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Growth rates of the ablative Rayleigh–Taylor instability in inertial
confinement fusion

R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester,
New York 14623-1299

~Received 10 September 1997; accepted 2 February 1998!

A simple procedure is developed to determine the Froude number Fr, the effective power index for
thermal conductionn, the ablation-front thicknessL0 , the ablation velocityVa , and the acceleration
g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and
pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric
profiles of Kull and Anisimov@Phys. Fluids29, 2067 ~1986!#. These quantities are then used to
calculate the growth rate of the ablative Rayleigh–Taylor instability using the theory developed by
Goncharovet al. @Phys. Plasmas3, 4665 ~1996!#. The complicated expression of the growth rate
~valid for arbitrary Froude numbers! derived by Goncharovet al. is simplified by using reasonably
accurate fitting formulas. ©1998 American Institute of Physics.@S1070-664X~98!00705-8#
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I. INTRODUCTION

In recent years, several authors1–14 have studied the lin-
ear growth of the Rayleigh–Taylor~RT! instability in abla-
tion fronts accelerated by laser irradiations. The determ
tion of the instability growth rate is crucial to the success
inertial confinement fusion15,16 ~ICF! because an excessiv
distortion of the front could lead to a severe degradation
the capsule performance with respect to the final core co
tions by seeding the deceleration phase RT instability
preventing the onset of the ignition process.

For a successful implosion, ICF targets must be desig
to keep the RT growth at an acceptable level. Because o
complexity of two-dimensional~2-D! or three-dimensiona
~3-D! codes and the mesh refinement needed to simulate
droinstabilities, two- or three-dimensional simulations ca
not be routinely used to study the capsule stability and m
ing. The best approach to target design is to carry ou
preliminary analysis by using one-dimensional~1-D! simula-
tions to study the main characteristics of the implosion a
then processing the data with a mixing model to study
evolution of the instability and the induced RMS deviation
Once the preliminary design is completed, the optimizat
can be carried out by using 2- or 3-D codes. Since the mix
model predictions are based on the initial perturbation a
plitude and linear growth rates, it is very important to ge
erate an accurate and reliable growth rate formula to be u
in conjunction with the 1-D code output.

According to the linear classical theory,17 the interface
between a heavy fluid of constant densityrh and a light fluid
of constant densityr l in a gravitational fieldg pointing to-
ward the light fluid is unstable. A small perturbation wou
grow exponentially in time,;egclt, at a rate

gcl5AAT
clkg, ~1!

whereAT
cl5(rh2r l)/(rh1r l) is the Atwood number andk

is the perturbation wave number.
1441070-664X/98/5(5)/1446/9/$15.00
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If the density is smoothly varying between the two flui
and the minimum density gradient scale lengthLm

5minur/(dr/dx)u is finite, then a distinction must be mad
between those modes with wavelength larger and sma
thanLm . The long-wavelength modes (kLm!1) are not af-
fected by the finiteLm and grow according to Eq.~1! while
the short-wavelength modes (kLm@1) are localized inside
the smooth interface and grow at the rate18

g5A g

Lm
. ~2!

An asymptotic formula reproducing the results at short a
long wavelengths can be easily generated by inspection
Eqs.~1! and ~2! leading to

g5A AT
clkg

11AT
clkLm

. ~3!

In laser-accelerated targets, the ablation process and
thermal transport add a great deal of complication to
evolution of the instability. The overdense target mater
~with densityra! is ablated at a rateṁ5raVa whereVa is
the ablation velocity. The latter represents the penetra
speed of the ablation front in the overdense target. The
lated material blowing off the target rapidly expands insi
the ablation front and accelerates to large velocities rela
to the overdense targets.

It has been shown by several authors1–14that the ablation
process leads to a reduction of the instability growth ra
The so-called ablative stabilization was first discussed
Ref. 1 and thereafter extensively studied in Refs. 2–14.
cause of the mathematical complexity of the problem, s
plified analytic models such as the sharp boundary mo
have been used to describe the linear phase of the instab
However, such models are heuristic in nature as they lac
proper closure, which is left to the physical intuition. F
such reasons, different authors using different closure eq
tions have produced different growth rate formulas~see Refs.
6 © 1998 American Institute of Physics
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1447Phys. Plasmas, Vol. 5, No. 5, May 1998 Betti et al.
1, 5, and 13!. Numerical simulations have confirmed the s
bilizing effect of ablation and indicated that, in some cas
~as described later!, the growth rate can be approximated
the following formula:

g50.9Akg23.1kVa . ~4!

