp temperature interface aligned with the y
direction and an average temperature gradient aligned on the x direction.
There is an interaction region surrounding the temperature interface with
tangled magnetic field in it. Define the global temperature gradient as
|∇T |g = (Thot − Tcold)/(T0 L), where the subindices “hot” and “cold” de-
note the characteristic temperatures of the hot and cold regions, T0 is a
normalization factor which makes |∇T |g having dimension of 1/length,
L is the width of the interaction region. We can then integrate over the
interaction region to obtain the effective heat flux through this region:

q = D |∇T |g
∫ Bd

|B|
dx dy (17)

where D is a constant that depends on neither the magnetic field nor the
temperature distribution, |B| is the local field strength. Notice that this
expression is valid only when the magnetic field is varying at a length
scale smaller than the interaction region length.
Using Eqs.(13), (14) and (15), we find the approximated relation

q ≈ D
|∇T |g R√

1 +R2
(18)

Meanwhile, in the isotropic heat conduction case, the heat transfer rate
purely depends on the temperature gradient:

qi = D |∇T |g (19)

Deviding Eq.(18) by Eq.(19), we get the appoximated heat transfer effi-
ciency over the interaction region to be:

η =
R√

1 +R2
(20)

Thus if the initial temperature profiles are identical for different field con-
figurations, i.e. if |∇T |g are the same for the cases we are looking at, we
can calculate the energy tranfer rate from situations with various field con-
figuration and normalize them by the heat transfer rate of the isotropic
heat conduction case to obtain the heat transfer efficiency. Later we will
plot the heat transfer efficiency (η) against the field configuration (R) in
our simulation results to verify the approximate relation Eq.(19).
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If magnetic reconnection happens during the transfer process then chan-
nels can be opened up and the energy exchange process can be accelerated,
we would expect the actual curve of η vs R to be higher than the value
Eq.(20) predicts at regions where R is low. Meanwhile, at regions of high
R, the analytical prediction and the real physical outcome should both ap-
proach the horizontal line η = 1, which denotes perfect efficiency.

5 Simulation Result

We choose field set up with values R = 0.0, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0 to
run the simulations. The simulation run time is taken to be 1.2 which cor-
responds to 0.6 million years in real units for the problem of WBB. The
initial cuts of temperature and magnetic field lines for R = 0.0, 0.4, 1.0 are
shown in Fig.2.(a), Fig.4.(a) and Fig.5.(a) respectively. Fig.3.(a) shows the
initial cut of the density distribution in the R = 0.0 run. We also run sim-
ulations with purely horizontal magnetic field lines which is equivalent to
the R = ∞ case and purely vertical field lines. The rest frames in Fig.2 to
Fig.5 are from the later stages of the evolution, and the final frames always
display the steady state of the runs.

In Fig.6, we plot the mean cut temperature Tc against the x position for
selected evolution time. Tc is obtained by averaging the temperature on
the y direction, because the question we are interested in is how the heat
transfer would perform along the x axis. Since initially the anisotropic heat
conduction is faster than the hydrodynamic process, the energy distribu-
tion around the temperature interface will see a fast change until about
t = 0.4. This energy transfer is mostly confined to the interaction region
for the low R runs, because in these cases there are little to no field lines
that can penetrate into the entire interaction region.

During this initial heat exchange phase, the thermal energy quickly re-
distribute itself in the interaction region as well as the density. As we can
see from Fig.2.(b), islands at x = 0.48 are formed by materials bounded by
the magnetic field lines, since they cannnot exchange heat with the envi-
ronment.
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Figure 2: Evolution of temperature distribution with R = 0.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.

