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ABSTRACT

We analyze the mixed-frame equations of radiation hydrodynamics under the approximations of flux-limited
diffusion and a thermal radiation field and derive the minimal set of evolution equations that includes all terms that
are of leading order in any regime of nonrelativistic radiation hydrodynamics. Our equations are accurate to first
order in v/c in the static diffusion regime. In contrast, we show that previous lower order derivations of these equa-
tions omit leading terms in at least some regimes. In comparison to comoving-frame formulations of radiation hydro-
dynamics, our equations have the advantage that they manifestly conserve total energy, making them very well suited
to numerical simulations, particularly with adaptive meshes. For systems in the static diffusion regime, our analysis
also suggests an algorithm that is both simpler and faster than earlier comoving-frame methods. We implement this
algorithm in the Orion adaptive mesh refinement code and show that it performs well in a range of test problems.

Subject headings: hydrodynamics — methods: numerical — radiative transfer

1. INTRODUCTION

Astrophysical systems described by radiation hydrodynam-
ics span a tremendous range of scales and parameter regimes,
from the interiors of stars (e.g., Kippenhahn & Weigert 1994) to ac-
cretion disks around compact objects (e.g., Turner et al. 2003) to
dusty accretion flows around massive protostars (e.g., Krumholz
et al. 2005, 2007) to galactic-scale flows onto active galactic nu-
clei (e.g., Thompson et al. 2005). All of these systems have in
common that matter and radiation are strongly interacting and
that the energy and momentum carried by the radiation field are
significant in comparison to those carried by the gas. Thus, an
accurate treatment of the problem must include analysis both
of the matter and the radiation and of their interaction.

Numerical methods exist to simulate such systems in a variety
of dimensionalities and levels of approximation. In three dimen-
sions, treatments of the matter and radiation fields generally adopt
the flux-limited diffusion approximation, first introduced by Alme
& Wilson (1973) for reasons of computational cost and simplic-
ity (e.g., Hayes et al. 2006). Flux-limited diffusion is optimal for
treating continuum transfer in a system such as an accretion disk,
stellar atmosphere, or opaque interstellar gas cloud where the
majority of the interesting behavior occurs in optically thick re-
gions that are well described by pure radiation diffusion, but there
is a surface of optical depth unity from which energy is radiated
away. Applying pure diffusion to these problems would lead to
unphysically fast radiation from this surface, so flux-limited dif-
fusion provides a compromise that yields a computationally simple
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and accurate description of the interior, while also giving a reason-
ably accurate loss rate from the surface (Castor 2004).

However, the level of accuracy provided by this approxima-
tion has been unclear, because the equations of radiation hydro-
dynamics for flux-limited diffusion have previously only been
analyzed to zeroth order in v/c. In contrast, several authors have
analyzed the radiation hydrodynamic equations in the general
case to beyond first order in v/c (e.g., Mihalas & Weibel-Mihalas
1999; Castor 2004 and references therein). In a zeroth-order treat-
ment, one neglects differences between quantities in the laboratory
frame and the comoving frame. The problem with this approach is
that in an optically thick fluid the radiation flux only follows Fick’s
law (F o< —VE) in the comoving frame, and in other frames, there
is an added advective flux of radiation enthalpy, as first demon-
strated by Castor (1972). In certain regimes (i.e., the dynamic dif-
fusion limit—see below), this advective flux can dominate the
diffusive flux (Mihalas & Auer 2001; Castor 2004).

Pomraning (1983) does give a flux-limiter usable to first order
in v/c, which is an approach to the problem of flux-limiting with
relativistic corrections that is an alternative to the one we pursue
in this paper. However, this approach does not correctly handle
the dynamic diffusion limit, a case that, as we show, requires
special attention, because order »%/c? terms can be important.
Furthermore, Pomraning derives his flux-limiter directly from
the transfer equation, so the computation provides little insight
into the relative importance of radiation hydrodynamic terms, and
the level of accuracy obtained by using the uncorrected flux-
limiter, the most common procedure in astrophysical applications.

Mihalas & Klein (1982) were the first to derive the mixed-
frame equations of radiation hydrodynamics dynamics to order
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v/c in frequency-integrated and frequency-dependent forms and
gave numerical algorithms for solving them. Lowrie et al. (1999),
Lowrie & Morel (2001), and Hubeny & Burrows (2007) give al-
ternate forms of these equations, as well as numerical algorithms
for solving them. However, these treatments require that one
solve the radiation momentum equation (and for the frequency-
dependent equations calculate over many frequencies as well),
rather than adopt the flux-limited diffusion approximation. While
this is preferable from a standpoint of accuracy, since it allows
explicit conservation of both momentum and energy and cap-
tures the angular dependence of the radiation field in a way that
diffusion methods cannot, treating the radiation momentum
equation is significantly more computationally costly than using
flux-limited diffusion, making it difficult to use in three-dimensional
calculations.

In this paper we analyze the equations of radiation hydrody-
namics under the approximations that the radiation field has a
thermal spectrum and obeys the flux-limited diffusion approxi-
mation and that scattering is negligible for the system. Our goal
is to derive an accurate set of mixed-frame equations, meaning
that radiation quantities are written in the lab frame, but fluid
quantities, in particular fluid opacities, are evaluated in the frame
comoving with the fluid. This formulation is optimal for three-
dimensional simulations, because writing radiation quantities in
the lab frame lets us use an Eulerian grid on which the radiative
transfer problem can be solved by any number of standard meth-
ods, while avoiding the need to model the direction- and velocity-
dependence of the lab frame opacity and emissivity of a moving
fluid.

In § 2 we begin from the general lab frame equations of hy-
drodynamics to first order in v/c, apply the flux-limited diffusion
approximation in the frame comoving with the gas where it is
applicable, and transform the appropriate radiation quantities
into the lab frame, thereby deriving the corresponding mixed-
frame equations suitable for implementation in numerical sim-
ulations. We retain enough terms to ensure that we achieve
order unity accuracy in all regimes and order v/c accuracy for
static diffusion problems. In § 3 we assess the significance of the
higher order terms that appear in our equations and consider
where treatments omitting them are acceptable and where they
are likely to fail. We show that, in at least some regimes, the zeroth-
order treatments most often used are likely to produce results that
are incorrect at order unity. We also compare our equations to the
comoving-frame equations commonly used in other codes. In § 4
we take advantage of the ordering of terms we derive for the
static diffusion regime to construct a radiation hydrodynamic
simulation algorithm for static diffusion problems that is simpler
and faster than those now in use, which we implement in the
Orion adaptive mesh refinement code. In § 5 we demonstrate it
in a selection of test problems. Finally, we summarize our results
in§ 6.

2. DERIVATION OF THE EQUATIONS

In the discussion that follows, we adopt the convention of
writing quantities measured in the frame comoving with a fluid
with a subscript zero. Quantities in the lab frame are written with-
out subscripts. We write scalars in italics (e.g., a), vectors in bold
italic (e.g., @), and rank 2 tensors in boldface (e.g., A). We indi-
cate tensor contractions over a single index by dots (e.g.,a *b =
a'b;), tensor contractions over two indices by colons (e.g., A :
B = 4YBy), and tensor products of vectors without any operator
symbol [e.g., (ab)? = a'b’]. In addition, note that we follow the
standard convention in radiation hydrodynamics rather than the
standard in astrophysics, in that when we refer to an opacity x we

mean the total opacity, measured in units of inverse length, rather
than the specific opacity, measured in units of length squared
divided by mass. Since we are neglecting scattering, we can set
the extinction y = k.

2.1. Regimes of Radiation Hydrodynamics

Before beginning our analysis, it is helpful to examine some
characteristic dimensionless numbers for a radiation hydrody-
namic system, since evaluating these quantities provides a use-
ful guide to how we should analyze our equations. Let ¢ be the
characteristic size of the system under consideration, u be the
characteristic velocity in this system, and 4, ~ 1/x be the photon
mean free path. Following Mihalas & Weibel-Mihalas (1999) we
can define three distinct limiting cases by considering the dimen-
sionless ratios 7 = ¢/4,, which characterizes the optical depth of
the system, and 3 = u/c, which characterizes how relativistic it
is. Since we focus on nonrelativistic systems, we assume 3 < 1.
We term the case 7 < 1, in which the radiation and gas are
weakly coupled, the “streaming” limit. If 7 >> 1, then radiation
and gas are strongly coupled, and the system is in the diffusion
limit. We can further subdivide the diffusion limit into the cases
B> 7 'and 8 < 77! The former is the “dynamic diffusion”
limit, while the latter is the “static diffusion” limit. In summary,
the limiting cases are

71, (streaming limit), (1)
T>1, pr<1, (static diffusion limit), (2)
7> 1, fBr>1, (dynamic diffusion limit). (3)

Physically, the distinction between static and dynamic diffu-
sion is that, in dynamic diffusion, radiation is principally trans-
ported by advection by gas, so that terms describing the work
done by radiation on gas and the advection of radiation enthalpy
dominate over terms describing either diffusion or emission and
absorption. In the static diffusion limit the opposite holds. A
paradigmatic example of a dynamic diffusion system is a stellar
interior. The optical depth from the core to the surface of the Sun
is 7 ~ 10'!, and typical convective and rotational velocities are
>10"""¢ = 0.3 cm 57!, so the Sun is strongly in the dynamic
diffusion regime. In contrast, an example of a system in the static
diffusion limit is a relatively cool, dusty, outer accretion disk
around a forming massive protostar, as studied, e.g., by Krumholz
et al. (2007). The specific opacity of gas with the standard inter-
stellar dust abundance to infrared photons is x/p ~ 1 cm? g=!,
and at distances of more than a few AU from the central star, the
density is generally p < 10712 g cm™3. For a disk of scale height
h ~ 10 AU, the optical depth to escape is

klp \
1 ~6.7x1073 <7>

om? g |

-1 -1
x P ! . (4)
10-12 g cm—3 10 AU

The velocity is roughly the Keplerian speed, so

M, 172 r -1/2
~14x1074 2 ) 5
fAreldx (10 M@) (10 au) O

where M, is the mass of the star and 7 is the distance from it.
Thus, this system is in a static diffusion regime by roughly 2
orders of magnitude.
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In the analysis that follows, our goal is to obtain expressions
that are accurate for the leading terms in all regimes. This is
somewhat tricky, particularly for diffusion problems, because we
are attempting to expand our equations simultaneously in the two
small parameters 3 and 1/7. The most common approach in
radiation hydrodynamics is to expand expressions in powers of
[ alone and to only analyze the equations in terms of 7 after
dropping terms of high order in 3. However, this approach can
produce significant errors, because terms in the radiation hydro-
dynamic equations proportional to the opacity are multiplied by
a quantity of order 7. Thus, in our derivation we repeatedly en-
counter expressions proportional to 327, and in a problem that is
either in the dynamic diffusion limit or close to it (57 = 1), it is
inconsistent to drop these terms while retaining ones that are
of order 3. We therefore retain all terms up to order 32 in our
derivation, unless we explicitly check that they are not multiplied
by terms of order 7 and can therefore be dropped safely.