Equation~4! was derived in Ref. 3 by fitting the numerica
solution of the linearized conservation equations includ
ablation and electronic heat conduction. As stated in Sec.
Eq. ~4! does not correctly reproduce the growth rates in
presence of a significant radiation energy transport leadin
smooth density profiles. It is important to observe that E
~4! does not include the stabilizing effect of finite dens
gradient scale length and it can only be applied to very sh
ablation fronts or modes withkLm!1.

Only very recently, the analytic stability theory of acce
erated ablation fronts has been carried out in the limit
subsonic ablation flows8–12 ~i.e., fronts with ablation velocity
less than the sound speed at the ablation front! by using
complicated asymptotic matching techniques. Subsonic a
tion fronts are characterized by two dimensionle
parameters:11 the Froude number Fr5Va

2/gL0 and the power
index for thermal conductionn(k;Tn). HereL0 is the char-
acteristic thickness of the ablation front which is propo
tional to the minimum value of the density gradient sc
length6 Lm@L05Lmnn/(n11)n11#. The analytic theory de-
veloped in Refs. 8–12 shows that the instability growth r
is strongly dependent on the magnitude of the Froude n
ber. For large Froude numbers,10,11 the main stabilizing ef-
fects are ablation and blow-off convection, and the grow
rate can be written in the following form:10,13

g5AATkg2AT
2k2VaVbo2~11AT!kVa , ~5!

where

AT[
12~rbo/ra!

11~rbo/ra!
, Vbo5Va

ra

rbo
, ~6a!

rbo

ra
5m0~kL0!1/n m05

~2/n!1/n

G~111/n!
1

0.12

n2 , ~6b!

G(x) is the gamma function andVbo is the velocity of the
blow-off material at the distance;l from the ablation front.
Observe that the cutoff wave number obtained by setting
50 in Eq. ~5! occurs at long wavelengths,9

kcL05Fm0~n!

Fr Gn/~n21!

$11O@~kL0!1/n#%!1, ~7!

and short-wavelength modes are stable. As shown in R
10 and 11, Eq.~5! can be accurately fit by Eq.~4! for n
52.5 and 0.1,Fr,5, thus suggesting that the latter can
applied to ablation fronts with large Froude numbers.

When the Froude number is less than unity (Fr!1), the
analytic stability theory becomes more complicated and
be carried out only in the limits ofe5kL0!1 ande@1. The
analysis of Ref. 12 has shown that long-wavelength mo
with wave numberse!1 have a growth rateg.AATkg
2bkVa , where 1,b,2 is a function of n, b5G(1
12/n)/G2(111/n). Short-wavelength modes (kL0.1) are
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unstable, and the corresponding perturbations are mitig
by ablative convection, finite density gradient, and therm
smoothing. Their growth rate can be written asg
5Aag/L01c0

2k4L0
2Va

22c0k2L0Va for 1!kL0!Fr21/3, and
g5c1g/(Vak2L0

2)2c2kVa for the wave numbers near th
cutoff (k'kc). The parametersa and c022 have lengthy
expressions described in Ref. 12, and a complete summa
the growth rate formulas is given in Table I of Ref. 12. T
cutoff wave numberkc of ablation fronts with small Froude
numbers occurs at short wavelengths and scales askcL0

;Fr21/3@1.
The growth rate formulas obtained in Ref. 12 for sm

Froude numbers and short/long wavelengths can be c
bined with the formula~5! for large Froude numbers into
single expression that reproduces the analytic results in
appropriate limits~Fr!1, Fr@1, e!1, e@1!. According to
Ref. 12, the asymptotic formula can be written in the follo
ing form:

g5AÂTkg1d2k4L0
2Va

21S v22
1

j l
D k2Va

22dk2L0Va

2b̂kVa , ~8a!

where

ÂT5
jh2j l

jh1j l
, jh5~11K1e2K3 /e!21,

~8b!

j l5m0S 1

e
1K2D 21/n

, e5kL0,

b̂5v
11T1e

11T2e
, T15

b02b1

b2b0
, T25

b02b1

b2b1
, ~8c!

v5b0

11~11ÂT!/b0 sinh~Fr!

11sinh~Fr!
,

~8d!

b05
G„112/~n10.1/n4!…

G2
„111/~n10.1/n4!…

,

b15
1

j0A5
, b25B1

b0
21b1

2

2db1
2

11K1

2db1
, ~8e!

d5
1

2Y FK1A1
1

nK2

1AS 1

nK2
1K1AD 2

24K1b1Y2
11K1n

n2K2
2 G , ~8f!