The mass flow from the cold material pushes the interface, being heated
up and forming an evaporation which is subject to interface instability
because of the materials being accelerated to super-Alfven speed at the in-
terface. This instability does not grow further but is rather suppressed be-
cause of the tangled field lines. There are also cavities formed in between
the spikes at around x = 0.4 because the thermal energy is inhibitted from
flowing out of them. The magnetic field lines, which forms complete sets
of loops in the R = 0.0 case, begin to distort. We can see that the field
lines are distorted heavier in the low density part of the interaction region
rather than in the high density part, because of the different speed they
gain during the density redistribution. At time t = 0.8, we observe that
the field lines surrounding the holes at x = 0.4 reconnect, making the ther-
mal energy of the outter part of the holes begins to exchange. Field lines
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Figure 3: Evolution of density distribution with R = 0.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 4: Evolution of temperature distribution with R = 0.4. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 5: Evolution of temperature distribution with R = 1.0. The cuts are at (a):
t = 0.0, the initial state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.

that run from the high temperature region on the left side to the low tem-
perature region deeply into the interaction region begin to emerge, making
possible the energy exchange between the hot side and the cold side. This
phenomenon is more apparent in Fig.2.(d), which marks the final state of
the thermal energy exchange. We also see that there are little difference
between Fig.2.(c) and Fig.2.(d), because at the later stage of the process,
the magnetic field configuration is approaching the steady state by which
we mentioned as “field membrane” earlier in this paper. It is impossible
for the temperature gradient to drive the material to move further at the
steady state since the field membrane allows a certain degree of tempera-
ture jump to happen across it. This effect is also apparent by comparing
Fig.6.(c) with Fig.6.(d), in which we observe that the mean cut temperature
distribution changes little for all the different R values investigated. The
mean cut temperature Tc sees a sharp jump in the region of x = 0.35 ∼ 0.5,
but is relatively smooth on the two sides. Because except for the interac-
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tion region which later becomes the field membrane and induces a tem-
perature jump, the two sides of the domain are mainly governed by the
heat conduction under horizontal magnetic field, which is identical to the
situation of isotropic heat conduction.

For the cases of R = 0.4, there are field lines that penetrate the en-
tire interaction region from the start. By observing the evolution of the
magnetic field lines at about x = 0.38, we find that there are still mag-
netic reconnection happenning, which causes the magnetic blobs to merge.
The observed behavior resembles the process displayed by Fig.(1). When
R = 1.0, we can hardly find temperature islands that are bounded by mag-
netic blobs. The topological evolution of the field lines is better decribed
as being straightened.

6 Discussion

We first analyze the evolution of heat flux. The average heat flux per
computation cell for different R values is plotted as a function of time in
Fig.7.(a). The two processes in effective are the temperature equilibration
across the interface and the evolution of the magnetic field topology. From
Fig.7.(a), we can see that the average heat flux for R = ∞ remains zero,
which indicates that the field structure inhibits heat transfer completely
across the interface. For cases with R > 1, heat flux decreases through-
out the evolution because of the temperature equilibration. For the other
R values, especially those of R < 0.5, a phase of heat flux amplification
is observed. This shows that the magnetic reconnection occurred in the
early phase of the evolution which tends to open up channels for heat to
transfer from hot region to cold region. At the late stage of the evolution
when there are enough channels opened up, the temperature equilibration
becomes the dominating effect which leads to a similar decreasing phase
as observed in theR > 1 cases. The similarity between theR > 2 cases and
the R = ∞ case is predicted by Eq.(20): as the global field getting strong,
the inhibition imposed by the local tangled field tends to be ignorable.

The influence of magnetic reconnection on the heat transfer can be demon-
strated comparing the averaged heat flux of the following two cases shown
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Figure 6: Evolution of mean cut temperature averaged on y direction with dif-
ferent R values labeled by different colors. The cuts are at (a): t = 0.0, the initial
state, (b): t = 0.4, (c): t = 0.8, (d): t = 1.2, the steady state.
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Figure 7: (a) top left: time evolution of mean heat flux at the interface, (b) top
right: time evolution of average temperature difference between the hot and cold
regions, (c) bottom left: time evolution of interface width, (d) bottom right: time
evolution of the mean value of |curlB|

