
Manual Speculative Graph Algorithm

Shule Li

1. Introduction

Parallel operations on traditional data structures often require threads to
“own” the entire data so that atomicity can be ensured during the operation.
The ownership can be achieved by implementing locks in the said data structure
so that once a method is invoked, the exclusivity is granted to the caller thread.
However, not all operations on a given data structure requires locking an entire
data structure. For instance, consider an algorithm where a new node needs to
be inserted into a sorted list. In such algorithm, once we have found the desired
place for the new node, we only have to lock its predecessor and successor to
make sure while inserting, the two neighboring nodes are not moved or deleted.
Imagine a long list with multiple threads trying to insert new nodes into it.
The majority of each threads are traversing the list for most of the time. This
traversing operation does not have to be mutually exclusive. Naturally, a spec-
ulative algorithm can be designed so that during the traversing phase, threads
do not ask for exclusivity to the data object. It is once they have found out
what they want to do, i.e. where to insert, that they try to obtain the locks of
needed objects stored in said data structure.
This speculative mechanics is a design pattern that is suitable for other parallel
algorithms that require a similar “search and do something” operation. The
pattern can be extended to cases where multiple objects are needed to be mod-
ified. Using the sorted list example, a thread may want to insert more than
one object into the list. To achieve this, it can search and secure the first lo-
cation by locking the first two neighbors, finish inserting the first object, and
continue on. However, if one requires that the insertion of these three objects
to be “all or none”, then if this thread finds out later that it cannot insert the
second object, it has to go back to delete the first insertion. Conversely, one
can imagine the thread to traverse the list once, marking all the locations it
needs to perform the insertion, and only after that does it try to acquire the
locks of all the needed nodes. The “do first, commit later” idiom can be seen as
similar to the lazy acquire mechanism used in transactional memory systems,
with locking performed instead of Compare and Swap. Another example is in
a graph algorithm, a thread may need to insert a vertex into the data structure
with several desired neighbors. The thread needs to first perform a graph search
to allocate all the neighbors, and lock them after the search is done. In this
paper, we apply this speculation technique to graph data structure, and ratio-
nalize the performance. In Section 2, we describe the data abstraction as well

Preprint submitted to Elsevier May 9, 2013



as the speculation algorithm. In Section 3, we discuss the performance results.
In Section 4, we summarize and propose possible future directions.
There are many approaches towards achieving better parallelism in this context.
Each approach has its merits and shortcomings. For instance, nonblocking data
structures have seen great success in the past years. Its inherent optimism can
be seen as an extention of the speculation technique just described, and by
avoiding using any locking mechanism, it also avoids traditional weaknesses of
locks such as deadlocking and convoying. However, creating nonblocking data
structures that exactly suite one’s need can be difficult. The easiest to create
are probably queues and stacks where there is an inherent ordering inferred in
the data structure. The speculation technique discussed in this paper is not
suitable for such data structure since it requires a section to speculate on and
therefore can be moved outside of the critical section. Such section usually
involves traversing through the data structure or other similar “preparation”
phase that can be executed concurrently without affecting atomicity.

2. Speculative Implementation

C++0x provides threading, atomic operations, locking and user specific
memory consistency model. We base our study on these methods provided
by this standard, but the results can be easily extended to other language im-
plementations.
Vectors The undirected graph used in this paper is implemented using adja-
cency list: each vertex store a header pointer to a list (neighbor list hereafter) of
edges. This list is sorted by the weight of each edge so that the closest neighbor
always appear first. The key value can be anything such as a string as persons’
names in a graph describing a social relationship network once a way of compar-
ing or assigning “values” to the vertices is provided, however, in this paper, we
assume the key values are integers. Vertex contains a mutual exclusive lock that
can be granted to an outside caller once the provided lock method is invoked.
Vertex also contains a version number (vn hereafter ). Whenever changes are
made to the vertex, its vn is atomically incremented so that caller threads can
know whether the vertex has been modified. Methods defined in a vertex class
includes locking, which checks if the current version number matches the input
and lock the object, adding or deleting neighbors from neighbor list, checking if
a certain vertex is neighbor, getting its key values, print out all neighbors, etc.
We only show pseudo code of several of these methods here.
Edges Edge classes store an integer weight and a vertex pointer pointing to
the neighbor. next and prev operators are needed for list operation. Note that
depending on the granularity of locking, it is possible that one may be able to
simplify the implementation. If the granularity is at the vertex level, then all the
edges are automatically locked once the vertex is locked. This requires one to
have all the read-write operations performed on the vertex level. This is indeed
what happens here: the only methods edge class can invoke are returning the
pointer to the neighbor or returning its weight. Edge modifications are done