Y5
25

8

j0
2n11

2n13
, K25@~11K1!m0#n, K15

1

j0
21,

~8g!

K35
11K1

K1
S 2dY2

1

nK2
D , m05

~2/n!1/n

GS 11
1

n D 1
0.12

n2 ,

~8h!

j05
2n12

2n13
,
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A5
A5

4

j0
n21

~2n13!2 FA2

5
j0~12n2125n118!

1
n12

2n13
~8n2120n117!G , ~8i!

B5
A5

4

j0
n21

~2n13!2 FA2

5
j0~8n2125n112!

2
8n3116n217n14

2n13 G . ~8j!

A detailed comparison of the growth rates obtained by us
Eq. ~8! and the numerical solutions of the conservation eq
tions has demonstrated a remarkable agreement over a
range of values for Fr,n, ande ~see Ref. 12!.

Despite its lengthy expression, the asymptotic form
can be easily computed once the Froude number Fr,
lengthL0 , the accelerationg, the ablation velocityVa , and
the power index for thermal conductionn are known. The
main difficulty in using Eq.~8! lies in the determination o
the equilibrium parameters, whose value is strongly dep
dent on the dominant energy transport mechanism. In
paper, we describe a simple procedure to be used in conj
tion with existing one-dimensional hydrodynamic codes
determine Fr,L0 , g, Va , andn. In addition, we apply this
procedure to accelerated flat foils commonly used in I
experiments and determine the unstable spectrum using
~8!. We also compare the analytic growth rates with the
sults of two-dimensional simulations obtained using the c
ORCHID.19 Numerical fits of Eq.~8! are also studied for dif-
ferent ablators and simplified formulas are generated fo
fast growth rate estimate. It is the aim of this paper to s
plify the theoretical result of Bettiet al. ~Refs. 9–12! to
make it useful to ICF target design.

II. EQUILIBRIUM PARAMETERS

One-dimensional simulations are commonly used in I
target design and several 1-D codes describing la
accelerated targets are available at universities and nat
laboratories. Among them, the most frequently used are
codesLILAC ,20 HYADES,21 LASNEX,22 etc. In this paper, the
authors have extensively used the codeLILAC , a 1-D La-
grangian code including laser absorption, classical fl
limited thermal transport, and multigroup radiation diffusi
transport. The equation-of-state package available inLILAC

includes the ideal gas, Thomas–Fermi, and SESAME tab
The analytic stability analyses are usually based o

single-temperature~or one-group! diffusive model for the
heat transport, i.e., the heat flux is proportional to the te
perature gradient, and the thermal conductivity follows
power law of the temperature@k5ka(T/Ta)n#, whereka ,Ta

are the thermal conductivity and temperature calculated
the peak density, andn is the power index. These simplifi
cations make the problem solvable with analy
techniques.8–13 If the radiated energy is negligible~low-Z
materials, such as DT!, the energy is transported mainly b
electronic heat conduction. In this case, the power inden
52.5 ~as given by Spitzer23! and L05@(gh21)/gh#Aka /
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(raVa), where gh is the ratio of the specific heats,A
5mi /(11Z) is the average particle mass,ra is the maxi-
mum density, andVa is the ablation velocity, respectivel
~see Ref. 9!. However, if a significant amount of energy
present in the radiation field, then an accurate estimate of
energy transport requires the use of multigroup radiat
transport models. In such models, the radiation energy s
trum is divided into several groups. Each group is describ
by a radiation temperature obeying an energy diffusion eq
tion. Because of the complexity of such models, an anal
stability analysis would be intractable. For such a reason,
analytic theories are based on a single-group model~one
temperature!. However, if the one-group diffusive transpo
model is used in the stability analysis, then one should
least make sure that such a model reproduces the
dimensional hydrodynamic profiles obtained using the m
tigroup model. In other words, one should fit the multigro
hydro-profiles with the one-group profiles by properly sele
ing the value ofn and L0 . This is an essential requiremen
for the stability analysis, assuring that the linearization
performed about the right equilibrium. Of course, there is
guarantee that the two-dimensional effects are correctly
cluded in the one-group model even though the o
dimensional profiles are correctly reproduced. However,
RT is mainly a hydrodynamic instability, and one could ho
that if the 1-D hydrodynamic profiles are correctly include
then the 2-D/3-D stability analysis would be independent
the heat transport model. This speculation could be verifiea
posteriori by comparing the analytic results with 2-D simu
lations including multigroup radiation transport.