in Fig.8.(a): (1) temperature interface with tangled field filling up the entire
domain and (2) temperature interface with tangled field filling the region
surrounding the interface, the rest of the domain is filled with straight field
lines. Case (1) is much slower in terms of heat transfer comparing to case
(2) since the reconnected field lines in case (2) are connected to the global
straight field lines, comparing to those in case (1) reconnects only to form
larger field loops. Another comparison is also made to demonstrate the
impact of the scale length of field loops on the reconnection rate, which is
shown in Fig.8.(b). Here we plot the averaged heat flux at time t = 0.3 for
three different field loop length scale: λ as used in the previous simulation
result, 2λ and λ/2. We can clearly see from the plot that the run with the
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Figure 8: (a) Comparison of averaged heat flux for situation with field loops
filling up the entire domain and situation with field loops only fill the interaction
region. (b) Comparison of averaged heat flux for situations with different tangeld
field length scale.

smallest field loop length scale has the greatest averaged heat flux which
indicates the strongest reconnection rate.

We next analyze the two contributing physics processes in detail. The
temperature equilibration across the interface is plotted in Fig.7.(b). It
shows the difference between the averaged temperature at the hot side
and the cold side. One significant feature in Fig.7.(b) is that the tempera-
ture difference decrease to a steady value Tend in all cases. This resembles
the percolation of a membrane which allows a density jump to happen
when filtering two fluids. Fig.7.(c) shows the distance required for the
temperature to drop 80 percent at the interface. This distance character-
izes the length of the interaction region. Except for the vertical field case
where no heat transfer is allowed, the interface is expanding for all differ-
ent R values at a different rate. The expansion for all the cases of nonzero
R approach a steady value which is also a characteristic feature of the tem-
perature equilibration evolution.

We now analyze the second aspect in the evolution: the modification on
magnetic field configuration. Throughout our simulations, the local mag-
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netic field is initially a set of complete loops surrounding the interaction
region. Once the energy transfer begins, the interaction region tends to ex-
pand as discussed previously. This expansion stretches the field lines on
the x direction and results in the distortion of these circular loops, which
eventually induces the magnetic reconnection which oppens up channels
connecting the hot and cold regions. In our analysis, we use JB = |curlB|
as a characteristic value measuring the degree of magnetic field tangle-
ment. Fig.7.(d) shows the evolution of the mean value of the strength of
curlB in the interaction region. We observe that in the vertical and straight
field case, |curlB| remains constant, but decreases to a fixed value forR ≥ 2
cases. This means the field in highR cases is straightened by the stretching
of the interaction region as seen in Fig.7.(c). For the R ≤ 1 cases, |curlB|
increase. This is due to the energy deposited into magnetic field in the
interface instabilty with low R.

Figure 9: (a) Comparison on evolution of local field energy in terms of Bx and
By. Circles corresponds to the B2

x/2 curve, stars corresponds to the B2
y/2 curve.

The different colors denote various R values. (b) Eccentricity of the ellipses con-
structed by assigning the mean values of local |Bx| and |By| to the major and
minor axes, respectively. The set of curves show different evolution patterns for
different R values.

The local field distortion can be clearly demonstrated by studying the
energy evolution of magnetic energy stored in forms of Bx and By. In
Fig.9.(a), we plot the evolution of mean magnetic energy stored in the ver-
tical field, namely B̄2

y/2, comparing to that stored in the mean horizontal
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field B̄2
x/2. Notice that to exclude the influence of the global field, here we