2.2. The Equations of Radiation Hydrodynamics

We now start our derivation, beginning from the lab frame
equations of radiation hydrodynamics (Mihalas & Klein 1982;
Mihalas & Weibel-Mihalas 1999; Mihalas & Auer 2001)

%—FV'(;)U):O, (6)
%(p,,)+v-(pvv) — _VP+G, (7)
g(pe) +V +[(pe+ P)v] = G, (8)

%—]erV-F: —cG°, )
01_2%_1;+V-P:—G, (10)

where p, v, e, and P are the density, velocity, specific energy
(thermal plus kinetic), and thermal pressure of the gas, respec-
tively, E, F, and P are, respectively, the radiation energy density,
flux, and pressure tensor,

cE = /Ooodu/dQI(n,u), (11)
F= /Ooodv/din(n,u), (12)
cP:/O dv/danI(mu), (13)
(G°,G) is the radiation four-force density
G0 = /OoodV/dQ [k(n, ) [(n,v) — n(n,v)], (14)
G = /Ooodu/dQ [k(n, V) I(n, v) — @, V), (15)

and /(n, v) is the intensity of the radiation field at frequency v
traveling in direction n. Here k(n, /) and 7(n, v) are the direction-
and frequency-dependent radiation absorption and emission co-
efficients in the lab frame. Intuitively, we can understand cG° as
the rate of energy absorption from the radiation field minus the
rate of energy emission for the fluid and G as the rate of momen-
tum absorption from the radiation field minus the rate of mo-
mentum emission. Equations (6)—(8) are accurate to first order
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in v/c, while equations (9)—(10) are exact. Note that no terms in-
volving opacity or optical depth appear explicitly in any of these
equations, so the fact that they are accurate to first order in 3
means that they include all the leading-order terms.

Mihalas & Auer (2001) show that, if the flux spectrum of the
radiation is direction-independent, the radiation four-force on a
thermally emitting material to all orders in v/c is given in terms
of moments of the radiation field by

G'=v[y?koe + (1 = v*)kor|E — vkoparTy
—y(v+F/c?) [Kor — 27 (Kor — Kop)]
— ¥ (kor — Kop)(wv) : P/c?, (16)
G =ykor(F[c) — yroparTy (v/c)
— [V (5or — Kor)(®/C)E + yor(v/c) « P]
+ 73 (kor — Kor)[20 F/c® — (o) : P/c*]o,  (17)

where v = 1/(1 — v%/c?)"? is the Lorentz factor and T is the
gas temperature. The three opacities that appear are the Planck,
energy, and flux mean opacities, which are defined by

B fooo dvy ko(vo) B, To)

Kop B(T()) ’ (18)

Kop = Jo~ dvo H;(VO)EO(VO) ’ (19)
0

Kop — Jo dw H;(VO)FO(VO) ’ (20)
0

respectively, where Ey(v) and Fy(1y) are the comoving-frame
radiation energy and flux per unit frequency, Ey and F are
the corresponding frequency-integrated energy and flux, and
B(v,T) = Qhv3/cH)i(em*sT — 1) and B(T) = cagT*/(4r) are
the frequency-dependent and frequency-integrated Planck
functions.

Note that we have implicitly assumed that the opacity and
emissivity are directionally independent in the fluid rest frame,
which is the case for any conventional material. We have also
assumed that the flux spectrum is independent of direction, al-
lowing us to replace the flux mean opacity vector with a scalar.
This may not be the case for an optically thin system, or one in
which line transport is important, but since we are limiting our
application to systems to which we can reasonably apply the dif-
fusion approximation, this is not a major limitation.

To simplify (G°, G), first we assume that the radiation has a
blackbody spectrum, so that Ey(vy) xx B(vy, Tp). In this case,
clearly

Rog = Rop- (21)

Second, we adopt the flux-limited diffusion approximation
(see below), so in optically thick parts of the flow Fy(rp)
—VEy(9)/ko(ry) (Fick’s law). This implies that Fo(vp)
—[0B(vy, To)/OTo](VTo) ko(vp), and substituting this into equa-
tion (20) shows that the flux mean opacity k¢r is equal to the
Rosseland mean opacity, defined by

K}_l o fODO dl/O KzO(V())il [83(1/0, TO)/aTO]
R T duvo [0B(vo, T0)/0Th)

(22)
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TABLE 1
ScALINGS OF TERMS IN THE RADIATION FOUR-FORCE DENSITY

Term G'or G Streaming Static Diffusion Dynamic Diffusion
KOP(E — ATBI/C) ceveeeieeieeeene GO T 1/7* B2
(KOR — 2/{0]))(1? . F/CZ) GO ﬁT [7) [7)27‘*
WY (op — KORDE woveeeeeeeeereen G° B2 B2 B2
(12)wle kop(4nBle — E)............ G° B2 B2 B4
(K()R - ng)(vv/cz) P GO ﬂzT 327' ﬂzT*
KORF/C oo G * 1* Br*
kop(v/c)(4mB/c — E) ........ G BT Bl B3
Kor[(W/C)E + (v/c) * P]...... G loia BT B
(12)We) korFle.............. G B2 52 B3
2(kor — Kop)(v * F)v/c? G B 8 BT

Nortes.— Col. (2): Whether the term appears in G° or G. Col. (3)—(5): All scalings are normalized to E/¢. The
scalings that are of leading order in each regime are denoted by an asterisk.

In optically thin parts of the flow, |Fo(vp)| — cEo(1%), so in
principle we should have kor = kog. However, interpolating
between these cases is complex, and the flux-limited diffusion
approximation is of limited accuracy for optically thin flows in
complex geometries. Moreover, our approximation that the ra-
diation spectrum is that of a blackbody at the local radiation
temperature is itself problematic in the optically thin limit, so
setting kor = kop would not necessarily be more accurate than
using kor. We therefore choose to optimize our accuracy in the
optically thick part of the flow and set

KRoF =— RQR- (23)

With these two approximations, the only two opacities remain-
ing in our equations are xor and xgp, both of which are indepen-
dent of the spectrum of the radiation field and the direction of
radiation propagation and which can therefore be tabulated as a
function of temperature for a given material once and for all.

Next, we expand (G, G) in powers of v/c, retaining terms to
order v?/c?. In performing this expansion, we note that |[F| <
cE, and Tr(P) = E. The resulting expression for the radiation
four-force is

4B v F

+% (2)2 {Z(KOP — Kor)E + Kop (E - #)]

vV 1)3
+ (Kop —NOR)C—23P+O<C—3)7 (24)
F 4mB
G = HOR—+I‘€OP<B> (EL) - Ii()R(EE+2 'P)
c c c c c

1 /v\2 F (weF)v v’
+§(E) Kor — + 2(Kor — Kop) 3 +0(C—3>- (25)

It is helpful at this point, before we making any further ap-
proximations, to examine the scalings of these terms with the
help of our dimensionless parameters 3 and 7. In the stream-
ing limit, radiation travels freely at ¢, and emission and absorp-
tion of radiation by matter need not balance, so |F| ~ cE and
4nB/c — E ~ E. For static diffusion, Mihalas & Weibel-Mihalas
(1999) show that |F| ~ cE/T and 47B/c — E ~ E/7*. For dy-
namic diffusion, radiation travels primarily by advection, so

|F| ~ vE. We show in the Appendix that for dynamic diffusion
4nB/c — E ~ 3E. Note that the scaling 47B/c — E ~ (B/T)E
given in Mihalas & Weibel-Mihalas (1999) appears to be incor-
rect, as we show in the Appendix. Using these values, we ob-
tain the scalings shown in Table 1 for the terms in equations (24)
and (25).

Table 1 shows that, despite the fact that we have kept all
terms that are formally order 3% or more, in fact we only have
leading-order accuracy in the dynamic diffusion limit, because
in this limit, the order unity and order /3 terms in G° vanish to
order 32. To obtain the next-order terms, we would have had to
write G to order 33. A corollary of this is that treatments of the
dynamic diffusion limit that do not retain order 3% terms are
likely to produce equations that are incorrect at order unity, since
they will have dropped terms that are of the same order as the
ones that have been retained.

At this point we could begin dropping terms that are insignif-
icant at the order to which we are working, but it is cumbersome
to construct a table analogous to Table 1 at every step of our der-
ivation. It is more convenient to continue our analysis retaining
all the terms in equations (24) and (25) and to drop terms only
periodically.

Before moving on, there is a subtlety in equations (24) and
(25) that is worth commenting on. Consider a gray fluid, one in
which kgr = kop = ko. In ¢G?, the term that describes the work
done by radiation, — koo * F/c, has the opposite sign from what one
might naively expect. Using cG° in the gas energy equation (8)
in this case implies that the gas energy increases when v and F
are antialigned, i.e., when gas moves into an oncoming photon
flux. We can understand the origin of this somewhat counter-
intuitive behavior by considering the example of a fluid in ther-
mal equilibrium with a radiation field in its rest frame (i.e., 47B =
cEp). In the comoving frame, the radiation four-force behaves
as one intuitively expects. At leading order, the rate at which
the radiation field transfers momentum density to the gas is Gy =
ko Fo/c, and the rate at which the gas energy density changes as a
resultis cG{ = v * Fo/c (Mihalas & Auer2001, their egs. [53a]
and [53b]). Thus, gas loses energy when it moves opposite the
direction of the flux and, hence, opposite the force.