Summarizing, the analytic analysis is based on the o
group subsonic diffusive transport model~or isobaric
model!. The parametersn, Fr, andL0 of such a model are
determined by fitting the analytic hydro-profiles with tho
obtained from 1-D simulations including multigroup radi
tion transport. The results of the analytic stability theory a
then compared with the full 2-D simulations including mu
tigroup radiation transport.

As shown in Ref. 6, the density profile of subsonic a
lation fronts, described by the one-temperature diffus
transport model, obeys the following first-order different
equation:

dj/dy52jn11~12j!/L0 , ~9!

where j is the density normalized to its peak value,j
5r/ra , and n is the power index for thermal conduction
The equilibrium pressure is determined by the momentu
conservation equationd(p1rU2)/dy5rg and the mass
conservation equation (d(rU)/dy50), which can be rewrit-
ten in the following dimensionless form:

1

Pa
2

dP

dy
5

1

j2

dj

dy
1

j

FrL0
, jU~y!5Va , ~10!

where P5p/pa , Pa5Va /Apa /ra is the normalized abla-
tion velocity, andpa is the pressure at the location of th
peak densityra . Observe that Eqs.~9! and ~10! for the un-
knownsj andP depend on the four parametersPa , Fr, L0 ,
and n. Keeping in mind that our goal is to reproduce th
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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hydro-profiles of the 1-D simulations, we determine the
parameters by fitting the analytic hydro-profiles with the n
merical ones. Let us define withjs5r/ra andPs5p/pa the
normalized simulated density and pressure profiles. If
predictions of the one-group model were exact, then
simulated profiles would represent an exact solution of E
~9! and ~10!. However, this is not the case and replacingj
with js in Eq. ~9! leads to an error. For convenience, we ta
the logarithm of Eq.~9! and define the error as

er5~n11!ln js2 ln L02 lnF2
djs

dy

1

12js
G . ~11!

Observe thater50 if js5j. In order to reproduce the simu
lated profiles over the entire ablation front, it is useful
minimize the integrated quadratic error~d! defined as

d~n,L0![E
jmin

jmaxF ~n11!ln js2 ln L0

2 lnS 2
djs

dy

1

12js
D G2

djs , ~12!

wherejmin ,jmax are the minimum and the maximum valu
of the density of the fitting region defining the extent of t
ablation front ~jmin50.01 andjmax50.99 are two possible
values!. The minimization ofd is obtained by setting to zer
the partial derivatives with respect ton andL0 ,

]d

]L0
5

]d

]n
50. ~13!

Substituting Eq.~12! into Eq. ~13! leads to the following
estimates ofL0 andn

n5
c1a12c2b1

a1
22a2b1

21, L05expS a2c12a1c2

a1
22a2b1

D , ~14!

where

a15vj~ ln j21!b , a25vj~ ln j21!21j b , b15vj b ,
~15a!

c15E
y~jmin!

y~jmax!

lnF2
djs

dy

1

12js
G djs

dy
dy, ~15b!

c25E
y~jmin!

y~jmax!

ln js lnF2
djs

dy

1

12js
G djs

dy
dy, ~15c!

and vH(j) b5H(jmax)2H(jmin). In the same fashion, th
Froude number and dimensionless ablation velocityPa can
be determined by minimizing the integrated quadratic erroh
in the momentum conservation equation

h~Fr,Pa!5E
y~jmin!

y~jmax!S 1

Pa
2

dPs

dy
2

1

js
2

djs

dy
2

js

FrL0
D 2

dy,

~16!

wherePs5ps /pa is the simulated normalized pressure pr
file. After some straightforward algebra, the minimizati
with respect toPa and Fr yields

Fr5
a3b41b3

2

b3c31a3c4

1

L0
, Pa

25
a3b41b3

2

c3b42c4b3
, ~17a!
Downloaded 30 Jan 2010 to 128.151.145.128. Redistribution subject to AI
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a35E
y~jmin!

y~jmax!S dPs

dy D 2

dy, b352E
y~jmin!

y~jmax!

js

dPs

dy
dy,

~17b!

b452E
y~jmin!

y~jmax!

js
2dy,

~17c!

c35E
y~jmin!

y~jmax! 1

js
2

dPs

dy

djs

dy
dy, c45 ln

jmax

jmin
.