only count in the tangled field part. From Fig.9.(a), we observe that the
By energy decrease while the Bx energy either increase or stay stable for
all cases. The magnetic energy evolution can thus be viewed as a conver-
sion of field energy from vertical pointing to horizontal pointing, made
possible by the magnetic reconnections. However, this conversion may
not conserve the total magnetic energy of the local tangled field, because
of the existence of the induced interface instability and magnetic recon-
nection. By comparison, in the R > 1 cases, the thermal energy and local
magnetic energy would both decrease and add to the kinetic energy of the
material surrounding the interface, because of the fast diffusion caused
by the strong global field. The distortion of the local field loops can also
be demonstrated by plotting the mean eccentricity of the field loops. In
Fig.9.(b), we plot the mean eccentricity evolution. For all cases, the mean
eccentricity is zero initially because of the circular shape of the field loops.
Later in the evolution, large R cases tend to evolve into a state of large
eccentricity at the steady state. This is due to the fast expansion of the
interface induced by the strong global field. To summarize the character-
istics of the magnetic field topological evolution, large R value induces
more distorted local field loops and less tangled total field with the fast in-
terface expansion, while small R values results in less eccentric local field
loops but with more tangled total field and strong magnetic reconnection.

To compute the estimated heat transfer rate in the simulation, we cal-
culate the averaged slope of the curve plotted in Fig.7.(b), and compare it
to the analytic model in Section 4. Although the equilibration rate repre-
sented by the slope of the curves in Fig.7.(b) is changing throughout the
evolution, an early phase of the evolution can be chosen when the field
configuration has not been modified significantly and comptute the aver-
aged heat transfer rate. By comparing the heat transfer rate under vari-
ous situations with different R values and the ideal heat transfer rate with
magnetic field parallel to the gradient. We can then find out the heat trans-
fer efficiency under different field topologies. From Fig.10, we can see that
the two agree quite well except for the situation when R is below 0.2. The
simulation result does not converge to point (0,0) but ends at an intercep-
tion on the y axis. This interception indicates that even if there are few
to no channels for energy transfer initially, the magnetic reconnection can
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Figure 10: heat transfer rate observed in the simulation compared with the ana-
lytic model

open up channels and allow the heat transfer to happen. Eq.(20) is valid
for predicting the cooling rate of the hot material throughout the early
phase of the heat equilibration process. It also offers us insights on the
strength of the local field around the interface once we know the cooling
rate and the global magnetic field strength.

As a quick summary of the discussion, we find that the average heat
flux is in general a decreasing function for all R values, the curve also has
an inital increasing phase which denotes the stage of strong magnetic re-
connection. The average temperature difference decreases to a constant
value Tend which is a function of initialR. Because of this feature, the mag-
netized interface can be viewed as an “energy membrane” that allows a
certain energy jump to happen. The width of the interface expands to a
fixed value during the simulation. The term that describes the structural
change of the magnetic field is JB. It decreases to a constant value for large
R cases while increases to a constant value for small R values. We proved
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that Eq.(20) can be used to estimate the energy transfer rate in the case
of complex field topology by considering the relative strength of the local
field and the global field. For those cases with R, Eq.(20) becomes invalid
since the energy transfer in these cases are mainly induced by a feedback
from the magnetic field reconnection. By comparing cases with different
field loop length scales, we demonstrated that the smaller the field loop
length scale, the faster the reconnection rate.

