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Growth rates of the ablative Rayleigh—Taylor instability in inertial
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A simple procedure is developed to determine the Froude number Fr, the effective power index for
thermal conductiom, the ablation-front thickneds,, the ablation velocity,, and the acceleration

g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and
pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric
profiles of Kull and Anisimov[Phys. Fluids29, 2067 (1986]. These quantities are then used to
calculate the growth rate of the ablative Rayleigh—Taylor instability using the theory developed by
Goncharovet al. [Phys. Plasmas8, 4665(1996]. The complicated expression of the growth rate
(valid for arbitrary Froude numberslerived by Goncharoet al. is simplified by using reasonably
accurate fitting formulas. €1998 American Institute of Physids$1070-664X98)00705-9

I. INTRODUCTION If the density is smoothly varying between the two fluids
_ . ) and the minimum density gradient scale length,

In recent years, several authbrs’ have studied the lin- _ min o/(do/dx)| is finite, then a distinction must be made
ear growth of the Rayleigh—TayldRT) instability in abla-  pepyeen those modes with wavelength larger and smaller

tion fronts accelerated by laser irradiations. The determinafhanl_ . The long-wavelength mode&l(,,<1) are not af-
tion of the instability growth rate is crucial to the success Offectedmby the finiteL, and grow accordirrlng to Eq1) while

inertial confinement fusiof*® (ICF) because an excessive y,q short-wavelength modekl(,>1) are localized inside
distortion of the front could lead to a severe degradation of,o smooth interface and grow at the fte

the capsule performance with respect to the final core condi-

tions by seeding the deceleration phase RT instability and B /9
preventing the onset of the ignition process. Y= |__m @

For a successful implosion, ICF targets must be designed

to keep the RT growth at an acceptable level. Because of th@" asymptotic formula reproducing the results at short and
complexity of two-dimensiona(2-D) or three-dimensional long wavelengths can be easily generated by inspection of

(3-D) codes and the mesh refinement needed to simulate h{zdS- (1) and(2) leading to

droinstabilities, two- or three-dimensional simulations can- ATk
. - : TKg
not be routinely used to study the capsule stability and mix-  y= T3 A KL ©)]
ing. The best approach to target design is to carry out a +tATKLm
preliminary analysis by using one-dimensiofD) simula- In laser-accelerated targets, the ablation process and the

tions to study the main characteristics of the implosion andhermal transport add a great deal of complication to the
then processing the data with a mixing model to study thesvolution of the instability. The overdense target material
evolution of the instability and the induced RMS deviations. (with densityp,) is ablated at a raten=p,V, whereV, is
Once the preliminary design is completed, the optimizationthe ablation velocity. The latter represents the penetration
can be carried out by using 2- or 3-D codes. Since the mixingpeed of the ablation front in the overdense target. The ab-
model predictions are based on the initial perturbation amtated material blowing off the target rapidly expands inside
plitude and linear growth rates, it is very important to gen-the ablation front and accelerates to large velocities relative
erate an accurate and reliable growth rate formula to be useg the overdense targets.
in conjunction with the 1-D code output. It has been shown by several autHoréthat the ablation
According to the linear classical theof{/the interface  process leads to a reduction of the instability growth rate.
between a heavy fluid of constant dengityand a light fluid ~ The so-called ablative stabilization was first discussed in
of constant density, in a gravitational fieldy pointing to-  Ref. 1 and thereafter extensively studied in Refs. 2—14. Be-
ward the light fluid is unstable. A small perturbation would cause of the mathematical complexity of the problem, sim-

grow exponentially in time~e”<", at a rate plified analytic models such as the sharp boundary model
have been used to describe the linear phase of the instability.
Yo = VATKQ, (1) However, such models are heuristic in nature as they lack a