The integration limitsy(jmin), y(jmax) represent the location
of the points with densityjmin andjmax, respectively. Using
the peak densityra and the pressure at the location of th
peak densitypa , the acceleration and ablation velocity ca
be easily determined from Eqs.~14! and ~17!,

Va5PaApa

ra
, g5

Va
2

L0

1

Fr
. ~18!

This technique has been tested on the hydrodynamic pro
obtained using the codeLILAC . We consider a planar CH foi
of thicknessd518mm irradiated by a 0.35mm wavelength
laser of 50 TW/cm2 intensity with a 1 nslinear ramp. The
pulse duration is 3 ns. The profiles obtained from the sim
lation are slowly varying in time. For the test, we consid
the profiles at timet52 ns and substitute the simulated de
sity and pressure into Eqs.~14!, ~17!, and ~18! and obtain
n50.7, L050.25mm, Fr50.03, and Va50.54mm/ns.
Then, using these values, we solve Eqs.~9! and ~10! to de-
termine the analytic density and pressure profiles. Figur
shows the simulated and the analytic profiles for the pla
~CH! target. The excellent agreement between the profi
shows the accuracy of the fitting procedure described ab
In Fig. 2, the fitting parametersn, L0 , and Fr are plotted as
functions of time, and the dashed lines represent the co
sponding average values. It is important to notice that
power index for thermal conduction to be used in the o
group model (n50.7) is well below the Spitzer23 (n52.5)
or the Zeldovich24 value (n.6.5), thus showing the impor
tance of the multigroup treatment of the radiation transpor
plastic targets.

FIG. 1. Normalized density and pressure profiles obtained by using isob
model ~solid lines! and 1-D numerical simulation~dots!.
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Lower-Z materials such as solid deuterium–tritium~DT!
are a good test of the fitting procedure because they are
pected to produce a very low level of radiation and to a
proximately follow the Spitzer model withn'2.5. We have
considered a planar DT foil of thicknessd5120mm irradi-
ated by the pulse described above. Substituting the simul
profiles into Eqs.~9! and ~10! yields n52, L050.03mm,
and Fr55. This result indicates that radiation transport ha
small effect in cryogenic DT targets.

Tables I and II show the time-averaged values of Fr,n,
L0 , and Va for several plastic and DT targets of differe
thicknesses and laser pulses. It is important to observe

FIG. 2. Temporal evolution~solid lines! and average values~dashed lines!
of the Froude number Fr, power index for thermal conductionn, and the
characteristic thickness of ablation frontL0 for a CH target.

TABLE I. CH targets.

Th
mm

I
TW/cm2

^Fr& ^n& ^L0&
mm

^Lm&
mm

^Va&
mm/ns

^g&
mm/ns2

a2 b2

10 50 0.03 0.8 0.2 0.7 0.8 95 1.01 1.
18 50 0.03 0.8 0.3 1.0 0.6 50 1.01 1.
20 100 0.04 0.9 0.3 1.1 0.9 76 0.99 1.
20 240a 0.05 0.9 0.2 0.7 1.3 130 0.97 1.6
25 240a 0.05 0.9 0.2 0.7 1.2 123 0.98 1.6

aLinear rise pulse.
Downloaded 30 Jan 2010 to 128.151.145.128. Redistribution subject to AI
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plastic targets have smooth density profiles~large density
gradient scale length!, low ablation velocity,n,1, and small
Froude numbers while solid DT targets have sharp profi
large ablation velocity,n'2, and large Froude numbers.

III. GROWTH RATES

A. Comparison with numerical results

Once the equilibrium parameters are calculated, Eq.~8!
can be used to determine the growth rates. As discusse
the previous section, there is no guarantee that the ana
stability analysis using the one-temperature model would
produce the results of the two-dimensional simulations us
the multigroup radiation diffusion treatment even though
1-D simulated and analytic hydrodynamic profiles are ide
tical. It is necessary to validate the formula by comparing
analytic and the numerical growth rates.

As a first test of the analytic theory, we compare t
analytic growth rates with Takabe’s formula.3 The latter has
been derived by fitting the numerical solution of the exa
linearized single-fluid conservation equations includi
Spitzer conductivity and a finite Mach number. This test
useful because it validates the assumption of subsonic
and the simplification leading to the isobaric mode5

Takabe’s formula can be written in the following dimensio
less form:3

ĝ5
g

gcl
5aT2bTX, ~19!

where gcl5Akg is the classical growth rate,X5AkVa
2/g,

aT.0.9, andbT.3.1. Similarly, Eq.~8! can also be rewrit-
ten in dimensionless form

ĝ5AÂT1d2
X6

Fr2
1S v22

1

j l
DX22d

X3

Fr
2b̂X. ~20!