2



by methods in vertex class. The data abstraction of vertex class are shown in
the following code section (only several important methods are displayed, with
constructor and destructor omitted).

class vertex {

int key; //key value

int nl; //length of adjacency list

public:

atomic_int vn; //version number

mutex m; //mutex

edgenode *headlink, *taillink; //pointers to adjacency list

edge* findneighbor(vertex* v) const; //return the edge pointing to v

bool isisolated() const; //check if there is any neighbor

void addlink(edge* n); //connect edge n with this vertex

void removeneighbor(vertex* v); //remove the edge connecting this to v

void isolate(); //remove all edges in the adjacency list

bool locking(int i); //lock this vertex if version number equals to the input

void unlocking(); //unlock this vertex

};

edge* vertex::findneighbor(veretex* n){

if vertex is isolated:

return NULL; //return if no neighbors found

edgenode* probe = headlink;

repeat{

if(v == probe->getneighbor()) //return neighbor pointed to by this edge

return probe;

probe = probe->next;

} while probe is not NULL

return NULL;

};

void vertex::addlink(edgenode* n){

if empty list:

headlink = taillink = n

if already in list:

return;

int temp = n->getlength();

edgenode* probe = this->headlink;

repeat{ //find the right place to insert

if(probe->getlength() > temp):

break;

probe = probe->next;

3



} while probe is not NULL

insert n before probe;

};

void vertex::removeneighbor(vertex* v){

if empty list:

return;

edgenode* probe = this->findneighbor(v); //check if the neighbor is in this list

if(probe!=NULL){

if(headlink == taillink):

headlink = taillink = NULL;

else if probe == headlink:

probe->next->prev = NULL;

headlink = probe->next;

else if probe == taillink:

probe->prev->next = NULL;

taillink = probe->prev;

else:

probe->prev->next = probe->next;

probe->next->prev = probe->prev;

}

delete probe;

nl--;

vn++;

};

void vertex::isolate(){

edgenode *probe, *tmp;

probe = headlink;

while(probe!=NULL){

if probe->next == NULL:

headlink = taillink = NULL;

delete probe;

nl--;

vn++;

break;

tmp = probe;

probe->next->prev = NULL;

probe = probe->next;

headlink = probe;

delete tmp;

nl--;

vn++;

}

4



};

bool vertex::locking(int i){

if atomic_load(vn)!=i:

return false;

m.lock();

if atomic_load(vn)==i:

return true;

else:

m.unlock();

return false;

}

Graph Next we describe methods defined in our graph class. We consider four
types of operations: inserting, deleting, transplanting and reducing. Each of
them requires a graph search.
Insertion Insertion is defined as an operation that adds a vertex into the graph
with desired neighbors. During insertion, we first search the graph to find de-
sired neighbors and record their location and version number into a pair and
insert this pair into a set. After the traversal is finished, we try to obtain the
locks to the locations located in the set so that we can safely insert the new ver-
tex. At the end of the speculative search section, we traverse the set to invoke
the locking method provided in vertex class and lock the desired neighbors one
by one. Upon finishing, the set is unlocked and erased.
Removal Removal of a vertex is implemented in a similar fashion as insertion.
Transplanting Imagine a graph describing relationships in an organization.
Once a personnel is moved from one department to another, he or she may form
a complete new working relationship at the new place. Transplanting allows
us to move a vertex from one part of the graph to another, forming new con-
nections there while cutting the old connections. The implementation requires
us to cut the vertex from its old position, search the graph for a desired new
position and insert it again. Intuitively, this method is a combination of cutting
and inserting a vertex. Cutting does not require speculation: we just get the
locks to the neighbors and delete the related edges.
Reducing Graph reduction has important role in real life applications that