However, now consider the fluid as seen by an observer in a
frame boosted by velocity —wv relative to the fluid. The observer
sees the radiation energy density as £, which differs from £y by
20+ F/c? (see eq. [31]), and this difference is the reason that the
work term in G is — kv * F/c?. Physically, this happens because
an observer who sees the fluid moving at velocity » also sees the
radiation and gas as being out of thermal equilibrium (478 # cE),
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since E and E| are different. This disequilibrium leads the radi-
ation and gas to exchange energy at a rate that is opposite in
direction and twice as large as the radiation work, oo « F/c. This
is why the “work” term has the opposite sign than the one we
might expect. Thus, for the rest of this paper, while for conve-
nience we continue to refer to (kor — 2k0p)v * F/c and the terms
to which it gives rise as “work” terms, it is important to keep in
mind that in reality this term contains contributions from two dif-
ferent effects of comparable magnitude, the “Newtonian work”’
kor? * F/c and the post-Newtonian term —2kgpv * F/c describ-
ing the imbalance between emission and absorption that an ob-
server sees solely because the fluid is moving.

With this point understood, we now adopt the flux-limited
diffusion approximation (Alme & Wilson 1973), under which we
drop radiation momentum equation (10) and set the radiation
flux in the comoving frame to

Fo=—-VE, (26)

ROR

where 4 is a dimensionless number called the flux-limiter. Many
functional forms for A are possible. For the code implementa-
tion we describe below, we adopt the Levermore & Pomraning
(1981) flux-limiter, given by

1 1
A= R (cothR — E) (27)
|VEy|
R= . 28
KorEo (28)

However, our derivation is independent of this choice. Regard-
less of their exact functional form, all flux-limiters have the
property that in an optically thick medium A — 1/3, thereby
giving Fyp — —[c/(3kr)]VE), the correct value for diffusion.
In an optically thin medium, A — (korEo/|VEo|)ng, where ny is
the unit vector antiparallel to VEy, so the flux approaches Fy —
cEyny, and the propagation speed of radiation is correctly limited
to c.

For the Levermore & Pomraning flux-limiter we adopt, the
corresponding approximate value for the radiation pressure tensor
is (Levermore 1984)

Py = 7‘) [(1 = R)T+ 3Ry — Dngny), (29)

where I is the identity tensor of rank 2 and
Ry =i+ )’R. (30)

Physically, this approximation interpolates between the behavior
in very optically thick regions, where R, — 1/3 + O(1/72), the
radiation pressure is isotropic, and off-diagonal components van-
ish, and optically thin regions, where R, — 1 and the radiation
pressure tensor is zero orthogonal to ry and E; parallel to it.
Note that for pure diffusion Mihalas & Weibel-Mihalas
(1999) and Castor (2004) show that the pressure tensor reduces
to (Eo/3)I plus off-diagonal elements of order /7 or 32. Our ap-
proximation does not quite reproduce this, since in the diffusion
limit, it gives Py = (Ey/3)I plus off-diagonal elements of order
~2. We might therefore worry that, in the static diffusion regime
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where 3 < 7!, we have an incorrect term. However, exami-
nation of our final equations below shows that all terms arising
from off-diagonal elements of Py are smaller than order 3 in the
static diffusion limit, so adopting the Levermore (1984) approx-
imation for the pressure tensor does not introduce any incorrect
terms at order [ in the final equations.

To use the approximations from equations (26) and (29) to
evaluate the radiation four-force, we must Lorentz transform them
to express the radiation quantities in the lab frame. The Lorentz
transforms for the energy, flux, and pressure to second order in
v/c are (Mihalas & Weibel-Mihalas 1999)

’UF()

|
E=Ey+2 + 5 [V?Eo + (o) : o], (31)

1
F=Fy+vEy+v-Py+—
2¢?

vFo+Fov 1
% + o [vvEy + v (v - Py)]. (33)

[vFo + 3v(v- Fo)|], (32)

P=Py+

Note that in the expression for P we have simplified the final
term using the fact that Py is a symmetric tensor.

Using the same scaling arguments we used to construct Table 1,
we see that P and Py differ at order 3 in the streaming limit, at
order 3/7 for static diffusion, and at order 32 for dynamic dif-
fusion. Since this is below our accuracy goal, we need not dis-
tinguish P and Py. The same is true of £ and E,. However, F is
different. In the comoving frame in an optically thick system,
one is in the static diffusion regime, so F ~ cEy/T. Since vE
and v - P are of order cEj and in dynamic diffusion 5 > 1/7,
this means that vE, and v * Py are the dominant components of
F in dynamic diffusion and must therefore be retained. Thus,

F=—"VE+vE+v-P, (34)
ROR

which is simply the rest-frame flux plus terms describing the ad-
vection of radiation enthalpy.

Substituting equation (29) with P = P and equation (34) into
the four-force density from equations (24) and (25) and continu-
ing to retain terms to order v2/c? gives

G —Kop(E—M—B>+( ><2ﬂ— )v'VE
c C KR

Kop 3 —R2 2 3R2 —1 2
2 E[ 7 v + > (v-n)
1 /v\2 47B
“rz(;) HQP(E——C ), (35)
4B 1 2
G——AVE+AOP—<E—L) ——(3) IVE
c 2 \c
-VE
424 (KOP )uv (36)
KR C

where n is the unit vector antiparallel to VE. We again remind
the reader that, although these equations contain terms of order
(32, they are not truly accurate to order 32, because we did not
retain all the 32 when applying the Lorentz transform to the flux
and pressure. However, these equations include all the terms
that appear at the order of accuracy to which we are working,
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TABLE 2
ScALINGS OF TErRMs IN THE CONSERVATION EQUATIONS

Term Equation Streaming Static Diffusion Dynamic Diffusion
AVE (oot M T 1* 1*
Kop(0/C2)GTB — CE) covoeoeeeeeeeeeeen. M BT BT 3
(U2) WY AVE oo, M B2 32 52
2;\(HOP/HOR — 1)(1} . VE)D/CZ .............. M ,327' [32 ﬁz
KOP(ATB — CE) oo G and R T 1/7* B2r
ARKp/kor — D)o * VE oo G and R BT Jo] G*
Kop( /)3 = R2JE oo G and R Bt BT B27*
ko[ * )] [BRy — 1)/2JE oo G and R B2 B2 B2
(112) W) kop(CE — 4TB) oo G and R Bt B2/ Br
VYV [(CAROR)VE] ot R 1* /T l/r
Ve {[(3 = R2)2IVE} e R 15} 15 5
V- {[BRy — D2Jv* ()E} .......ccc......... R B B/r? Bir?

Nortes.— Col. (2): Which equation the term appears in, where M is for momentum eq. (37), G is for gas energy eq. (38), and R
is for radiation energy eq. (39). Col. (3)—(5): All scalings are normalized to E// for the momentum equation and cE/¢ for the
energy equations. Scalings that are of leading order in each regime for each equation are denoted by an asterisk.

and by retaining terms of order 3%, we guarantee that these terms
will be preserved.

Inserting (G°, G) and the lab frame flux from equation (34)
into the gas momentum and energy equations (7) and (8) and the
radiation energy equation (9) and again retaining terms to order
v2/c? gives

g(pv) — — V- (pvv)— VP — IVE — HOP§(47TB — CE)

_% (”)ZNEHA(E— 1) @ VE@ 5y

c KOR c? ’

D (pe) =~V - [(pe -+ Pyr] — rop(amB — ck)

+/l<2m—l>v-VE

ROR
Kop 3—R2 2 3R2—1 2
- Y%F .
" [ 5 v° + 7 (v-n)
71(3)2 (47B — cE) (38)
2 \e Rop\4T cL),
y)
I _v. (c—VE>+HOP(47TB—CE)
ot KOR
—i(ZW—l>v-VE
KOR
R Ry—1
proep 3R o R
c 2 2
1 2
+§(§) Hop(47TB—CE)
3R 3R, — 1
—v-{ . 2 vE + 22 v-(nn)E} (39)

At this point we construct Table 2, showing the scalings of the
radiation terms to see which must be retained and which are
superfluous. In constructing Table 2, we take spatial derivatives
to be of characteristic scaling 1/, i.e., we assume that radiation
quantities vary on a size scale of the system, rather than over a
size scale of the photon mean free path. In the streaming limit,
A~Tand R, ~ 1+ O(7). In the diffusion limit, 4 ~ 1/3 and
Ry ~ 13 +0(172).

Using Table 2 to drop all terms that are not significant at
leading order in any regime, we arrive at our final equations,

%(pv):—v-(pvv)—VP—iVE, (40)

2 (pe) =~V [(pe + Pyv) — mop(amB — ck)

_R 2
+z<2ﬂ—1>v-VE—3 2 kop—E,  (41)
KOR 2 c
)
Ip_v. (CVE) 1 kop(47B — cE)
ot KOR
—2<2m—l>v'VE
KOR
3-R, P 3R,
“E-v. E). 42
Ty e < 2 ”> (42)

These represent, respectively, the equations of momentum con-
servation for the gas, energy conservation for the gas, and en-
ergy conservation for the radiation field, which, together with
mass conservation equation (6), fully describe the system under
the approximations we have adopted. They are accurate and con-
sistent to leading order in the streaming and dynamic diffusion
limits. They are accurate to first order in (3 in the static diffusion
limit, since we have had to retain all order 3 terms in this limit,
because they are of leading order in dynamic diffusion problems.
In addition, note that if in a given problem one never encounters
the dynamic diffusion regime, it is possible to drop more terms,
as we discuss in § 4.