The growth rates calculated using Eqs.~19! and ~20! for n
52.5 and different Froude numbers are shown in Fig.
Observe that the two formulas approximately agree
Froude numbers between 0.1 and 5. This result is not
prising as Takabe’s formula has been derived using Spi
conductivity leading to sharp profiles~smallL0 and therefore
relatively large Froude numbers!. We conclude that the RT
growth rate in low-Z materials with Fr.0.1, such as solid
DT, is well described by Takabe’s formula over a wide ran
of Fr (0.1,Fr,5). For small Froude numbers or differen

TABLE II. DT targets.

Th
mm

I
TW/cm2

^Fr & ^n& ^L0&
mm

^Lm&
mm

^Va&
mm/ns

^g&
mm/ns2

a1 b1

100 50 4.1 2.0 0.02 0.13 2.8 97 0.94 2.
190 50 3.8 2.0 0.03 0.20 2.7 60 0.94 2.
190 100 4.0 2.1 0.07 0.49 4.6 77 0.94 2.
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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values ofn, Takabe’s formula does not provide an accur
estimate of the growth rate, thus Eq.~8! or its fitting formu-
las must be used.

When the density profile is smooth, as in the case
large radiation energy transport, or the ablation velocity
small, we expect the Froude number to decrease. As sh
in Fig. 3, Takabe’s formula and Eq.~8! yield very different
results for this case. In addition, radiative transport cau
the deviation of the power indexn from the Spitzer value
requiring a more general formula than Takabe’s. For s
targets, Eq.~8! can be compared only with the results of fu
2-D simulations including a multigroup radiation transpo
model. We consider the same 18mm plastic target describe
in the previous section, and we simulate it with the co
ORCHID. We then calculate the parametersn, Fr, L0 , g, and
Va to be used in Eq.~8! by substitutingORCHID density and
pressure profiles into Eqs.~14!, ~17!, and ~18! and find Fr
50.043, L050.24mm, Va50.66mm/ns, n50.96, andg
543mm/ns2. In Fig. 4, the growth rates obtained usin
ORCHID ~dots! are compared with Eq.~8! ~solid line!, Tak-
abe’s~dot-dashed line!, and modified Takabe’s~dashed line!
formulas. The latter is the Takabe’s formula including t

FIG. 3. Normalized growth rate (g/Akg) versus normalized wave numbe
(AkVa

2/g) calculated using Takabe’s formula~dashed line! and Eq. ~8!
~solid lines! for different values of the Froude number andn52.5.

FIG. 4. Unstable spectrum calculated using the analytic formula~8! ~solid
line! compared with the numerical results~dots! of the 2-D hydrocode
ORCHID, Takabe’s formula~dot-dashed line!, and modified Takabe’s formula
~dashed line!.
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stabilizing effects of finite density gradient scale length in
heuristic fashion,

gmT5aTA kg

11kLm
2bTkVa , ~21!

whereLm is the minimum density gradient scale length,Lm

50.93mm. Observe that Takabe’s and modified Takab
formulas fail to reproduce the simulation results in the sho
wavelength regime. Instead, the growth rates obtained w
Eq. ~8! are in excellent agreement with the simulated on
over the entire unstable spectrum.

Furthermore, we study different pulse shapes and dif
ent target materials. We consider a 20mm thick CH target
irradiated by a square pulse with an intensity of 200 TW/c2

and 100 ps linear rise time. According to theORCHID simu-
lations, the hydrodynamic profiles reach a steady state a
1.3 ns. The growth rates of 30 and 15mm wavelength per-
turbations are determined from the 2-D simulations yield
gsim(15mm)54.9 ns21 and gsim~30mm!54.1 ns21. Using
the ORCHID hydrodynamic profiles and Eqs.~14!, ~17!, and
~18!, we estimate the relevant hydrodynamic parametern
51.2, L050.22mm, Va52.0mm/ns, Fr50.12, and g
5144m/ns2. Substituting such parameters into th
asymptotic formula@Eq. ~8!# yields the theoretical growth
ratesgtheory~15mm!54.9 ns21 andgtheory~30mm!54.06 ns21

reproducing the simulation results.
Next, we simulate the evolution of a 6mm wavelength

surface perturbation on a 20mm thick beryllium foil irradi-
ated by a square pulse with an intensity of 50 TW/cm2 and
100 ps linear rise time. The steady state is reached after
ns and theORCHID simulation yields the mode growth rat
gsim52.27 ns21. The simulated and analytic hydrodynam
profiles match for n50.63, L050.36mm, Va

50.73mm/ns, Fr50.06, andg525m/ns2, thus yielding the
theoretical growth rategtheory52.28 ns21 in good agreemen
with the numerical simulations.