7 Astrophysical Applications

Variables Computional Units WBB
Number Density 1 1 cm−3

Temperature 100 1 kev
Domain Length 0.1 0.1 pc

Local Field Strength 10−3 2−8Gauss
Global Field Strength 10−4 2−9Gauss

Evolution Time 1.2 60, 000 yrs
Heat Conductivity 10−2 2× 10−18 cm s g−1K−2.5

The problem of magnetically modified temperature interface exist in
many astrophysical contexts. One long-standing problem being the ob-
served low temperature of the hot bubble in a Wind Blown Bubble (WBB)
formed by a stellar wind. The WBB is predicted to have hot bubbles with
a characteristic temperature greater than 2 kev, but the temperature ob-
served from X ray emission detections is located at the 0.5 kev to 1 kev
range (for details of observed NGC 6888, see Zhekov S.A. et al. 2010).
This seemingly unnatural low temperature can be related to radiative cool-
ing, or heat conduction. By scaling our computational data with the real
physics data and putting into simulations, we find out two facts that are
important in determining the actual temperature history of the WBB evo-
lution: (1) the heat conduction in the WBB is strong enough to alter the
evolution and impose an important influence on the temperature of the
expanding hot bubble and the cold shell bounding it; (2) the magnetic
field in the WBB, usually in the mili-Gauss range, is much stronger than
the field strength in the simulations. Thus the magnetic field in a realistic
WBB is usually strong enough to regulate the behavior of heat conduction.
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Since the heat transfer does not directly depend on the magnetic beta, we
can thus apply our analysis to the WBB interface if we approximate the
interface to be planar and stationary, which is accurate as the radius of
WBB being much greater than the scale of the problem considered. We
also assume that the global magnetic field is mostly radial. The computa-
tional parameters used in our simulations and the real physics parameters
typical in a WBB is listed in the first two columns of Tab.1. We choose the
domain length to be 0.1 pc, which is about 4 percent of the radius of the
actual WBB. Tab.1 shows that by choosing the proper scaling, our simula-
tion fits well with the data observed in a typical WBB. Therefore, the con-
clusions we draw by analysing the simulation results and the analytical
expressions, especially Eq.(20), can be used in analysing real WBB evolu-
tion.

8 Conclusion

The problem of heat transfer efficiency of a region filled with tangled
magnetic field lines is crucial to many astrophysical problems. In this
paper, we investigate this problem using the simulation results of AS-
TROBEAR code with anisotropic heat conduction. There are three con-
clusions that are : (1) hot and cold regions separated by a tangled field
region with only locally confined field loops and no field lines penetrat-
ing through may still have heat transfer because the local redistribution
of fluid elements bend the field lines and lead to magnetic reconnection
that can eventually connect the hot and cold regions on the two sides. (2)
the equilibration of temperature through such a penetrated tangeld field
region tends to reach a steady state dependent on the energy difference of
the hot and cold reservoirs on the two ends, the steady state field configu-
ration allows a certain jump of temperature which prevents an isothermal
final state. (3) we can use Eq.(20) to determine the when both confined
local field and straight global field are present to estimate the heat transfer
efficiency across the interface.
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9 Future Works

The future works of this study may include a multi-mode study, which
investigates the impact of the spacial spectrum of the magnetic field dis-
tribution on the heat transfer efficiency and the topological evolution of
the thermal dynamic variables. The interception on the y axis in Fig.13
indicates the R = 0 case heat transfer efficiency. When there are multiple
modes or spectrum is continuous, it would be useful to predict how the
efficiency would depend on the spectrum. One of the limitation of the
study presented in this paper is that it rules out the regions where mag-
netic field becomes weak in the tangled field region, which creates a small
area where isotropic heat conduction may become possible. This will cre-
ate a leaking channel through the tangled field region even if the global
field is zero. Thus it may be helpful to study the anisotropicity effect as
a follow-up study. We also know that the radiative cooling would be ef-
fective once the temperature is above 104 k. Since in our simulation the
temperature has an order of magnitude of 107 k, the cooling would have a
noticeable influence on the evolution. Another possible direction is to run
the simulation of the hot cold interface with anisotropic heat conduction,
radiative cooling, turbulence and gravity present.

Appendix: Code Test

We use the magneto-thermal instability (MTI) problem to test the ac-
curacy of the ASTROBEAR code with anisotropic heat conduction. The
problem involves setting up a 2D temperature profile with uniform grav-
ity pointing on the y direction. The domain is square with length of 0.1 in
compuational units. The temperature and density profiles are:

T = T0 (1− y/y0) (21)

ρ = ρ0 (1− y/y0)2 (22)

with y0 = 3. The pressure profile is set up so that the fluid can be bal-
anced under uniform gravity with gravitational acceleration g = 1 in com-
putational units. We also set T0 = 1 and ρ0 = 1 in computational units.
There is a uniform magnetic field on the x direction with field strength
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B0 = 1.0× 10−3 in computational units. The anisotropic heat conductivity
is set to be κ = 1× 10−4 in computational units. We use the pressure equi-
librium condition for the top and bottom boundaries, that is, the pressure
in the ghost cells are set up so that its gradient can balance the gravita-
tional force. On the x direction, we use the periodic boundary condition.