The equations are easy to understand intuitively. The term
—AVE in momentum equation (40) simply represents the ra-
diation force korF/c, neglecting distinctions between the co-
moving and laboratory frames which are smaller than leading
order in this equation. Similarly, the terms xop(47B — cE)
and 12k p/kor — 1)v * VE in the two energy equations (41)
and (42) represent radiation absorbed minus radiation emitted
by the gas and the work done by the radiation field as it diffuses
through the gas, respectively. The factor (2kop/kor — 1) arises
because the term contains contributions both from the Newtonian
work and from a relativistically induced mismatch between emis-
sion and absorption. The term proportional to xgpE/c represents
another relativistic correction to the work, this one arising from
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boosting of the flux between the lab and comoving frames. In
radiation energy equation (42), the first term on the left-hand side
is the divergence of the radiation flux, i.e., the rate at which ra-
diation diffuses, and the last term on the right-hand side repre-
sents advection of the radiation enthalpy E + P by the gas.

It is also worth noting that equations (38) and (39) are man-
ifestly energy conserving, since every term in one equation either
has an obvious counterpart in the other with opposite sign or
is clearly an advection. In contrast, momentum equation (40) is
not manifestly momentum conserving, since there is a force term
—AVE with no equal and opposite counterpart. This nonconser-
vation of momentum is an inevitable side effect of using the flux-
limited diffusion approximation, since this approximation amounts
to allowing the radiation field to transfer momentum to the gas
without explicitly tracking the momentum of the radiation field
and the corresponding transfer from gas to radiation.

3. THE IMPORTANCE OF HIGHER ORDER TERMS

Our dynamical equations result from retaining at least some
terms that are formally of order 3. Even though our analysis
shows that these terms can be the leading ones present, due to
cancellations of lower order terms, one might legitimately ask
whether they are ever physically significant. In § 3.1 we address
this question by comparing our equations to those that result from
lower order treatments. In § 3.2 we also compare our equations
with those generally used in comoving-frame formulations of ra-
diation hydrodynamics.

To make our work in this section more transparent and since
we are more interested in physical intuition than rigorous deri-
vation here, we specialize to the diffusion regime in gray mate-
rials. Thus, we set L = R, = 1/3 and kop = Kor = Ko. A more
general analysis produces the same conclusions, but is more
mathematically cumbersome. We also focus on the radiation en-
ergy equation, since all the terms that appear in the gas energy
equation also appear in it and because there are no higher order
terms present in the momentum equation. Under these assump-
tions, our radiation energy equation (42) becomes

0 c
T Ep_v.| _
atE <3/$0 VE) + ko(47B — cE)

4 1 4 2
——V-@WE)—=v-VE+—ko—E. 4
3 (vE) 7Y k0 (43)

3.1. Comparison to Lower Order Equations

A common approach in radiation hydrodynamic problems is
to expand the equations in §, rather than in both § and 7 as we
have done, and to drop at least some terms that are of order 32 in
every regime (e.g., Mihalas & Weibel-Mihalas 1999). To deter-
mine how equations derived in this manner compare to our higher
order treatment, we compare our simplified energy equation (43)
to the corresponding equation one would obtain by following
this procedure with equation (42). This resulting energy equation
is

0 c
Y r_v.( vy _
E (3/_% E) + ko(4nB — cE)

4 1
——=V-+WwE)—-v-VE. (44)

3 3
It is important to caution at this point that, as we show below,

equation (44) is not accurate to leading order in at least some
cases and should not be used for computations unless one care-
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fully checks that the missing terms never become important in
the regime covered by the computation.

Compared to energy equation (43) that we obtain by retain-
ing all leading-order terms in 3 and 7, equation (44) is missing
the term (4/3)kgv2E/c. If we think of the flux as having two
parts, a “diffusion” part proportional to VE that comes from
radiation diffusion in the comoving frame and a “‘relativistic”
part proportional to vE + v P that comes from the Lorentz
transformation between lab and comoving frames, then it is
natural to describe the v+ VE term as the “diffusion work”
arising from the combination of the diffusion flux and the post-
Newtonian emission-absorption mismatch (as discussed in § 2.2)
and the v E/c term as the “relativistic work” arising from the
relativistic flux. The presence or absence of this relativistic work
term is the difference between our leading-order accurate equa-
tion and the equation one would derive by dropping 32 terms.
Analyzing when, if ever, this term is physically important lets
us identify in which situations a lower order treatment may be
inadequate.

If we use Table 2 to compare the relativistic work term to
the emission/absorption term, we find that (koo E/c)/ [k o(47B —
cE)] is of order 3272 for static diffusion and of order unity for
dynamic diffusion. Thus, the term is never important in a static
diffusion problem, but is always important for a nonuniform,
nonequilibrium dynamic diffusion problem system. We add the
caveats about nonuniformity and time dependence, because in a
system where there is no radiation-gas energy exchange, the rel-
ativistic work term will be small due to a cancellation. The ex-
ample in the Appendix shows that in an equilibrium, uniform
medium, the terms xo(4nB — cE) and (4/3)kov>E/c cancel ex-
actly at orders up to 32. We expect any system where variations
occur on a scale for which G7 >1 to resemble such a uni-
form, equilibrium medium, and thus, we do not expect the term
(4/3)kgv?E/c to be important in such a system.

That said, there is still clearly a problem with omitting the rel-
ativistic work term in a system where 57 ~ 1. In this case, Table 2
implies that every term on the right-hand side is roughly equally
important regardless of whether we use the static of dynamic
diffusion scalings. To illustrate this point, consider a radiation-
dominated shock. The width of such a shock is set by the balance
between radiation diffusing upstream from the hot postshock
region into the cold preshock region and advection of the radia-
tion back downstream by the preshock gas. This condition requires
that 37 ~ 1 across the shock (Mihalas & Weibel-Mihalas 1999),
so its width w ~ A,/(3. Since E changes by of order unity across
this distance, its spatial derivative is of order VE ~ E/w ~ ([3/4,)E.
Applying this to equation (43), we find that each term on the
right-hand side is of order 32(c/4,)E. Since the terms like
—(4/3)V « (vE) describing advection and V - [¢/(3k¢)VE] de-
scribing diffusion are obviously important in the structure of
the shock, causing order unity changes in E, and the relativ-
istic work term is comparable, it follows that the relativistic
work term is equally important. One can obtain the correct
structure within a radiation-dominated shock only by retaining
the relativistic work term.

An interesting point to note here is that omitting the relativistic
work term will not produce errors upstream or downstream of a
shock, because 87 >> 1 in these regions. Furthermore, the jump
conditions across a shock should be correct. The omitted term
affects radiation-gas energy exchange, not total energy conser-
vation, and all that is required to get the correct jump conditions
are conservation of mass and energy plus correct computation of
the upstream and downstream radiation pressures. The lower or-
der treatment will therefore only make errors within the shock.
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Whether this is physically important or it is sufficient to get the
jump conditions correct depends on whether one is concerned
with structures on scales for which G ~ 1. An astrophysical
example of a system where one does care about structures on this
scale is a radiation-dominated accretion disk subject to photon
bubble instability (Turner et al. 2003). Such disks are in the
dynamic diffusion regime over the entire disk, but photon bub-
bles form on small scales within them, and individual bubbles
can have 87 ~ 1 across them.

3.2. Comparison to Comoving-frame Formulations

Many popular numerical treatments of radiation hydrody-
namics (e.g., Turner & Stone 2001; Whitehouse & Bate 2004;
Hayes etal. 2006) use a comoving formulation of the equations
rather than our mixed-frame formulation. It is therefore useful
to compare our equations to the standard comoving-frame equa-
tions. In the comoving formulation, the evolution equation for
the radiation field is usually the first law of thermodynamics for
the comoving radiation field (Mihalas & Klein 1982),

PDBt (E()) + Py : (Vv) = ko(dnB — cEy) — V- Fy. (45)
p

This equation is accurate to first order in 3 in the sense that it
contains all the correct leading-order terms and all terms that are
smaller than them by order [ or less.

To compare this to our mixed-frame radiation energy equa-
tion (42), we replace the comoving-frame energy £ in equation
(45) with the lab frame energy E using the Lorentz transforma-
tion from equation (31) and retain all terms that are of leading
order in any regime. In practice, this means that we set £y = £
inside the time derivative, since the difference between £ and
E, is at most (3/7 or 32 for static or dynamic diffusion. However,
when replacing E, with £ in the heating/cooling term 47B —
cEy, we must retain all the terms in equation (31), because the
leading term 47B — cE is itself only of order 72 or 32 relative
to E, so the difference between E and E|, can be of leading order.?
This gives a transformed equation

D (E
Dt< >+P0 (VU)—H0(47TB—CE)
— V- Fy + 2k F°+ T[E+ @o) Py (46)

If we now adopt the diffusion approximation Fy =
—c/(3k0)VEy and Py = (1/3)Eyl, use the Lorentz transforma-
tion to replace £, with £ throughout, and again only retain terms
that are of leading in order in some regime, then it is easy to ver-
ify that equation (46) reduces to equation (43). Thus, our evo-
lution equation is equivalent to the comoving-frame first law of
thermodynamics for the radiation field, provided that one retains
all the leading-order terms with respect to § and 7, including some
that are of order 32, when evaluating the Lorentz transformation.

While the equations are equivalent, the mixed-frame formu-
lation has two important advantages over the comoving-frame
formulation when it comes to practical computation. First, we

2 Note that our need to retain difference between E and E, here is different
from the situation when we first applied the Lorentz transformation to derive
egs. (35) and (36). In that case we did not need to retain the distinction between
E and E,, because in deriving egs. (35) and (36), there were no terms involving
E explicitly. Instead, Ey appeared only implicitly, as part of the flux F, and non-
leading-order corrections to F are not of leading order in any regime. In contrast,
E, does appear explicitly in eq. (45).
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are able to write the equations in a manner that allows a nu-
merical solution algorithm to conserve total energy to machine
accuracy. We present such an algorithm in § 4. In contrast, it is
not possible to write a conservative update algorithm using the
comoving-frame equations. The reason for this is that a con-
served total energy only exists in an inertial frame, and for a fluid
whose velocity is not a constant in space and time, the comoving
frame is not inertial. The lack of a conserved energy is a serious
drawback to comoving-frame formulations.