proper closure, which is left to the physical intuition. For
WhereA$'=(ph—p|)/(ph+p|) is the Atwood number ani such reasons, different authors using different closure equa-
is the perturbation wave number. tions have produced different growth rate formulsse Refs.
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1, 5, and 13 Numerical simulations have confirmed the sta-unstable, and the corresponding perturbations are mitigated
bilizing effect of ablation and indicated that, in some casedy ablative convection, finite density gradient, and thermal
(as described latgrthe growth rate can be approximated by smoothing. Their growth rate can be written ag
the following formula: = \/ag/L0+CZSkZ“LSV‘f‘—cokzLOVa for 1<kLy<Fr % and
vy=c19/(V.k°Lg) —c,kV, for the wave numbers near the
7=0.9Vkg—3.1KV,. @ cutoff (k%kc).OThe parametersr and c,_, have lengthy
Equation(4) was derived in Ref. 3 by fitting the numerical expressions described in Ref. 12, and a complete summary of
solution of the linearized conservation equations includinghe growth rate formulas is given in Table | of Ref. 12. The
ablation and electronic heat conduction. As stated in Sec. lligutoff wave numbek_ of ablation fronts with small Froude
Eq. (4) does not correctly reproduce the growth rates in theyumbers occurs at short wavelengths and scale& hg
presence of a significant radiation energy transport leading to- Fr™ Bs1.
smooth density profiles. It is important to observe that Eq.  The growth rate formulas obtained in Ref. 12 for small
(4) does not include the stabilizing effect of finite density Froude numbers and short/long wavelengths can be com-
gradient scale length and it can only be applied to very sharpined with the formula5) for large Froude numbers into a
ablation fronts or modes witkL,<1. single expression that reproduces the analytic results in the
Only very recently, the analytic stability theory of accel- appropriate limits(Fr<1, Fr>1, e<1, e>1). According to
erated ablation fronts has been carried out in the limit ofRef. 12, the asymptotic formula can be written in the follow-
subsonic ablation flofs*2(i.e., fronts with ablation velocity ing form:
less than the sound speed at the ablation frduyt using
complicated asymptotic matching techniques. Subsonic abla-
tion fronts are characterized by two dimensionless
parameters? the Froude number FrV2/gL, and the power

1
w?— —) k2V2— 8k2L oV,

y= \/ATkg+ SKALEV2+ ;
|

index for thermal conduction(x~T"). HerelL is the char- BKVa, (83
acteristic thickness of the ablation front which is propor-where
tional to the minimum value of the density gradient scale
lengttf L, [Lo=L»"/(v+1)""1]. The analytic theory de- A :@ £=(1+Ke Kale)~t
veloped in Refs. 8-12 shows that the instability growth rate ' &t & " ! ' (8b)
is strongly dependent on the magnitude of the Froude num- 1
ber. For large Froude numbéfst! the main stabilizing ef- &= o —+K2) . e=kLy,
fects are ablation and blow-off convectiqg, and the growth €
rate can be written in the following ford?: . 14T Bo- B .  Bo- B 80

y=VATkg—ATK?V Vpo~ (1+ApKV,, (5) YT Y BB P BBy
where 5 1+ (1+ A7)/ By sinh(Fr)

- @=Po 1+ sinh(Fr ’
Arm s Lol vy, Pe (6a ik (8d)
(Ppo/ Pa) Poo T (1+2/(v+0.10%)

Pho 2m 012 3°_r2(1+ 1U(v+0.1v%)’

— = po(kLo) " M0=F—+ 7 (6b)

Pa (1+1v) v 2. 2

BotB1 1+Ky
I'(x) is the gamma function an¥, is the velocity of the B1=§—\/§, B2=B+ 20B,  20B;° (8¢)
blow-off material at the distance N from the ablation front. 0
Observe that the cutoff wave number obtained by setjing 1 1
=0 in Eq.(5) occurs at long wavelengtfs, 6= >y {K1A+ K,
po(»)]" Y " .
keLo [ = {1+0O[(kLg)¥"]} <1, 7) . \/ %+K1A> KBy 1+2E;V -
2 VR

and short-wavelength modes are stable. As shown in Refs.
10 and 11, Eq(5) can be accurately fit by Eq4) for v 25 &'t , 1
=2.5 and 0.k Fr<5, thus suggesting that the latter can be 8 2,43’ Ko=[(1+K1)uol", Kl:g_o_ 1
applied to ablation fronts with large Froude numbers. (89

When the Froude number is less than unity<Hr, the n
analytic stability theory becomes more complicated and can :1+K1 25Y — _) o= (2lv) + 0.12
be carried out only in the limits of=kLy,<1 ande>1. The 5Ky Kyt O 1) 2
analysis of Ref. 12 has shown that long-wavelength modes Fj1+ v
with wave numberse<<1 have a growth ratey=A;kg (8h)
—pBkV,, where pB<2 is a function of », B=I'(1 _2vt2
+2/v)IT?(1+ 1/v). Short-wavelength modekl,>1) are $0=5,73"
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J5 &t (paVa), where y,, is the ratio of the specific heats

0 2 . . . .