Figure 11: Field line evolution of magneto-thermal instability. (a): initial state.
(b): t = 75τs. (c)t = 150τs. (d):t = 250τs.

Initially, the domain is in pressure equilibrium. We then seed a small
velocity perturbation:

vper = v0 sin(nπ x/λ) (23)
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with v0 = 1 × 10−6 and λ = 0.5. This perturbation will cause the fluid
elements to have a tiny oscillation on y axis as well as the field lines. Once
the field lines are slightly bent, they open up channels for heat to transfer
on the y direction thus allowing the heat on the lower half of the domain
to flow to the upper half. It can be shown that this process has a positive
feedback so that once the heat exchange happens, more channels will be
openned up for heat conduction. Therefore this process forms an instabil-
ity whose growth rate can be verified according to the linear theory on the
growth rate of weak field stratified atmosphere. We use τs to denote the
sound crossing time for the initial state. Fig.11 shows the time evolution
of the field lines at various stages in our MTI simulation.

Figure 12: (a): ln vy against evolution time in τs. (b): calculated growth rate
against evolution time in computational units. Initially the growth rate is stable
around the theoretical value 0.4 and then decreases sharply after t = 200, which
indicates the evolution has entered the nonlinear regime.

We study the MTI growth rate by considering the acceleration of the
fluid elements. The mean speed on the y direction for the fluid should
follow the exponential growth:

vy = vpere
γ t (24)

where vper is the strength of the initial velocity perturbation applied, γ
denotes the growth rate in the linear regime. We obtain the growth rate
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Figure 13: (a): evolution of mean kinetic energy. (b): evolution of mean magnetic
energy.

γ by plotting ln vy against the evolution time and then measuring the lo-
cal slope through a certain time span. The ln vy vs t curve is plotted in
Fig.12.(a), which shows a nice linear relation. We plot the growth rate
against evolution time. It should be stable around the theoretical value 0.4
initially and then decrease sharply due to the nonlinear effect. Fig.12.(b).
shows that the simulation meets our expectation fairly well.

Next we look at the energy evolution in the linear regime. The mean
kinetic energy should first stay stable and then enter into an exponential
growing phase until it hits a cap at around t = 200 which denotes the start-
ing of the nonlinear phase. The evolution of magnetic energy should fol-
low similar pattern as to the kinetic energy evolution, but lagged behind.
In Fig.13, we plot the time evolution of the mean kinetic and magnetic
energy evolutions. The results confirms the physical intuition quite well.

The dispersion relation of MTI can be expressed as a function of

φ = (γ − 1)
κ k2

Nρmid
(25)

where k = 2π/λ, N is the Brunt − V äsälä frequency. Here we use the
mid value of ρ. We can plot the MTI growth rate against φ to obtain the
dispersion relation shown in Fig.14.(a).
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Figure 14: (a): the dispersion relation of MTI linear growth. (b): impact of field
tension on the growth rate

Finally we study the impact of magnetic tension on the MTI growth
rate. A strong initial field would provide a tension force that tends to sta-
bilize the exponential growth. Thus intuitively the growth rate would be
negatively correlated to the initial Alfv́en speed. When the Alfv́en speed
approaches the value threshold value γmax/k, we would expect a strong
stabilizing tension to kill the instability growth. We use the stabilizing
parameter as a function of

η =
k2v2A
γ2max

(26)

Here vA is the initial maximum Alfv́en speed, γmax is the maximum
possible growth rate which can be derived from the mid values of the ini-
tial temperature and pressure profiles. We plot γ against ln η in Fig.14.(b).
We see that the field tension becomes increasingly effective as η approach-
ing 1.
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