A second advantage of the mixed-frame formulation is that it
is far more suited to implementation in codes with dynamically
modified grid structures such as adaptive mesh refinement meth-
ods. Since the radiation energy is a conserved quantity, it is ob-
vious how to refine or coarsen it in a conservative manner. On the
other hand, there is no obviously correct method for refining or
coarsening the comoving-frame energy density, because it will
not even be defined in the same reference frames before and after
the refinement procedure.

4. AN OPTIMIZED ALGORITHM FOR STATIC
DIFFUSION RADIATION HYDRODYNAMICS

4.1. Operator Splitting

Our analysis shows that for static diffusion, the terms involv-
ing diffusion and emission minus absorption of radiation always
dominate over those involving radiation work and advection. In
addition, some terms are always smaller than order /3. This sug-
gests an opportunity for a significant algorithmic improvement
over earlier approaches while still retaining order 3 accuracy in
the solution. In a simulation, one must update terms for the ra-
diation field implicitly, because otherwise stability requirements
limit the update time step to values comparable to the light cross-
ing time of a cell. Standard approaches (e.g., Turner & Stone
2001; Whitehouse & Bate 2004; Whitehouse et al. 2005; Hayes
et al. 2006) therefore update all terms involving radiation im-
plicitly except the advection term and the radiation force term in
the gas momentum equation.

However, implicit updates are computationally expensive, so
the simpler the terms to be updated implicitly can be made, the
simpler the algorithm will be to code and the faster it will run.
Since the work and advection terms are nondominant, we can
produce a perfectly stable algorithm without treating them im-
plicitly. Even if this treatment introduces numerically unstable
modes in the work or advection terms, they will not grow be-
cause the radiation diffusion and emission/absorption terms, which
are far larger, will smooth them away each time step.

For the case of static diffusion, we therefore adopt the order
v/c equations (6) and (40) for mass and momentum conserva-
tion. For our energy equations, we adopt equations (41) and (42),
but drop terms that are smaller than order 3 for static diffusion.
This gives

)
= (p0) = = V(pe + P)o] — rop(dB — cE)
+)L<2m1)v-VE, (47)
RoRrR
g

—E V- ) + ,‘ﬁop(47TB — CE)
KoRrR

—z<2ﬂ— 1)v°VE—V° (3 _2R2 UE>. (48)

KoR

To solve these, we operator split the diffusion and emission/
absorption terms, which we treat implicitly, from the work and
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advection terms, which we treat explicitly. To do this, we write
our gas/radiation state as

p
pv
E
and our evolution equations as
9q
E = fe—nr +.fe-rad +fi-rad7 (50)

where we have broken our right-hand side up into nonradiative
terms to be handled explicitly,

=V (pv)
-V - (pvv)— VP
—=V - [(pe + P)v]
0

fe-nr = ) (51)

radiative terms to be handled explicitly,

0
—AVE

foi= A<zﬂ—1>v~w

KOR
3R
—i(ZW—1>v-VE—V-< sz>
KOR 2

and radiative terms that must be handled implicitly,

0
0

Sicrad = —kop(47B — cE) . (53)
V- (C—)"VE) + Kop(4TB — cE)
ROR

4.2. Update Scheme

For each update cycle, we start with the state ¢” at the old
time. We first perform an implicit update to the radiation and gas
energy densities using f_.,4- Any number of methods are pos-
sible for this. For our implementation of this algorithm in the
Orion adaptive mesh refinement (AMR) code, we use the method
of Howell & Greenough (2003) which we do not discuss in detail
here. To summarize, the algorithm involves writing the equations
using second-order accurate spatial discretization and a time dis-
cretization that limits to backward Euler for large values of OE/0¢
(to guarantee stability) and to Crank-Nicolson when OF/0t is small
(to achieve second-order time accuracy). This yields a matrix
equation for the radiation and gas energy densities at the new
time, which can be solved on both individual grids and over a
hierarchy of nested grids (as is necessary for AMR) using stan-
dard multigrid techniques. The output of this procedure is an in-
termediate state ¢”* which has been updated for f;_,4.

Once the implicit update is done, we compute the ordinary
hydrodynamic update. As with the implicit update, this can be
done using the hydrodynamics method of one’s choice. For
our implementation, we use the Godunov method described by
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Truelove et al. (1998), Klein (1999), and Fisher (2002). This
update gives us g”, the state updated for f,_,,4 and f,_,,. The
only modification we make to the standard update algorithm is
to include a radiation pressure term in the effective sound speed
used to compute the Courant condition. Thus, we take

P+ (4/9)E(l — e rrAx
Ceﬁ:\/v (4/9)E( ) (54
p
and set the time step to
A
At=C— % (55)

max (|[v] + cefr)’

where 7 is the ratio of specific heats for the gas, C is the Courant
factor (usually 0.5), and the maximum is evaluated over all cells.
For AMR, this condition is applied independently on each level
1, and the time step is set using the values of A ¢ in the standard
AMR manner (e.g., Klein 1999). The factor (1 — e ~"®*4¥) gives
us a means of interpolating between optically thick cells, where
radiation pressure contributes to the restoring force and thus in-
creases the effective signal speed, and optically thin cells, where
radiation does not provide any pressure.

Finally, we compute the force and advection terms in f._,,q-
In our implementation we compute all of these at cell centers
using second-order centered differences. For VE this is

(VEY", — E:‘Tl,j,k - E?jl,j,k E?;ilk - EZ}il,k
Lk 2Ax ’ 2Ay ’
E i —El
A . (56)

Other derivatives are computed in an analogous manner. We
then find the new state by

qn+l = qn,T +fe-radAt' (57)

This update is manifestly only first-order accurate in time for
the explicit radiation terms, but there is no point in using a more
complex update, because our operator splitting of some of the
radiation terms means that we are performing our explicit up-
date using a time-advanced radiation field, rather than the field
at a half—time step. (Truelove et al. [1998] show that one can
avoid this problem for gravitational body forces, because the
potential is linear in the density, so it is possible to derive the
half—time step potential from the whole time step states. No
such fortuitous coincidence occurs for the radiation field.) This
necessarily limits us to first-order accuracy in time for the terms
we treat explicitly. However, since these terms are always small
compared to the dominant radiation terms, the overall scheme
should still be closer to second order than first order in accuracy.

4.3. Advantages and Limitations of the Method

Our algorithm has two significant advantages in comparison
to other approaches, in particular those based on comoving-
frame formulations of the equations (e.g., Turner & Stone 2001;
Whitehouse et al. 2005; Hayes et al. 2006). In any of these ap-
proaches, since the radiation work terms are included in the im-
plicit update, one must solve an implicit quartic equation arising
from the combination of the terms kop(47B — cE) and P: V.
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This can be done either at the same time one is iterating to update
the flux divergence term V - F (Whitehouse et al. 2005) or in a
separate iteration to be done once the iterative solver for the
flux divergence update is complete (Turner & Stone 2001; Hayes
et al. 20006). In contrast, since our iterative update involves only
kop(4mB — cE) and V - F, using the Howell & Greenough
(2003) algorithm we can linearize the equations and never need
to solve a quartic, leading to a simpler update algorithm and a
faster iteration step. Moreover, by using the Howell & Greenough
(2003) time centering, we obtain second-order accuracy in time
whenever E is changing slowly, as opposed to the backward Euler
differencing of Turner & Stone (2001), Whitehouse et al. (2005),
and Hayes et al. (2006) which is always first-order accurate in
time. Thus, our algorithm provides a faster and simpler approach
than the standard one.

A second advantage of our update scheme is that it retains the
total energy-conserving character of the underlying equations.
In each of the update steps involving radiation, for f., 4 and
fi-rad> the nonadvective update terms in the radiation and gas
energy equations are equal and opposite. Thus, it is trivial to
write the update scheme so that it conserves total energy to ma-
chine precision. This property is particularly important for tur-
bulent flows with large radiation energy gradients, such as those
that occur in massive star formation (e.g., Krumholz et al. 2007),
because numerical nonconservation is likely to be exacerbated
by the presence of these features. In contrast, in comoving-frame
formalisms such as those of Turner & Stone (2001), Whitehouse
& Bate (2004), and Hayes et al. (2006), the exchange terms in
their gas and radiation energy equations are not symmetric. As a
result, their update schemes do not conserve total energy exactly.
The underlying physical reason for this asymmetry is that total
energy is conserved only in inertial frames such as the lab frame;
it is not conserved in the noninertial comoving frame. For this
reason, there is no easy way to write a conservative update scheme
from a comoving formulation.

Our algorithm also has two significant limitations, one ob-
vious and one subtle. The obvious limit is that our algorithm is
only applicable for static diffusion problems. For dynamic diffu-
sion problems, e.g., stellar interiors or radiation-dominated shocks,
our scheme is unstable unless an appropriately small time step is
used. Whether this instability is due to the explicit advection
term, the explicit work term, or both is not clear. Since codes such
as ZEUS (Hayes et al. 2006) treat the advection explicitly without
instability, however, it seems likely that the work term is the
culprit. Regardless of the cause, even if we were to use a time
step small enough to guarantee stability, since the work and ad-
vection terms can be comparable to or larger than the diffusion
and heating/cooling terms for dynamic diffusion, an algorithm
that treats all the terms implicitly or all explicitly, rather than our
mix, is likely to be more accurate.

The subtle limitation is in our treatment of the hydrodynamics.
We perform the hydrodynamic update using a Riemann solver
unmodified for the presence of radiation force, work, and heating
and cooling terms. These terms should change the characteristic
velocities of the wave families in ways that depend on the radia-
tion hydrodynamic regime of the system. For example, in opti-
cally thick systems we should have a radiation-acoustic mode
rather than a simple sound wave, and in optically thin systems
where the radiation timescale is short compared to the mechan-
ical timescale, a gas may act as if it were isothermal even if it has
v # 1. In some cases, failure to modify the Riemann solver ap-
propriately for these effects may produce substantial errors, in-
cluding a reduction in the order of accuracy of the method from
second to first (Pember 1993; Lowrie & Morel 2001; Miniati &
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Colella 2007). The severity of these effects for a given problem
depends on the degree of stiffness of the radiation source terms. It
should also be noted that the other radiation diffusion methods
most commonly used for three-dimensional problems also suffer
from this defect, so this is not a comparative disadvantage of our
method relative to others.