=4 2vr3?| V5 §o(12v°+25v+18) =m;/(1+2Z) is the average particle mass, is the maxi-
mum density, and/, is the ablation velocity, respectively

v+2 _ (see Ref. 9 However, if a significant amount of energy is

+t5,13 (817 +20v+17)|, (81)  present in the radiation field, then an accurate estimate of the
energy transport requires the use of multigroup radiation
\J5 6671 2 ) transport models. In such models, the radiation energy spec-
B=7 (2v+3)2| V5 &o(8v°+25v+12) trum is divided into several groups. Each group is described
by a radiation temperature obeying an energy diffusion equa-

813+ 16v°+7v+4 . tion. Because of the complexity of such models, an analytic

B 2v+3 (8) stability analysis would be intractable. For such a reason, the

. . . . _analytic theories are based on a single-group mddek
A detailed comparison of the growth rates obtained by ustem;ﬁratur}a However, if the one-groug di?fusivpe transport

Eq. (8) and the numerical solutions of the conservation equa- odel is used in the stability analysis, then one should at

tions has demonstrated a remarkable agreement over awwq(;east make sure that such a model reproduces the one-
range of values for Fry, ande (see Ref. 12

Despite its lenathy expression. th mptotic form Idimensional hydrodynamic profiles obtained using the mul-
espiie 1S fengthy expression, the asymptotic 10 uatigroup model. In other words, one should fit the multigroup

Iceann tET_ ea};"eyaiiggl;;ig Ontclf]i ;hb?aggﬁu\(/jeelozil:mb erarl]:(;, thI‘ifydro-profiles with the one-group profiles by properly select-
theg owoér index for therrﬁél conductianare kn(%\C\?r; The ing the value ofy andL,. This is an essential requirement
b : for the stability analysis, assuring that the linearization is

main d|f_f!cu_lty in using Eqy8) lies in the d_eterm|nat|on of nperformed about the right equilibrium. Of course, there is no
the equilibrium parameters, whose value is strongly depen- . . .
uarantee that the two-dimensional effects are correctly in-

dent on the dominant energy transport mechanism. In thi luded in the one-group model even though the one-

baper, we dgsg:nbe a S'”.‘p'e procedure to be usgd N CONUNG: - ensional profiles are correctly reproduced. However, the
tion with existing one-dimensional hydrodynamic codes to

. . ~ RT is mainly a hydrodynamic instability, and one could hope
dfgirerggi T(;,L;écgie\r/;tégr}?alt}- fI(;]iI:dc?)mn?rzbme izgg it:'SICFthat if the 1-D hydrodynamic profiles are correctly included,
b . ) y : then the 2-D/3-D stability analysis would be independent of
experiments and determine the unstable spectrum using E

X . ie heat transport model. This speculation could be veriied
(8). We also compare the_ analy_tlc growth rates .W'th the re osteriori by comparing the analytic results with 2-D simu-
sults of two-dimensional simulations obtained using the code._.. . . : L
19 : . . . ations including multigroup radiation transport.
ORCHID.”” Numerical fits of Eq.(8) are also studied for dif- . : .
o Summarizing, the analytic analysis is based on the one-
ferent ablators and simplified formulas are generated for a

. ) . . . group subsonic diffusive transport modébr isobaric
fast growth rate estimate. It is the aim of this paper to S|m-g P b ¢

; . . mode). The parameters, Fr, andL, of such a model are

EAZ{(;T utsr;\lcjlr (tegclaCIFr?asrugltmo;ez%t;et al. (Refs. 9-12 10 determined by fitting the analytic hydro-profiles with those
' obtained from 1-D simulations including multigroup radia-
tion transport. The results of the analytic stability theory are
then compared with the full 2-D simulations including mul-
One-dimensional simulations are commonly used in ICRigroup radiation transport.

target design and several 1-D codes describing laser- As shown in Ref. 6, the density profile of subsonic ab-
accelerated targets are available at universities and nationktion fronts, described by the one-temperature diffusive
laboratories. Among them, the most frequently used are thtransport model, obeys the following first-order differential
codesLiLAC,?° HYADES,?! LASNEX,?? etc. In this paper, the equation:
authors have extensively used the caderc, a 1-D La- i1
grangian code including laser absorption, classical flux- défdy=—£""(1-¢)/Lo, ©
limited thermal transport, and multigroup radiation diffusive \;yere ¢ is the density normalized to its peak valug,
transport. The equation-of-state package availableiinc — _ ,/, " and » is the power index for thermal conduction.
includes the ideal gas, Thomas—Fermi, and SESAME tableshe equilibrium pressure is determined by the momentum-