require us to extract information from a graph. Such algorithm is usually com-
posed of detecting reoccurring patterns in a graph and merging vertices while
contracting the edges connecting them. In this study, we consider a simplifica-
tion. Since edge weights can be used to denote the type of relationship, graph
reducing can be seen as a contraction operation that affects the entire graph.
The procedure consists of search the graph to find the relations one wants to
reduce, lock the related vertices, and then merge them by contracting the edges.
A diagram of vertex merging operation is shown in Fig.2. During contraction,
we search through the graph to find out the vertices needing merge, and record

5



Figure 1: Transplanting of vertex A

Figure 2: Reducing of edges of weight 1.

6



their information as well as their neighbors’ information in pairs of vertex point-
ers and version numbers, much like what we did with transplanting. Whenever
we find a new vertex-version pair to record, we push it into a set. Notice that
here, using a set is crucial since it automatically rejects duplicates: it is possible
when traversing the graph, one may record a certain vertex A and its neighbor
B as needed, and later find out B in itself satisfies the search condition and
should be pushed into the set as well as its neighbor A. Since the set only con-
tains vertices that need to be locked but not vertices that need to be operated
on, we use another task list to record those vertices where we need to invoke
the mergevertex method. After traversing the graph, we go through the set to
lock all the required vertices, if failed, meaning some vertices has been modified
along the way and thus the search has to be redone. The pseudo-code for graph
class methods are shown bellow.

void graph::insert(vertex* newv){ //insert a new vertex v

vertex* probe;

std::set<vertex*, int> myneighbor;

repeat{

repeat{

assign probe to first vertex;

if this vertex is desired neighbor:

myneighbor.insert(make_pair(probe, atomic_load(probe->vn)));

assign probe to next vertex;

} till graph is traversed

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->locking(it->second); //lock all required neighbors

} while failed to grab all the locks

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it:

add an edge between newv and it->first;

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->unlocking();

};

void graph::transplant(int i){ //transplant all vertices with key i

vertex* probe;

std::set<vertex*, int> myneighbor;

std::set<vertex*> todo;

repeat{

repeat{

assign probe to first vertex;

if this vertex needs to be transplanted

myneighbor.insert(make_pair(probe, atomic_load(probe->vn)));

7



for all the vertices v in the adjacency list:

myneighbor.insert(make_pair(v, atomic_load(v->vn)));

todo.insert(probe);

assign probe to next vertex;

} till graph is traversed

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->locking(it->second); //lock all required neighbors

} while failed to grab all the locks

for(iterator it = todo.begin(); it !=todo.end(); ++it:

cut *it isolate;

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->unlocking(); //free up old neighbors

for(iterator it = todo.begin(); it !=todo.end(); ++it):

reinsert *it; //similar to addvertex routine

};

void graph::contractedge(int i){ //contract all edges with weight i

vertex* probe;

bool found;

std::set<vertex*, int> myneighbor;

std::set<vertex*> todo;

repeat{

repeat{

assign probe to first vertex;

if this vertex needs to be transplanted

myneighbor.insert(make_pair(probe, atomic_load(probe->vn)));

for all the vertices v in the adjacency list:

myneighbor.insert(make_pair(v, atomic_load(v->vn)));

todo.insert(probe);

assign probe to next vertex;

} till graph is traversed

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->locking(it->second); //lock all required neighbors

} while failed to grab all the locks

for(iterator it = todo.begin(); it !=todo.end(); ++it:

found = true;

repeat{

find a neighbor v with edge i;

if no such neighbor:

8



found = false;

else:

merge vertices *it and v

} till found = false

}

for(iterator it = myneighbor.begin(); it !=myneighbor.end(); ++it):

it->first->unlocking(); //free up old neighbors

};

3. Performance Results

Results of test on niagara1 machine: a Sun T1000 multiprocessor with 8 4-
way multithreaded cores, are presented in Fig.3 and Fig.4. During the test, we
first construct a graph with 5000 vertices. We then assign each threads (total
number p) a fixed amount of tasks, for instance, perform 100 graph operations
as defined in the class specification. We also compare our result with the case
where no speculation is used: whenever a graph operation is performed, the
entire graph is locked beforehand (shown in the figures by the “graph lock”
curve). The performance is measured by assigning a given amount of task to
each thread, and use a fine resolution timer to measure the time it takes for
all tasks to run to completion. For example, the transplanting 100 vertices per
thread on a graph with 5000 total number of vertices, is equivalent to moving
64% of the vertices. Each thread works on 100 vertices. As we reduce the num-
ber of threads to 8, each thread still works on 100 vertices, but the total amount
of vertices changed is reduced by a factor of 4. We calculate the throughput
as the ratio of number of graph manipulations done to the computation time.
Because we keep the total number of vertices constant, the speculative search-
ing time when multiple threads are running can be shortened (by roughly the
same factor regardless of the number of threads) greatly compared to the “graph
lock” method. However, because of the upper bound of the number of vertices,
the more threads running (each thread always performs a fixed amount of task),
the more likely threads will run into each other causing redos of the speculative
search. Therefore intuitively, we should expect a initial growth in the through-
put due to exploited parallelism by speculation, and a decrease in performance
when the number of vertices affected becomes large. The 100ops/thread case
with 32 threads has more than 3200 vertices locked since in some operations,
we do not only lock the vertices themselves but also their neighbors.
In Fig.3.(a), we see that the non-speculative algorithm does not give good par-
allel performance, with no boost to the throughput. The reason is that in most
of the methods, locking are required almost from the start of the operation.
Therefore most threads end up waiting for the current owner of the lock to
finish its operation before they can continue. On the contrary, the speculative
version gives nice performance boost for up to 6 processes. The majority of

9



the operations performed here are searching to locate correct neighbors. This
operation is not guarded by the locks but rather by an atomic load operation to
check the current version of each needed vertex. If this check fails, the search
has to be done all over again since the originally found vertex might not be
needed anymore. Note that suppose one thread tries to remove all vertices with
key value 1 and another thread tries to insert a new vertex of value 1, the end
result of the graph may or may not contain a vertex with value 1. This is
because although modifications to the existing vertices is done by making sure
they are not changed after searching, there is no guarantee that the search re-
mains complete after grabbing the lock. This is no different from locking the
entire graph for invoking insertion or removing operations since depending on
the actual order of the two calls, the result can be either with or without the
newly inserted vertex. For more than 8 processors, the parallel performance
drops rapidly. There is no performance boost at p = 24, which is when about
50% of the vertices are operated on. Since each vertex by default takes three
or more neighbors when inserted, this means that the majority of the vertices
has to be locked by one of the threads for operation, leading to a good chance
of conflicting.
In Fig.3.(b), we see that although the peak performance at 6 threads is slightly
suppressed compared to the previous case, the speculative runs do scales better
for more than 8 threads. This is because with the added operations of vertex
removal, the graph itself is gradually shrinking in size over time. As stated be-
fore, the overhead incurred on the cases when a large number of vertices getting
locked is that the potential risk of running into conflict (failed speculation):
threads may record a vertex to lock but later find another thread has modified
it (The possibility roughly scales as p2). But with a smaller number of vertices
due to removal, the redo of searching takes less time therefore reducing the
overhead of failed speculation. The “graph lock” run as expected gives almost
no speedup.
In Fig.4.(a), we study the situation when each thread carries out 100 trans-
plants, 100 removals and 100 reductions (each thread only reduces a certain
edge weight). Notice that in our experiments reduction can be redone since
transplanting can introduce new edges with the required edge weight. We see
that Fig.4.(a) shows much better scaling compared to the previous test, which
is understandable since consecutive removal and reduction can lead to a graph
with many disconnected components therefore greatly reduce the likelihood of
speculation failure. Recall that failure occurs when one thread tries to specula-
tively lock a vertex and finds it has been modified by another thread. Usually,
the locking is performed not on a target vertex (the vertex where the reduction
or removal is performed on), but on the neighbor vertex of a target vertex. If
the average number of neighbors is reduced in a graph, less conflicts will hap-
pen, leading to boosted performance. In Fig.4.(b), we see that this is the same
case even without the removal operations. In Fig.4.(b), each thread performs
100 insertions, 100 replaces (replace all of certain key values by another key
value) and 100 reductions. The replace operation does not need neighbors to be
locked, leading to much less failure rate compared to transplanting or removal;