5. TESTS OF THE STATIC DIFFUSION ALGORITHM

Here we describe five tests of our static diffusion algorithm,
done using our implementation of the algorithm in the Orion
AMR code, various aspects of which are described in detail by
Puckett & Saltzman (1992) multifluid hydrodynamics, Truelove
et al. (1998) hydrodynamics and gravity, Klein (1999) hydrody-
namics and gravity, Fisher (2002) gravity, Howell & Greenough
(2003) radiation transport, Krumholz et al. (2004) sink particles,
and Crockett et al. (2005) magnetohydrodynamics. For all of
these tests we use a single fluid with no magnetic fields and no
self-gravity.

5.1. Nonequilibrium Marshak Wave

As an initial check of the gas-radiation energy exchange in
our code in a case when radiation pressure is not significant
and the gas is at rest, we simulate the nonequilibrium Marshak
wave problem. In this problem, a zero-temperature, motion-
less, gaseous medium occupying all space atz > 0 is subject to
a constant radiation flux Fj,.Z incident on its surface at z = 0.
The gas is held stationary, appropriate for early times before
hydrodynamic motions become significant. The medium is gray,
with opacity kor = kop = K, and the constant-volume specific
heat capacity of the gas is taken to have the same T3 dependence
as that of the radiation, i.e., ¢, = [(e — v?/2)/dT,], = aT,,
where T is the gas temperature The gas is not assumed to be i 1r1
thermal equ111br1um with the radiation field, so the gas and ra-
diation temperatures may be different.

Su & Olson (1996) give a semianalytic solution to the time-
dependent behavior of the radiation energy density E(z, t) and
gas temperature 7y(z,t) for this problem. They introduce the
dimensionless position and time variables x = v/3kz and 7 =
(4agcr/a)t and the “retardation” parameter € = 4ag/cv, and
show that the dimensionless radiation energy density

u(x, 7) = (—) [EI(D“)} (58)
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Fic. 1.—Dimensionless radiation energy density u vs. optical depth z at a
series of times 7. We show the semianalytic solution (solid lines) and the solu-
tion computed with Orion (dashed lines). The value of the dimensionless time 7
is indicated by each curve.

The dimensionless gas energy density is

ux,T) = (2)

(lRT;‘(Z, t)
Finc

23 !
=22 [
0

(63)

sin [xv3(n) + 03(n))]
V4 —n? +4den’(1 —n?)

1 .
i V3 . dn e/ { sin [x72(n) + ;92(77)] } (64)
7T 0 /3 +4v5(n)
where

() = \/(1 —n?) (6 + %) (65)

Numerical evaluation of the integrals from equations (59) and
(64) for u and v is not trivial, because the integrands perform an
infinite number of oscillations about zero as 1 — 0. Correct
computation of the result when 7 is small and x is large requires
careful numerical analysis to ensure that the positive and negative
contributions cancel properly (J. Bolstad 2007, in preparation).

We compare the properly computed semianalytic results for u
and v to a calculation performed with Orion using £ = 1 cm™!
and o = 32ag/c (so € = 0.5). The computational domain goes
from 0 to 15 cm (and thus to an optical depth xz = 15) and is
resolved by 100 equally sized cells. For this test, since we are
comparing to a pure diffusion result, we set the flux-limiter
A = 1/3 everywhere.

Figures 1 and 2 compare the semianalytic dimensionless ra-
diation and gas energy densities with the values computed by
Orion. At 7 = 0.001 the agreement is fairly poor due to low nu-
merical resolution, since the wave only reaches an optical depth
of Kz ~ 0.2 and Kz = 0.15 is the size of an individual compu-
tational cell. However, at later times when the wave is resolved
by a reasonable number of cells, the agreement between the code
result and the semianalytic solution is excellent.
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Fig. 2.—Same as Fig. 1, but for the dimensionless gas energy density v.

5.2. Radiating Blast Wave

We next compare to a test problem in which the gas is not at
rest: a Sedov-type blast wave with radiation diffusion. Reinicke
& Meyer-ter-Vehn (1991) gave the first similarity solution to the
problem of a point explosion with heat conduction, and follow-
ing Shestakov (1999) and Shestakov & Greenough (2001), we can
adapt this solution to the case of a point explosion with radiation
diffusion. This tests our code’s ability to follow coupled radiation
hydrodynamics in cases where radiation pressure is small.

We first summarize the semianalytic solution. Consider an
n = 3 dimensional space filled with an adiabatic gas with equa-
tion of state P = (y — 1)pe = I'pT, where I' is the gas constant.
The Planck mean opacity xop of the gas is very high, so the gas
and radiation temperatures are always equal. The Rosseland
mean opacity has a power-law form kor = Kor,0p™ 7", and we
assume that it is always high enough to place us in the diffusion
regime, so A = 1/3. Note that the choice of —n = —3 as the
exponent of the opacity power law is a necessary condition for
applying the Reinicke & Meyer-ter-Vehn (1991) conduction
solution to our radiation diffusion problem. Moreover, the sim-
ilarity solution does not include radiation energy density or pres-
sure, so we consider only temperatures for which the gas energy
density and pressure greatly exceed the radiation energy density
and pressure, i.e., pe > apT*.

Under the assumptions described above, we can rewrite the
gas and radiation energy equations (41) and (42) as a single
conduction-type equation for the temperature,

pcv% T= V(XOpaTbVT)7 (66)

where ¢, = 0e/OT = T'/(y — 1) is the constant-volume specific
heat of the gas, xo = 4cag/(3x0r0), a = —m, and b = n + 3.
This equation has the same form as the conduction equation con-
sidered by Reinicke & Meyer-ter-Vehn (1991).

Consider now a point explosion at the origin of a spherically
symmetric region with an initial power-law density distribution
p(r,t = 0) = gor%. Initially, the gas temperature 7 and pres-
sure P are negligible. The explosion occurs at the origin at time
zero, so the initial gas energy density is (pe)(r,t = 0) = Eyd(r).
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Reinicke & Meyer-ter-Vehn (1991) show that if the initial den-
sity profile has a power-law index
_@2b—-1n+2

k, = 67
P2b—2a+1" (67)

then one can obtain a similarity solution via the change of
variables

7

=G (68)

6(6) = 27 (69)
UE) = ol 0, (70)
e() = T, T (%)2 (71)

where &, G(£), U(£), and ©(&) are the dimensionless distance,
density, velocity, and temperature, respectively,

2b—2a+1
2b—(n+2)a+n’

(72)

o =

and ( is a constant with units of (length)(time) ™ whose value is
determined by a procedure we discuss below.

With this similarity transformation, the equations of motion
and heat conduction reduce to

U'—(1—U)InG) + (n—k)U =0, (73)
1-U)U' +U(a' —U)=0[I(>*Gco)],  (74)
2[U" +nU — p(a™ = 1)] = w1 — U)[In(¢?0)]’

+ 60®bGa—1£(2b—1)/a <( In @)H + [ln(fz@)]'
X {n —2+a[ln(eG)] + o+ 1)[111(52@)}’}), (75)

where () =d()/dIn&, = 2/(y — 1), and

B 2X() (O(Cl/a)2b71

Bo [hHigl=a

sgn(?). (76)

This constitutes a fourth-order system of nonlinear ordinary dif-
ferential equations. All physical solutions to these equations pass
through two discontinuities, a heat front and a shock front, with
the heat front at larger radius. However, the jump conditions
for these discontinuities are easy to determine, and one can in-
tegrate between them. For a given [, the solution depends only
on the dimensionless parameter

2X0 (ﬂ) i (77)

B Fb“!](l)_” 90

which measures the strength of the explosion. Large values of
Q) constitute “strong” explosions, and the ratio of heat front
radius to shock front radius is a monotonically increasing func-
tion of 2. It is important at this point to add a cautionary note. In
deriving the similarity solution, we assumed that radiation en-
ergy density is negligible in comparison to gas energy density.
This cannot strictly be true at early times, since at# = 0 the tem-
perature diverges at the origin, and the radiation energy density
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varies as T to a higher power than the gas energy density. How-
ever, the true behavior should approach the similarity solution at
later times.

While we have reduced the gas dynamical equations to a sys-
tem of ordinary differential equations that is trivial to integrate,
solving the full problem is complex because the equations still
depend on the unknown parameter 3, which in turn depends on
¢. To solve the problem, we must determine (3, from the given
initial conditions. Reinicke & Meyer-ter-Vehn (1991) describe
the iteration procedure required to do this in detail, and we only
summarize it here. To find a solution, one first chooses a value
&y > 1 for the dimensionless radius of the heat front, applies the
boundary conditions at the front, and guesses a corresponding
value of (3. For each &, there exists a unique 3, for which it is
possible to integrate the equations back from & = &, to the loca-
tion of the shock front at £ = &;, apply the shock jump condi-
tions, and continue integrating back to the origin at ¢ = 0 without
having the solution become double-valued and thus unphysical.
One iterates to identify the allowed value of 3, for the chosen &,
and this gives the unique density, velocity, and temperature pro-
files allowed for that &;,. However, the solution one finds in this
way may not correspond to the desired value of (). Reinicke &
Meyer-ter-Vehn show that

& b—1/2
Q=0 [h /O ¢ G(U? + puO) d€ . (78)

Thus, each choice of &), corresponds to a particular value of €2,
and one must iterate a second time to find the value of &, that
gives the value of 2 determined from the input physical param-
eters of the problem. Alternately, instead of specifying a desired
value of €2, one can specify a ratio R = £,/£, which also deter-
mines a unique value for &,

For our comparison between the semianalytic solution and
Orion, we adopt the parameters vy = 7/5,¢c, = 1/(y — 1),a = =2,
b=6, go=x0=1, and Ey = 135, which yields a strength
0 = 1.042 x10'? and a ratio R = 2.16. In the simulation, we
turn off terms in the code involving radiation pressure and forces,
and we set 4 = 1/3 exactly. We use one-dimensional spherical
polar coordinates rather than Cartesian coordinates; the solution
procedures for this are identical to the ones outlined in § 4, with
the exception that the gradient and divergence operators have
their spherical rather than Cartesian forms, and the cell-centered
finite differences are modified appropriately. Our computational
domain covers 0 < r < 1.05, is resolved by 256, 512, or 1024
cells, and has reflecting inner and outer boundary conditions.
To initialize the problem we set initial density to the power-law
profile p = % (with k, set from eq. [67]), the initial velocity to
zero, and the initial energy density to a small value, except in the
cell adjacent to the origin, where its value is pe = 135/(y — 1).