The analytic stability analyses are usually based on @,nservation equatiord(p+ pU?)/dy=pg and the mass

single-temperaturgor one-group diffusive model for the  ~ynservation equatiord(pU)/dy=0), which can be rewrit-
heat transport, i.e., the heat flux is proportional to the temsap, in the following dimensionless form:

perature gradient, and the thermal conductivity follows a

power law of the temperatufec= x,(T/T,)"], wherex,,T, 1 dII 1 dé¢ &

are the thermal conductivity and temperature calculated at ﬁzad_y:?a/+ ?Lo’ §U(Y)=Va, (10
the peak density, and is the power index. These simplifi-

cations make the problem solvable with analyticwherell=p/p,, I1,=V,/\Vpa/pa is the normalized abla-
technique$=*® If the radiated energy is negligibldow-Z  tion velocity, andp, is the pressure at the location of the
materials, such as DTthe energy is transported mainly by peak densityp,. Observe that Eq€9) and (10) for the un-
electronic heat conduction. In this case, the power index knowns¢ andIl depend on the four parametdis , Fr, Lo,
=2.5 (as given by Spitzé9) and Lo=[(yn—1)/vy]Axys/ and v. Keeping in mind that our goal is to reproduce the

II. EQUILIBRIUM PARAMETERS
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hydro-profiles of the 1-D simulations, we determine these ' ' ' '
parameters by fitting the analytic hydro-profiles with the nu- 1.0 1
merical ones. Let us define with=p/p, andll;=p/p, the
normalized simulated density and pressure profiles. If the
predictions of the one-group model were exact, then the
simulated profiles would represent an exact solution of Egs.
(9) and (10). However, this is not the case and replacihg

Pressure

P/Pmax P/Pmax
o
=N

Density

with & in Eq. (9) leads to an error. For convenience, we take 02 |k
the logarithm of Eq(9) and define the error as
d 1
er=(v+1)In &—In Lo—1In _ds 1) (11) 0 1 2 3 4 5
dy 1-¢; Distance (Lm)

Observe t_ha6r= 0 if =& ,ln order .'[O repmdu_ce_ the simu- FIG. 1. Normalized density and pressure profiles obtained by using isobaric
lated profiles over the entire ablation front, it is useful to model(solid lineg and 1-D numerical simulatiofdots.

minimize the integrated quadratic err@d defined as

ém
5(V,L0)Ef§ a'{:(V'f‘l)ln §s—|n LO

where
| ( dés 1 sz w2 jy(fmax)(dns) Zd ) Jy(gmay)g dIlg q
- n - T T . y a = 1 = ., 1
dy 1-§s & > Nyt \ DY P B Yemn - dY Y
where £min émax are the minimum and the maximum values (479
of the density of the fitting region defining the extent of the Y(Emad
ablation front(¢,;,=0.01 and&,.,=0.99 are two possible 4:—f(§ ) Ss Ys
values. The minimization ofs is obtained by setting to zero Y{&min (179
the partial derivatives with respect ioandL, e fy(gmax) 1 % % dy, ce=In @(
08 95 ¥ D & dy dy T T

—=—=0. (13

dbo v The integration limitsy(&min), Y(émax) represent the location
Substituting Eq.(12) into Eq. (13) leads to the following Of the points with densit¥ i, and éyax, respectively. Using
estimates of_, and v the peak density, and the pressure at the location of the
peak densityp,, the acceleration and ablation velocity can

= C_lilzbl_l, Lo=ex a_fl_ﬂ ' (14  be easily determined from Eqel4) and (17),
aj—agh; aj—agh; 5 V2 1
where V=11, p—a, g= L_z B (18
a