These tests are a clear indication that Eq.~8! can be used
to determine the growth rates of short-/long-wavelength
modes in ablation fronts with large/small Froude number

B. Fitting formula for the growth rate

Although Eq. ~8! provides an accurate estimate of th
ablative RT growth rates, its expression is too complica
for practical applications. Without a doubt, a simplificatio
of Eq. ~8! would greatly help the target designers in t
choice of the ablator material and the implementation of
RT mixing models. For this purpose, we simplify Eq.~8!
using two well-known fitting formulas:

g15a1~Fr,n!Akg2b1~Fr,n!kVa , ~22!

g25a2~Fr,n!A kg

11kLm
2b2~Fr,n!kVa , ~23!

whereLm5L0(n11)n11/nn, and thea’s andb’s are func-
tions of Fr andn. It turns out that Eq.~22! is particularly
accurate in fitting the large Froude number results while
~23! is suitable for low Froude numbers. This is not surpr
ing as ablation fronts with small Froude numbers are
P license or copyright; see http://pop.aip.org/pop/copyright.jsp
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stable to modes with wavelengths smaller than the den
gradient scale length whose growth is strongly affected
the finitekLm .

The calculation of the coefficientsa1 , b1 anda2 , b2 is
carried out using the standard fitting procedures of theMATH-

EMATICA software package.25 We define a range of interes
for the mode wavelength from the cutofflc to about 200
times the cutoff wavelengthlmax'200lc ~the parametersa
andb have shown little sensitivity to the value oflmax!. The
a’s andb’s are determined by fitting the growth rateg ob-
tained using Eq.~8! with the formulas~22! and~23! over the
wavelength rangelc,l,lmax. Figures 5 and 6 show th
value ofa, b for different Fr andn. The solid section of the
curves represents the region of optimum fit, i.e., the reg
where each formula fits the data at its best. According to
value of Fr andn, one should use the formula correspondi
to a solid curve.

As an example, we consider the plastic target used in
ORCHID simulations described in the previous section. T
values Fr50.043 andn50.96 are obtained by processing th
ORCHID hydro-profiles with the procedure described in S
II. Using Fig. 6, we determine the optimum fit by usingg2

with a250.98 andb251.64. Figure 7 shows a plot of th
unstable spectrum obtained using Eq.~8! ~solid line! and the
fitting formula g2 ~dashed line!. The excellent agreemen
between the two curves indicates that the fitting formula r
resents a good approximation of Eq.~8!.

We have determined the optimum fit for several plas
and solid DT targets commonly used in direct-drive ICF e
periments. Table I shows the results of the fitting proced
described above for different laser pulses and plastic ta

FIG. 5. Plot of coefficientsa1 , b1 of the fitting formula~22! versus Froude
number for different values of the power indexn. The solid line represents
the regions of the best fit of the analytical formula~8! with Eq. ~22!.
Downloaded 30 Jan 2010 to 128.151.145.128. Redistribution subject to AI
ty
y

n
e

e
e

.

-

c
-
e
et

thicknesses. It appears that over a wide range of thickne
and laser powers, the growth rate of the RT instability fo
directly driven CH target can be approximated by

gCH'A kg

11kLm
21.7kVa , ~24!

where 0.7,Lm,1 mm. The same formula has been deriv
for the aluminum coated CH and beryllium~Be! targets. The
corresponding time-averaged values of Fr,n, L0 , g, andVa

are shown in Tables III and IV, respectively. The growth ra
for cryogenic DT targets is better represented by the fitg1 ,
and Table II shows the optimum fit for different flat targe
driven by a laser pulse with a 1-ns linear ramp followed b

FIG. 6. Plot of coefficientsa2 , b2 of the fitting formula~23! versus Froude
number for different values of the power indexn. The solid line represents
the regions of the best fit of the analytical formula~8! with Eq. ~23!.