10



Figure 3: (a) Throughput increase on Sun T1000 Niagara1 machine for a speculative 5000-
nodes graph to perform transplant operations: 100, 50 and 20 operations per thread; (b)
Throughput increase for a speculative 5000-node graph to perform transplant and removal
operations: 100, 50 and 20 of each operation per thread.

insertions only has to lock three or four neighbor vertices. Therefore the only
operation that requires a large number of vertex locking is the reduction oper-
ation. The newly inserted vertices also increase the advantage of speculation
by increasing the amount of computation time on searching. Expectedly, this
case performs much better compared to the cases demonstrated in Fig.3. Also
notice that in Fig.4.(b), the 20 operations per thread case (yellow) performs
lower than expected. When the number of edges affected by reduction is low,
the graph cannot shrink as fast as the other two cases in the same diagram,
therefore resulting in longer search time as well as failed speculation overhead.

Next, we look at the performance on x86 cycle machines (maximum 8 hard-
ware threads). Fig.5 shows the throughput comparison for a 5000-vertex and
a 20000-vertex graph. One thing we notice is that when the graph is relatively
small (e.g. 5000 vertices), the performance is no better than non-speculative
execution. This is because the saved searching time by speculation does not
justify the parallel overhead as well as failure penalty on this machine. One
way to boost the performance is to increase the size of the searching phase: by
either increasing the size of the graph or by letting each thread inserting a large
number of vertices beforehand. We see that the 2000-vertices case does give
better performance initially, but drop fastly for more than 4 threads. This is a
similar behavior as observed in Fig.3.(a). When 6 threads each transplanting
1000 vertices, the total number of locked vertices can be close to 50% of that of
the entire graph, causing greater chance of failed speculation.

11



Figure 4: (a) Throughput increase on Sun T1000 Niagara1 machine for a speculative 5000-
nodes graph to perform transplant, removal and reduction operations: 100, 50 and 20 of each
operation per thread; (b) Throughput increase for a speculative 5000-node graph to perform
insertion, replace and reduction: 100, 50 and 20 of each operation per thread.

Figure 5: Throughput on x86 Cycle machine for a speculative graph, with 5000 or 20000
vertices.

12



4. Future Works

Considering the test results being inherently dependent on how operations
are planned out, more tests are needed to benchmark the fine grained specula-
tive approach. Instead of reducing certain relationships characterized by edge
weights, graph reduction can have another type of “preparation” phase where
structural features are searched to identify mergers. However, such search can
still be performed speculatively since no modifications are done during the pro-
cess. Intuitively, this approach can benefit from speculation even more since
more resources are needed in the search phase. We plan to test more sophis-
ticated applications using the described approach. The speculation can also
be automated using Compiler Aided Speculation (CSpec) as described in Xi-
ang2013. To compare the performance difference between such an approach
with the current speculation implementation is a future interest.

13