_ _ _ 12 _
a=[&n =D, a=[&(n &=1)%+¢]. by ([[fé]é) This technique has been tested on the hydrodynamic profiles

obtained using the codaLAc . We consider a planar CH foil
Y(&man) dés 1 | dés of thicknessd= 18 um irradiated by a 0.3%m wavelength
Cl:J In[— dy 1_—§J dy dy, (5D |aser of 50 TWicrh intensity wih a 1 nslinear ramp. The
pulse duration is 3 ns. The profiles obtained from the simu-
Y(émax) dés 1 | dés lation are slowly varying in time. For the test, we consider
CZ:J In & In[ S dy 1_§j dy dy, (150 the profiles at timé¢= 2 ns and substitute the simulated den-
sity and pressure into Eq§l4), (17), and (18) and obtain
and [H(&)]=H(&ma) —H(émin)- In the same fashion, the =07 L,=0.25um, Fr=0.03, and V,=0.54um/ns.
Froude number and dimensionless ablation velobitycan  Then, using these values, we solve E@.and (10) to de-
be determined by minimizing the integrated quadratic efror termine the analytic density and pressure profiles. Figure 1

y(gmin)

y(gmin)

in the momentum conservation equation shows the simulated and the analytic profiles for the plastic
) Y(Emad ( 1 dil, 1d& & )2 (ﬁH) tatrhget. The excillﬁntf_ztitgreementdbetwdeen t_gedpr%files
n(FrIl,) = — = Y, shows the accuracy of the fitting procedure described above.

2 Y(Emin) H521 dy 55 dy FrLO p

In Fig. 2, the fitting parameters, Lo, and Fr are plotted as
(16) functions of time, and the dashed lines represent the corre-

wherell = ps/p, is the simulated normalized pressure pro-sponding average values. It is important to notice that the

file. After some straightforward algebra, the minimization power index for thermal conduction to be used in the one

with respect tdl, and Fr yields group model ¢=0.7) is well below the Spitz&t (v=2.5)
) 5 or the Zeldovich* value (v=6.5), thus showing the impor-
= M i 2:M (179 tance of the multigroup treatment of the radiation transport in
bsCzt+asCs Lo” % C3bs—cybs’ plastic targets.
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T T T T T T TABLE Il. DT targets.

0.036 + n Th I <FI'> ) <L0> <Lm> <Va> <g> ay B1
: um  TWicn? pm  pm  um/ns pm/ing
Fr /\ 100 50 41 20 0.02 0.13 2.8 97 0.94 26
0.032 | = 190 50 38 20 0.03 0.20 2.7 60 094 26
190 100 40 21 0.07 0.49 4.6 77 094 26
0.028 | i

plastic targets have smooth density profiléarge density
gradient scale lengihlow ablation velocityy<<1, and small
076 - 7 Froude numbers while solid DT targets have sharp profiles
large ablation velocityy~2, and large Froude numbers.

v
0.72 _
0.68 lll. GROWTH RATES
' ' ' A. Comparison with numerical results
0.32 ' ' ' ' ' ' Once the equilibrium parameters are calculated, (Bp.
can be used to determine the growth rates. As discussed in
028 | . the previous section, there is no guarantee that the analytic
Lo stability analysis using the one-temperature model would re-
(m) 024 produce the results of the two-dimensional simulations using
’ ] the multigroup radiation diffusion treatment even though the
1-D simulated and analytic hydrodynamic profiles are iden-
0.20 . | ' | | L tical. It is necessary to validate the formula by comparing the
analytic and the numerical growth rates.
16 18 20 22 24 26 28 30 As a first test of the analytic theory, we compare the

Time (ns) analytic growth rates with Takabe’s formuldhe latter has
S _ been derived by fitting the numerical solution of the exact
FIG. 2. Temporal evolutiorisolid lineg and average valugslashed lines linearized single-ﬂuid conservation equations including
of the Froude number Fr, power index for thermal conductipand the Spi ductivi d a finite Mach b Thi .
characteristic thickness of ablation frdng for a CH target. pitzer con UCt'Y'ty gn a finite Mac ngm er. IS t?St IS
useful because it validates the assumption of subsonic flow
and the simplification leading to the isobaric motel.
Lower-Z materials such as solid deuterium—tritiy®T) Takabe’s formula can be written in the following dimension-

are a good test of the fitting procedure because they are e/€SS form?

pected to produce a very low level of radiation and to ap-

proximately follow the Spitzer model with~2.5. We have A l:a X (19
considered a planar DT foil of thicknesls=120 xm irradi- YTy GT P

ated by the pulse described above. Substituting the simulated

profiles into Eqs.(9) and (10) yields v=2, Lo=0.03um,  where y,= kg is the classical growth rateX=kV?/g,
and Fr=5. This result indicates that radiation transport has ay;=0.9, andg;=3.1. Similarly, Eq.(8) can also be rewrit-

small effect in cryogenic DT targets. ten in dimensionless form

Tables | and Il show the time-averaged values of #r,
Lo, andV, for several plastic and DT targets of different K X6 1 X3 .
thicknesses and laser pulses. It is important to observe that y= \/AT+ 52 ﬁ_7+ w’— gl) X?—=6 T BX. (20

The growth rates calculated using E@$9) and (20) for v

TABLE I. CH targets. . . g
=2.5 and different Froude numbers are shown in Fig. 3.