FIG. 7. Unstable spectrum of the target described in Sec. II calculated u
the analytic formula~8! ~solid line! and the fitting formula~23! ~dashed
line!.
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flat-top pulse. These results indicate that the growth rate
solid DT targets is well approximated by a Takabe-like fo
mula

gDT'0.94Akg22.7kVa . ~25!

The RT growth rate for different ablator materials can
determined in the same fashion by using 1-D hyd
simulations to reproduce the density and pressure profi
Eqs.~14!, ~17!, and~18! to calculate the equilibrium param
eters, and Figs. 5 and 6 to generate the growth rate formu

It is very important that the 1-D hydrodynamic analyt
profiles be carefully matched with the simulation resu
when determining the relevant equilibrium parameters. E
though the analytic theory yields satisfactory results for D
CH, and BE targets, it might fail to reproduce the profiles
other materials. For instance, the hydrodynamic profiles
plastic targets with high-Z dopants are not well reproduce
by the single temperature model and Eq.~8! cannot be ap-
plied to determine the RT growth rate. The study of the
instability in such targets is currently under investigation.

An interesting result of the analytic theory concer
those equilibria withn.1 and Fr.2. Figure 5 shows thata1

decreases dramatically with increasing Froude numbers.
result is not surprising as the same conclusion can be rea
using the results of the self-consistent stability analysis
Ref. 10 reported in Eq.~5!. The growth rate formula~5!
yields zero growth rate for equilibria withn51 and Fr.2
when the second term in the square root2AT

2k2VaVb0

~caused by overpressure of the blow-off region with resp
to the overdense region! is larger than the instability-drive
term ATkg for any wave number. This result has also be
confirmed by solving the system~2!–~4! of Ref. 10 using an
initial value code and is also in agreement with the numer
results of Kull~see Ref. 6!. In addition, the numerical result
seem to indicate that such a stabilization occurs for ann
<1. In conclusion, hydrodynamic profiles withn<1 and
Fr.2 are RT stable for all wavelengths.

TABLE III. BE targets.

Th
mm

I
TW/cm2

^Fr& ^n& ^L0&
mm

^Lm&
mm

^Va&
mm/ns

^g&
mm/ns2

a2 b2

16 50 0.05 0.7 0.2 0.6 0.6 40 1.00 1.
16 100 0.06 0.7 0.2 0.6 0.8 60 0.99 1.
32 100 0.06 0.6 0.4 1.2 0.8 28 1.00 1.
16 240a 0.10 0.8 0.1 0.4 1.1 28 0.95 1.7

aLinear rise pulse.

TABLE IV. CH targets with aluminum coating.

Th
mm

I
TW/cm2 ^Fr& ^n&

^L0&
mm

^Lm&
mm

^Va&
mm/ns

^g&
mm/ns2 a2 b2

2010.5 100 0.07 0.9 0.7 2.6 1.9 72 0.97 1.
2011.0 100 0.08 0.7 1.6 5.0 2.8 63 0.98 1.
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IV. CONCLUSIONS

The growth rate of the ablative Rayleigh–Taylor inst
bility is calculated using the analytic theory of Gonchar
et al. ~Refs. 9–12! and the output of one-dimensional sim
lations of laser-accelerated targets. At steady state, the s
lated density and pressure profiles are used to determine
equilibrium parameters Fr,Va , g, n, and L0 via a newly
developed fitting procedure. Those parameters are then
stituted into the self-consistent growth rate formula of Go
charovet al. ~Ref. 12!. The accuracy of such a procedure h
been tested by comparing the analytic growth rates fo
plastic and beryllium target with the ones obtained us
two-dimensional simulations.

This theory suggests that Takabe’s formula represen
good approximation of the growth rates for only relative
large Froude numbers (0.1,Fr,5) and electronic heat con
duction (n.2.5) but fails for small Froude numbers an
radiative materials. The complicated asymptotic formula
Ref. 12 which is valid for arbitrary Froude numbers has be
simplified by using simple fits over a wide range of Frou
numbers and power indices for thermal conduction. In ad
tion, simple growth rate formulas for directly driven sol
DT, plastic~CH!, and beryllium targets have been derived

Even though the analytic theory yields satisfactory
sults for DT, CH, and BE targets, it might not be adequ
for other materials such as chlorinated plastic. The hydro
namic profiles of plastic targets with high-Z dopants are not
well reproduced by the single temperature model and Eq.~8!
cannot be applied to determine the RT growth rate.
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