Figures 3, 4, and 5 compare the semianalytic density, veloc-
ity, and temperature profiles to the values we obtain from Orion
after running to a time ¢ = 0.06. As the plots show, the Orion
results agree very well with the semianalytic solution, and the
agreement improves with increasing resolution. In the lowest
resolution run, there is a small oscillation in the density and
velocity about a third of the way to the shock, which is likely
due to the initial blast energy being deposited in a finite-volume
region rather than as a true §-function. However, this vanishes at
higher resolutions. Overall, the largest errors are in the temper-
ature in the shocked gas.

As a metric of convergence, we plot the error of our simula-
tion relative to the analytic solution as a function of resolution
in Figure 6. We do this for the quantities r;, and ry, the positions
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Fic. 3.—Density p vs. radius r for the radiating blast wave test. We show the
semianalytic solution (solid line) and the Orion results at resolutions of 256,
512, and 1024 cells (dashed lines). The 256 cell run is the dashed line furthest
from the semianalytic solution, and the 1024 cell run is the dashed line closest
to it.

of the shock and heat fronts, and their ratio R. For this purpose,
we define the location of the heat and shock fronts for the
simulations as the positions of the cell edges where dT/dr and
dpl/dr are most negative. As the plot shows, at the highest reso-
lution the errors in all three quantities are <3%, and the calcu-
lation appears to be converging. The order of convergence is
roughly 0.6 in all three quantities. It is worth noting that com-
puting the locations of the heat and shock fronts is a particularly
strong code test, because obtaining the correct propagation ve-
locities for the two fronts requires that the code conserve total
energy very well. Nonconservative codes have significant diffi-
culties with this test (Timmes et al. 2006).

5.3. Radiation Pressure Tube

Our third test is to simulate a tube filled with radiation and
gas. The gas within the tube is optically thick, so the diffusion ap-
proximation applies. The two ends of the tube are held at fixed
radiation and gas temperature, and radiation diffuses through the

5F T T T T T ]
| ]
: h ]
5F | :
E \ ]
: | z
°F 7 I E
E /) ‘“ ]
F / ]
TE =
oV . . o oy, s .
0.0 0.2 0.4 0.6 0.8 1.0

Fic. 4—Same as Fig. 3, but for the velocity v.
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Fi. 5.—Same as Fig. 3, but for the temperature 7.

gas from one end of the tube to the other. The radiation flowing
through the tube exerts a force on the gas, and the gas density
profile is such that, with radiation pressure, the gas is in pressure
balance and should be stationary. For computational simplicity,
we set the Rosseland and Planck mean opacities per unit mass of
the gas to a constant value x. A simulation of this system tests our
code’s ability to compute accurately the radiation pressure force
in the very optically thick limit.

We first derive a semianalytic solution for the configuration
of'the tube satisfying our desired conditions. Since the gas is very
optically thick and we are starting the system in equilibrium, we
set Trad = Tgas = T The fluid is initially at rest. The condition of
pressure balance amounts to setting 9( pv)/0t + V + (pvv) = 0 in
equation (40), so that the radiation pressure force balances the gas
pressure gradient. Thus, we have

darP dE
—+1—=0 79
dx +Adx ’ (79)
kB 4 3 dar kB dp
— —apT’ | —+—T—=0. 80
<,u'0+3aR )dx+u dx (80)
0.10[ T T T ]
' L A
£ L A
kS » 1
g
0.01 N 5
| 1 1 1 ]
256 512 1024
N

Fic. 6.—Fractional error vs. resolution N in the radiating blast wave test. The
fractional error is defined as |(simulation value) — (analytic value)|/(analytic value).
We show error in the heat front radius r;, (plus signs), shock front radius 7y
(asterisks), and their ratio R = ry/rs (diamonds).
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Fic. 7.—Density, temperature, and pressure vs. position in the radiation tube
problem. The bottom panel shows total pressure (solid line), gas pressure (dashed
line), and radiation pressure (double-dot-dashed line).

In the second step we have set E = axT* and P = pkg T/, where
4 is the mean particle mass, and we have set A = 1/3 as is ap-
propriate for the optically thick limit. The radiation energy equa-
tion (48) for our configuration is simply

d (cldE
— =)= 1
dx (npdx) 0 (81)
d*T 1 (dT\* 1 [dp\ (dT
dx? +3T (dx) p(dx) (dx) 0 (82)

Equations (80) and (82) are a pair of coupled nonlinear or-
dinary differential equations for 7and p. The combined degree
of the system is three, so we need three initial conditions to solve
them. Thus, let the tube run from x = x to x;, with temperature,
density, and density gradient Tp, po, and (dp/dx), at xo. For a
given choice of initial conditions, it is trivial to solve equa-
tions (80) and (82) numerically to find the density and temper-
ature profile. We wish to investigate both the radiation pressure—
and gas pressure—dominated regimes, so we choose parameters
to ensure that our problem covers both. The choice xo = 0,
x1 =128 cm, pp = 1 gem ™3, (dpldx)y = 5x 1073 gem™, and
Ty = 2.75x 107 K satisfies this requirement if we adopt p =
2.33m, =3.9x107%* g, and k = 100 cm? g~'. Figure 7 shows
the density, temperature, and pressure as a function of position
for these parameters.

We solve the equations to obtain the density and temperature
as a function of position and then set these values as initial con-
ditions in a simulation. The simulation has 128 cells along the
length of the tube on the coarsest level. We impose Dirichlet
boundary conditions on the radiation field, with the radiation
temperature at each end of the tube set equal to its value as
determined from the analytic solution. We use symmetry bound-
ary conditions on the hydrodynamics, so that gas can neither
enter nor leave the computational domain. To ensure that our
algorithm does not encounter problems at the boundaries be-
tween AMR levels, we refine the central 1/4 of the problem
domain to double the resolution of the base grid. We evolve the
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Fic. 8.—Relative error in density (solid line), gas temperature (dashed line),
and radiation temperature (dot-dashed line) in the radiation tube test.

system for 10 sound crossing times and measure the amount by
which the density and temperature change relative to the ex-
act solution. We plot the relative error, defined as [(numerical
solution)— (analytic solution)]/(analytic solution), in the den-
sity, gas temperature, and radiation temperature in Figure 8.
As the plot shows, our numerical solution agrees with the ana-
lytic result to better than 0.5% throughout the computational
domain. The density error is smallest in the higher resolution
central region, as expected. There is a very small increase in error
at level boundaries, but it is still at the less than 0.5% level.

5.4. Radiation-inhibited Bondi Accretion

The previous test focuses on radiation pressure forces in the
optically thick limit. To test the optically thin limit, we simulate
accretion onto a radiating point particle. We consider a point
mass M radiating with a constant luminosity L accreting from
a background medium. The medium consists of gas which has
zero velocity and density p far from the particle. We take the
gas to be isothermal with constant temperature 7'and enforce that
it is not heated or cooled radiatively by setting its Planck opacity
kop = 0. We set the Rosseland opacity of the gas to a constant
nonzero value xgr and choose p., such that the computational
domain is optically thin. In this case, the radiation free-streams
away from the point mass, and the radiation energy density and
radiative force per unit mass on the gas are

L
E=—"— 83
4rr2e’ (83)
KORL r
= —_ 4
S 4mrc (r)’ (84)

where r is the radial vector from the particle and r is its
magnitude. The gravitational force per unit mass is fg,y =
—(GM/r?)(r/r), so the net force per unit mass is

r

f = frad + fgrav = _(1 _ﬁidd)G}’—jy (_)7 (85)

7
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where

KR ()RL

—_— 86
ArGMc (86)

fl‘idd =

is the fraction of the Eddington luminosity with which the point
mass is radiating.

Since the addition of radiation does not alter the 1/7> depen-
dence of the specific force, the solution is simply the standard
Bondi (1952) solution but for an effective mass of (1 — fgqq)M.
The accretion rate is the Bondi rate

MB = 47T€r]§cspooy (87)
where
GM
rg=(1 _fEdd)c—Z (88)

N

is the Bondi radius for the effective mass, ¢, is the gas sound
speed at infinity, and £ is a numerical factor of order unity that
depends on the gas equation of state. For an isothermal gas,
¢ = e%2/4 and the radial profiles of the nondimensional density
a = plps and velocity u = v/c, are given by the solutions to the
nonlinear algebraic equations (Shu 1992)

xlau =€, (89)
2
1
”7+1na—;=0, (90)

where x = r/rg is the dimensionless radius.

To set up this test, we make use of the Lagrangian sink par-
ticle algorithm of Krumholz et al. (2004) coupled with the ““star
particle” algorithm of Krumholz et al. (2007) which allows the
sink particle to act as a source of radiation. We refer readers to
those papers for details on the sink and star particle algorithms.
We simulate a computational domain 5 x 10! ¢cm on a side, re-
solved by 2563 cells, with a particle of mass M = 10 M, and
luminosity L = 1.6 x 103 L, at its center. We adopt fluid prop-
erties po, = 10-'8 g cm 3, kor = 0.4 cm? g‘l, and ¢, = 1.3 x
107 cm s~!, corresponding to a gas of pure, ionized hydrogen
with a temperature of 10% K. With these values, fz4q = 0.5,
rg =4.0x10'2cm, and Mg = 2.9 x 107 g s~ 1. We use inflow
boundary conditions on the gas and Dirichlet boundary condi-
tions on the radiation field, with the radiation energy density on
the boundary set to the value given by equation (83).