Th ' (Fn () (Lo (Lw (Vo) (9 a; B2  Observe that the two formulas approximately agree for
pm TWien? pm o pm o pmins pming Froude numbers between 0.1 and 5. This result is not sur-
10 50 003 08 02 07 08 95 1.01 1.8 prising as Takabe’'s formula has been derived using Spitzer
18 50 003 08 03 10 06 50 101 1.8 conductivity leading to sharp profilésmallL, and therefore
20 100 004 09 03 11 09 76 099 17 relatively large Froude numbersie conclude that the RT

20 246 005 09 02 07 13 130 097 16 growth rate in lowZ materials with Fr-0.1, such as solid
25 24¢ 005 09 02 07 12 123 098 1.6 . : , ;

DT, is well described by Takabe’s formula over a wide range
3 inear rise pulse. of Fr (0.1<Fr<5). For small Froude numbers or different
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1.0 stabilizing effects of finite density gradient scale length in a
[ heuristic fashion,
0.8 f
3 = kg KV, (21)
2 06F Yar=ar \[ g AkVa,
= 04} wherelL ,, is the minimum density gradient scale length,
=0.93um. Observe that Takabe’'s and modified Takabe's
0.2 ¢ formulas fail to reproduce the simulation results in the short-
[ ] wavelength regime. Instead, the growth rates obtained with
O'OO'O — IO.ll ' '0‘2' ' '0.3' — 04 Eq. (8) are in excellent agreement with the simulated ones
over the entire unstable spectrum.
kVa/vke Furthermore, we study different pulse shapes and differ-

ent target materials. We consider a 2t thick CH target

FIG. 3. Normalized growth rateyW \/k—g) versus normalized wave number irradiated by a square pulse with an intensity of 200 TW/cm

(vkVZ/g) calculated using Takabe’s formul@ashed ling and Eq.(8) and 100 ps linear rise time. According to tbecHID simu-
(solid lineg for different values of the Froude number ane 2.5. lations, the hydrodynamic profiles reach a steady state after

1.3 ns. The growth rates of 30 and Lfn wavelength per-

turbations are determined from the 2-D simulations yielding
values ofv, Takabe’s formula does not provide an accuratey”"(15 #m)=4.9ns* and »*™(30 um)=4.1ns*. Using
estimate of the growth rate, thus E@) or its fitting formu-  the ORCHID hydrodynamic profiles and Eqg§l4), (17), and
las must be used. (18), we estimate the relevant hydrodynamic parameters

When the density profile is smooth, as in the case of=1.2, Lo=0.22um, V,=2.0um/ns, F=0.12, and g

large radiation energy transport, or the ablation velocity is=144u/ns’.  Substituting such parameters into the
small, we expect the Froude number to decrease. As show@symptotic formulaEq. (8)] yields the theoretical growth
in Fig. 3, Takabe's formula and E¢g) yield very different  ratesy"®°¥15 um)=4.9 ns* and y"*°%(30 um)=4.06 ns*
results for this case. In addition, radiative transport causegeproducing the simulation results.
the deviation of the power index from the Spitzer value Next, we simulate the evolution of a sm wavelength
requiring a more general formula than Takabe'’s. For sucigurface perturbation on a 2@0m thick beryllium foil irradi-
targets, Eq(8) can be compared only with the results of full ated by a square pulse with an intensity of 50 TW/and
2-D simulations inc|uding a mu|tigroup radiation transport 100 Ps linear rise time. The Steady state is reached after 1.5
model. We consider the same A#n plastic target described NS and theoRCHID simulation yields the mode growth rate
in the previous section, and we simulate it with the codey’"=2.27 ns*. The simulated and analytic hydrodynamic
ORCHID. We then calculate the parametetsFr, Ly, g, and ~ profiles  match  for »=0.63, Ly=0.36um, V,
V, to be used in Eq(8) by substitutingorcHID density and ~ =0.73um/ns, Fr=0.06, andg= 25 u/ns’, thus yielding the
pressure profiles into Eq¢14), (17), and (18) and find Fr  theoretical growth rate/"*°¥=2.28 ns* in good agreement
=0.043, Lo=0.24um, V,=0.66um/ns, v=0.96, andg with the numerical simulations.
=43um/ng. In Fig. 4, the growth rates obtained using These tests are a clear indication that @&j.can be used
ORCHID (dots are compared with Eq8) (solid ling), Tak-  tO determine the growth rates of short-/long-wavelength RT
abe’s(dot-dashed ling and modified Takabe'&lashed ling ~ mModes in ablation fronts with large/small Froude numbers.
formulas. The latter is the Takabe’s formula including the

B. Fitting formula for the growth rate

—————— Although Eq.(8) provides an accurate estimate of the
] ablative RT growth rates, its expression is too complicated
for practical applications. Without a doubt, a simplification

'E,:, of Eq. (8) would greatly help the target designers in the
b choice of the ablator material and the implementation of the
= RT mixing models. For this purpose, we simplify E®)
§ using two well-known fitting formulas:
(=]
G y1=ax(Fr,v)Vkg— Ba(Fr,n)kVy, (22
=ay(F kg Fr,v)kV, 23
y2= ax(Fr,v) Tkl Ba(Fr,v)kV,, 23
Wavelength (1um) whereL,=Ly(v+1)""Y/v", and thea’s and B's are func-

o o eulated using th \ytic forrt@ldsolid tions of Fr andv. It turns out that Eq(22) is particularly
FIG. 4. Unstable spectrum calculated using the analytic forrt®)ldsoli S fig :
line) compared with the numerical resultglots of the 2-D hydrocode accurate in fitting the large Froude number results while Eq.

ORCHID, Takabe'’s formulddot-dashed ling and modified Takabe's formula _(23) is SUitab_Ie for low Fr_OUde numbers. This is not surpris-
(dashed ling ing as ablation fronts with small Froude numbers are un-

Downloaded 30 Jan 2010 to 128.151.145.128. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



1452 Phys. Plasmas, Vol. 5, No. 5, May 1998 Betti et al.

10 Ll Ty T TTTTg LR 1.1 T T T T T T T T T T7T
™~ \\\\ 2.0 v=1.0
I TN :
\\\\\ \‘\ 1.0 ]
09 [ S~ —— 7 ' ’;
1 / 2 09 SR
1.5
08 B - \\
v=10 15 20 . |
0.8 \“
07 AT | Lot 0.7 Lo el Lo L
6 — T T T T _\, T
- 1 o v/ ]
SE 1.5 1 20 :\0‘7 ,l,"
L 4 = L -
— E ; 1850 S ]
1 a ] 2 1.6 £ e 5
3 F 20 4 4 ;_\1.5 =7 ]
. E Y '
L 1.0 ] 12 .
:-—|—:|?E:xl Lol - lllln: i Lol g anl [ R
0.01 0.1 1 10 0.01 0.1 1 10
Fr Fr

FIG. 5. Plot of coefficientsy;, 8, of the fitting formula(22) versus Froude ~ FIG. 6. Plot of coefficientsr,, 8, of the fitting formula(23) versus Froude
number for different values of the power indexThe solid line represents  number for different values of the power indexThe solid line represents
the regions of the best fit of the analytical formi& with Eq. (22). the regions of the best fit of the analytical formu with Eq. (23).

stable to modes with wavelengths smaller than the densitficknesses. It appears that over a wide range of thicknesses
gradient scale length whose growth is strongly affected byal!’ld laser powers, the growth rate of the RT instability for a

the finitekL,. directly driven CH target can be approximated by
The calculation of the coefficients;, 8; anda,, B5 is kg
carried out using the standard fitting procedures ofvthen- Yor= \ T3kl 1.7k V,, (29)
m

EMATICA software packag® We define a range of interest

for the mode wavelength from the cutoff, to about 200 where 0.KL,<1 um. The same formula has been derived
times the cutoff wavelength,,~200\, (the parametersr  for the aluminum coated CH and berylliuiBe) targets. The
and g have shown little sensitivity to the value ®f,,,). The  corresponding time-averaged values of rl o, g, andV,

o's and 8's are determined by fitting the growth rajeob-  are shown in Tables Il and 1V, respectively. The growth rate
tained using Eq(8) with the formulas(22) and(23) over the  for cryogenic DT targets is better represented by the fit
wavelength range\ ;<\ <\ ... Figures 5 and 6 show the and Table Il shows the optimum fit for different flat targets
value ofa, B for different Fr andv. The solid section of the driven by a laser pulse with a 1-ns linear ramp followed by a
curves represents the region of optimum fit, i.e., the region

where each formula fits the data at its best. According to the

value of Fr andv, one should use the formula corresponding 4
to a solid curve.