Figure 9 compares the steady state density « and velocity u
computed by Orion to the analytic solution. The agreement is
excellent, with differences between the analytic and numerical
solutions of ~1% everywhere except very near the accretion
radius at x = 0.25. The maximum error is ~10% at the surface
of the accretion region; this is comparable to the error in den-
sity for nonradiative Bondi accretion with similar resolution in
Krumbholz et al. (2004). In comparison, the solution is nowhere
near the solution that would be obtained without radiation.
After running for five Bondi times (=rg/c;), the average accre-
tion rate is 2.4 x 10'7 g s~!. While this differs from the analytic
solution by 19%, the error is also not tremendously different from
that obtained by Krumbholz et al. (2004), when the Bondi radius
was resolved by four accretion radii, and is nowhere near the
value of 1.2 x 10'® g s~! which would occur without radiation.

We should at this point mention one limitation of our algo-
rithm, as applied on an adaptive grid, that this test reveals. The

0.4 0.8 1.0 2.0 4.0

Fic. 9.—Dimensionless density o (fop) and velocity u (bottom) vs. dimension-
less position x for radiation-inhibited Bondi accretion. We show the analytic so-
lution (solid lines), the solution as computed with Orion (dashed lines), and the
analytic solution for Bondi accretion without radiation (dotted lines). For the Orion
result, the values shown are the radial averages computed in 128 logarithmically
spaced bins running from the accretion radius x = 0.25 to the outer edge of the
computational domain x = 5.

1/r? gradient in the radiation energy density is very steep, and
we compute the radiation force by computing gradients in E.
We found that, in an AMR calculation, differencing this steep
gradient across level boundaries introduced significant artifacts
in the radiation pressure force. With such a steep gradient, we
were only able to compute the radiation pressure force accu-
rately on fixed grids, not adaptive grids. This is not a significant
limitation for most applications, however, since for any appre-
ciable optical depth the gradient will be much shallower than
1/r2. As the radiation pressure tube test in § 5.3 demonstrates, in
an optically thick problem the errors that arise from differencing
across level boundaries are less than 1%.

5.5. Advecting Radiation Pulse

The previous two tests check our ability to compute the radia-
tion pressure force accurately in the optically thick and optically
thin limits. However, they do not strongly test radiation advec-
tion by gas. To check this, we simulate a diffusing, advecting
radiation pulse. The initial condition is a uniform background
of gas and radiation far from the pulse. Centered on x = 0, there
is an increase in the radiation energy density and a corresponding
decrease in the gas density, so that the initial condition is every-
where in pressure balance. As radiation diffuses out of the pulse,
pressure support is lost and the gas moves into the lower density
region. We cannot solve this problem analytically, but we can
still perform a very useful test of the methodology by compar-
ing a case in which the gas is initially at rest with respect to the
computational grid with a case in which the gas is moving at a



No. 1, 2007

=3

p (g cm
(@]
[e)]

T (107 K)
o

Lo b bev et b b b b b b

a
N
L LA S B L L L LR RN RN RN RARN RAR RARS

P (10" dyn cm™?)

—400 —200 0

o
y

Fic. 10.—Density, temperature, and pressure vs. position in the advected ra-
diation pulse problem. The bottom panel shows total pressure (solid line), gas
pressure (dashed line), and radiation pressure (dot-dashed line).

constant velocity with respect to the grid. The results should be
identical when shifted to lie on top of one another, but the work
and advection terms will be different in the stationary case from
those in the advected case. Checking that the results do not
change when we advect the problem enables us to determine if
our code is correctly handling the advection of radiation by the
gas.

p (g cm™)

v (km s™")

T (107 K)

—400 -200 0 200 400
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Fic. 11.—Density, velocity, and temperature in the advected radiation pulse
problem after 4.8 x 107> s of evolution. In each panel the solid line is the un-
advected run, and the dashed line is the advected run shifted 48 cm in the
—x-direction. In the velocity plot, the velocity we show for the advected run is
relative to the overall systematic velocity of 10° cm s~! in the initial condition.
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Fic. 12.—Relative error in density (so/id line) and gas/radiation temperature
(dashed line) in the radiation pulse test.

For our simulations, we use equal initial gas and radiation
temperatures, with temperature and density profiles

x2
T:TQ+(T1 —To)exp(—m), (91)
To ag T04 3
= po—m+ (20— 92
o P0T+3kB<T , (92)

with 7y = 107K, T} =2 x 107 K, po = 1.2gcm_3,w =24 cm,
pw=233m, =39%x10"* g, and £ = 100 cm? g~'. The den-
sity, temperature, and pressure profiles are shown in Figure 10.
In the bottom panel, the solid line is the total pressure, the dashed
line is the gas pressure, and the dot-dashed line is the radiation
pressure. As the figure indicates, the system is initially in pres-
sure balance.

We compare two runs, one where the velocity is zero every-
where and another with a uniform initial velocity v = 10® cm s~
in the x-direction. In both runs the simulation domain extends
from —512 to 512 cm, resolved by 512 cells with no adaptivity.
We use periodic boundary conditions on the gas and the radiation
and run for 4.8 x 107> s, long enough for the pulse to have been
advected over its own initial width twice.

To check our results, we shift the advected run by 48 cm in
the —x-direction, so that it should lie on top of the unadvected
run. Figure 11 shows the configuration of the advected and
unadvected runs at this point. We then plot the relative differ-
ence between the advected and unadvected runs, defined as
(unadvected — advected)/unadvected, in Figure 12. We do not
differentiate between the gas and radiation temperatures, because
they are identical at the 1073 level. We do not plot the error in
velocity because the velocities in the unadvected run are close to
zero over most of the computational domain. As the plot shows,
the difference between the advected and unadvected runs is less
than 2% everywhere in the simulation.

6. SUMMARY

We derive the correct equations for mixed-frame flux-limited
diffusion radiation hydrodynamics. The error in our equations if
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of order v?/c? in the static diffusion limit and of order v/c in the
dynamic diffusion and streaming limits. We give the equations
in a form that is well suited to implementation in numerical sim-
ulations, because they make it trivial to maintain exact conser-
vation of total energy. Our analysis reveals that lower order
formulations of the equations, which neglect differences be-
tween the laboratory and comoving frames, are incorrect at order
unity for systems in the dynamic diffusion limit. It remains to be
seen how serious this defect is in practice, but analytic arguments
suggest that at a minimum one ought to be very careful in ap-
plying zeroth-order codes to problems where there are interest-
ing or important structures on scales for which 57 ~ 1. We give
the equations that are correct to leading order for dynamic dif-
fusion, which do not suffer from this problem.

Our analysis also reveals that, for static diffusion problems,
one can obtain a significant algorithmic simplification and speedup
compared to algorithms based on comoving-frame formulations
of the equations by treating nondominant radiation terms explic-
itly rather than implicitly. This advance is possible even though
the underlying equations of our method conserve total energy
to machine precision while comoving-frame formulations of the
equations do not. This property is particularly important for
flows that are turbulent or otherwise involve large gradients in
gas or radiation properties, since these are the problems most
likely to suffer from numerical nonconservation. We demon-
strate an implementation of this method in the Orion adaptive
mesh refinement code and show that it provides excellent agree-
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ment with analytic and semianalytic solutions in a series of test
problems covering a wide range of radiation hydrodynamic
regimes.
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APPENDIX
SCALINGS IN THE DYNAMIC DIFFUSION LIMIT

Here we show that the emission minus absorption term 47B/c — E is of order 3?E in the dynamic diffusion limit. Mihalas & Weibel-
Mihalas (1999) argue that in this limit 47wB/c — E is of order ( 3/7) E. However, this conclusion is based on their analysis of the second-
order equilibrium diffusion approximation (Mihalas & Weibel-Mihalas 1999, p. 461-466), in which they retain terms of order /7
while dropping those of order 32. While this is correct for static diffusion, in the dynamic diffusion limit 32 > (3/7, so the approach in
Mihalas & Weibel-Mihalas is not consistent and is insensitive to terms of order 32.

We do not give a general proof that 47B/c — E ~ 32E for dynamic diffusion, but we can establish it by a simple thought experiment.
Consider a system that is infinitely far into the dynamic diffusion limit, in the sense that 7 = co: an infinite uniform medium that is at
rest and in perfect thermal equilibrium between the radiation field and the gas. In the rest frame of the medium, these assumption require
Ey = 47nB/c,Fy = 0,and Py = (Ey/3)I. Now consider an observer moving at velocity v relative to the medium. In the observer’s frame,
47B/c is the same because the gas temperature 7 is a world-scalar, and the Lorentz transform to all orders for the energy gives

+ :
c? c?

3G
=)0-3(3) ol

Thus, for this case it is clear that 47B/c — E ~ 32E to leading order.

Note that using the correct scaling is necessary to obtain sensible behavior from the equations in the dynamic diffusion limit. If one
assumes that 4wB/c — E ~ (3/T)E, then in the gas and radiation energy equations (41) and (42) in the dynamic diffusion limit, the term
kop(v2/c)[(3 — R2)/2)E is of higher order than any other term except perhaps the time derivative. Since this term is nonzero for any
system with nonzero velocity, opacity, and radiation energy density, this means that there would be no way for the time derivative term
to ever vanish. Thus, a system in the dynamic diffusion limit could never be in equilibrium unless its velocity or radiation energy were
zero everywhere. Clearly, this cannot be correct, since it predicts that our static, infinite, uniform medium cannot be in equilibrium
when seen by an observer moving by at velocity v, even though it is manifestly in equilibrium in its own rest frame. On the other hand,
if we take 47B/c — E = (4/3)(v?/c?)E, as computed from the Lorentz transform, it is trivial to verify that equations (41) and (42)
correctly give d(pe)/0t = OE/0t = 0, and (G°, G) = (0, 0) as well. The observer sees a flux that does work on the gas, but this is pre-
cisely canceled by a mismatch between emission and absorption of radiation by the gas, leading to zero net energy transfer.

(A1)
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