As an example, we consider the plastic target used in the ~
ORCHID simulations described in the previous section. The
values Fr=0.043 andv=0.96 are obtained by processing the
ORCHID hydro-profiles with the procedure described in Sec.
II. Using Fig. 6, we determine the optimum fit by using
with a,=0.98 andB,=1.64. Figure 7 shows a plot of the
unstable spectrum obtained using E8). (solid line) and the
fitting formula y, (dashed ling The excellent agreement
between the two curves indicates that the fitting formula rep- 0 - : ' : . '
resents a good approximation of H§). 0 10 20 30 40 30

We have determined the optimum fit for several plastic - Wavelength (1m)
and solid DT targets commonly used in direct-drive ICF ex-FIG. 7. Unstable spectrum of the target described in Sec. Il calculated using

periments. Table | shows the results of the fitting procedurgne analytic formula(®) (solid ling) and the fitting formula(23) (dashed
described above for different laser pulses and plastic targeihe).

S}
T

Growth rate (ns™

—
T
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TABLE Ill. BE targets. IV. CONCLUSIONS

Th I (Fny () {(Loy {(Lm) (Va (9) a, B The growth rate of the ablative Rayleigh—Taylor insta-
um  TWien? um um  umins pming bility is calculated using the analytic theory of Goncharov
16 50 005 07 02 06 06 20 100 17 etal(Refs.9-12and the output of one-dimensional simu-

16 100 006 07 02 06 08 60 099 1.7 lations of laser-accelerated targets. At steady state, the simu-
32 100 0.06 06 04 12 08 28 100 1.7 lated density and pressure profiles are used to determine the
16 246 010 08 01 04 11 28 095 17 equilibrium parameters F/,, g, v, andL, via a newly
developed fitting procedure. Those parameters are then sub-
stituted into the self-consistent growth rate formula of Gon-
charovet al. (Ref. 12. The accuracy of such a procedure has
been tested by comparing the analytic growth rates for a
flat-top pulse. These results indicate that the growth rate oflastic and beryllium target with the ones obtained using
solid DT targets is well approximated by a Takabe-like for-two-dimensional simulations.

8 inear rise pulse.

mula This theory suggests that Takabe’s formula represents a
good approximation of the growth rates for only relatively
yor=~0 94\/k—g—2 KV (25) large Froude numbers (GIFr<5) and electronic heat con-
. KV,

duction (v=2.5) but fails for small Froude numbers and
) ] radiative materials. The complicated asymptotic formula of
The RT growth rate for different ablator materials can beref. 12 which is valid for arbitrary Froude numbers has been
determined in the same fashion by using 1-D hydro-gimpiified by using simple fits over a wide range of Froude
simulations to reproduce the density and pressure profileg mpers and power indices for thermal conduction. In addi-
Eqgs.(14), (17), and(18) to calculate the equilibrium param- tjon  simple growth rate formulas for directly driven solid
eters,land Figs. 5 and 6 to generate the growth rate formglagﬂ—, plastic(CH), and beryllium targets have been derived.
Itis very important that the 1-D hydrodynamic analytic  Eyen though the analytic theory yields satisfactory re-
profiles be carefully matched with the simulation resultsgts for DT, CH, and BE targets, it might not be adequate
when determining the relevant equilibrium parameters. EveRgr other materials such as chlorinated plastic. The hydrody-
though the analytic theory yields satisfactory results for DT,namic profiles of plastic targets with highdopants are not
CH, and BE targets, it might fail to reproduce the profiles ofyyq|| reproduced by the single temperature model and(&q.

other materials. For instance, the hydrodynamic profiles ofznnot be applied to determine the RT growth rate.
plastic targets with higlZ dopants are not well reproduced

by the single temperature model and E8). cannot be ap- ACKNOWLEDGMENTS
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