
CS458: Project 3

Shule Li

1. Problem Decription

In this project we revisit parallel Gauss elimination method to triangularize
a given matrix and solve the related linear system. The input matrix can be
a given or random matrix. The parallelization method considered here are
MPI, OpenMP and Pthreads. We run the algorithm for two distinct input
matrix dimensions: 512 and 2048, on two different platforms: Cycle1, a x86
Linux machine with 8 processors, and niagara1, a SunBox with 32 hardware
threads. We verify the correctness of each parallelization method, and compare
the performance of different methods and platforms.

2. Build and Run Instruction

The source code is gauss mpi.c for mpi, gauss omp.c for OpenMP. To com-
pile on the x86 machine, simply link Makefile mpi.x86 or Makefile omp.x86
to Makefile. To compile on the SunBox, use Makefile mpi.sunos or Makefile omp.sunos
instead. The MPI implementation uses MPI 3.0.2 for x86, MPI 1.2.7 for Sun-
Box. The OpenMP implementation uses GCC 4.1.2 for x86, GCC 4.2.0 for
SunBox. To run the program with MPI, execute:

mpirun -np P ./run -nX

where P is the number of processors, X is the matrix dimension (default to 512).
To run the program with OpenMP, execute:

./run -pP -nX

where P and X carry the same meaning as before. The program outputs com-
putation time as well as the verification result. To turn on randomized matrix,
uncomment the commented lines in the initMatrix() function. To see the out-
put solution vector, uncomment the commented line in the verification section
in main().

3. Algorithm

The algorithm of Gauss elimination is as follows. For a given square ma-
trix A, start the iteration with the first row (we index the iteration by i). The
row of consideration of each each iteration is called the pivot row. For a given

Preprint submitted to Elsevier April 1, 2013



pivot row i at iteration i, we must ensure that the diagonal element (A[i][i]) is
nonzero. If not, we need to swap it with row j below row i that has nonzero
element A[j][i]. When doing the swap, we also swap the corresponding vector
element. After this is done, we do a linear elimination of the column i for all the
subsequent rows below row i with respect to the pivot row, including the right
hand side (hereon RHS) vector. Carry out this iteration till the final row, the
resulting matrix will be upper-triangular. To solve the linear system, we simply
backtrack from the last row to the first row. This algorithm is O(n3), and can
be easily parallelized. We now describe the three parallel strategies used in this
project.

MPI: In the message passing case, we first initialize the matrix A, RHS
vector B on the master processor. We then assign pieces of A and B to each
workers. Notice that the master already holds the entire matrix, so no assign-
ment is needed. Each worker will get a matrix of size n/p×n (lines 309 through
354). The assignment is done in a cyclic fashion (row 0 assigned to processor 0,
row 1 assigned to processor 1, etc... ) so that even when we are near the end of
the iterations, we can still get decent parallelism. The actual message passing
is done from line 360 through line 375. Because we want to send a section of
the matrix as long as a section of the RHS vector and the swap information,
we create a message block (*messageblock in the code) to hold all the data a
particular worker needs for its calculation. We use the following functions to
pack/unpack data into/from the messageblock:

PackMessage()

UnpackMessage()

whose details are defined at lines 170 and 197. After each worker gets its data,
we start the iteraction (line 386). The first thing to do is to determine the pivot
row, which is the same as the iteration number. Since the pivot row can be
held by any processor, we need to first find out which processor has the up to
date data of the pivot row. Notice that we cannot let the master to determine
it since rows stored on master will be outdated when the update starts unless
the master is its owner (responsible to update that row). We find the owner of
the pivot row by the following line:

pivotloc = row%nproc

where row is the pivot row index, nproc is the number of processors, pivotloc
is the MPI id of the pivot owner. The pivot owner then try to ensure the pivot
has a nonzero diagonal element (lines 390 through 396) by calling function get-
Pivot(). If the diagonal value is zero, the function will look at the locally stored
matrix and attemp to swap the pivot row with a row under it. This attemp
may fail as the local matrix is not the entire thing. When it fails, it sets the
exchange flag to 1, signaling that the pivot row needs to be swapped with a row
that is owned by another processor. If this is the case, each other processors
then look at its locally stored matrix and prepare a potential swapping row by

2



calling function FindExchange(), which returns a local index (eline of lines 402
to 406) of the prepared row for a potential swapping. These indices are gathered
by the pivot owner using MPI Gather to determine an exchange partner (lines
412 to 426). Two buffers (named *inbuffer and *outbuffer) are used for the ac-
tual exchange. The matrix, RHS vector and swap vector information are packed
and unpacked using functions PackLine() and UnpackLine(). We revert the
order of MPI Send and MPI Recv for the pivot owner and the exchanger so
that deadlock is avoided. Once the swapping is done, the owner of the pivot
row broadcast it to all processors for use. The rest of the calculation is very
similar to the sequential version, where each processor work on those rows they
own, update the rows as well as the RHS vector elements under the pivot row.
On finishing, we send the matrix and vector pieces back to the master for re-
assembling (lines 506 through 521). Here again we use PackMessage() and
UnpackMessage to minimize the number of messages we have to send/receive.
The verification is done only on master, and is identical to the sequential version.
There is another method where we can dynamically assign the submatrix for
each interation to all the workers. The workers carry out the computation, and
send back the pieces to the master. Since communication between the master
and each worker has to be done per iteration, there is a huge communication
overhead 2p× n involved where in the previous method we described each iter-
ation only has one broadcast of the pivot row. To use this implementation, use
the source file gauss mpi dynamic.c instead. (verified to be correct but very
slow)

OpenMP: The OpenMP version of the algorithm is quite simple. The only
thing needed modification is in the actual calculation, where we add directives
for parallel computation. We first get the size of matrix chunk for each worker
as:

my_size = nsize/nproc

We start the parallel section using (line 216):

#pragma omp parallel shared(matrix, B, row, nsize, my_size, pivotrow)

private(my_id, pivotVal)

where matrix, RHS vector(B), the row index of the pivot row, the size of the
matrix, the size of each chunk and the data stored on the pivot row are declared
as shared. Each processor has its own version of id and the pivot value (matrix
elements that has the same column number as the pivot row number). In the
parallel section, we define local indices ii and jj for iteration, and start the
parallel for loop using the following directive:

#pragma omp for schedule(dynamic, my_size) nowait

Since each processor is on its own for a certain iteration, we use dynamic nowait
scheduling. The processes are joined by the closure of the parallel section. The
solving and verification section is identical to the sequential version.

3



Figure 1:

Pthread: The pthread implementation is done in Project 1, where we dy-
namically assign the submatrix below the pivot row to the worker threads.
Since we are using a shared memory model, workers do not have to send back
the updated matrix piece for the next iteration. In the MPI version of dynamic
assignment, huge overhead is induced by the communication between the mas-
ter and workers to update the matrix on each iteration.

4. Performance Analysis

Fig.1, 2, 3 show the speed up of Gauss MPI, OpenMP and Pthreads on
the x86 machine. The ratio of actual computation to communication depends
positively on n but negatively on p. For the p = 512 case, if the number of pro-
cessors is greater than 4, we see a sharp decline in performance, indicating the
system bottleneck for communication of more than 4 processors. This behavior
is also seen in the Pthread implementatoin (Fig.3, N = 2048 curve). Interest-
ingly, the N = 512 performance of the MPI implementation on the x86 machine

4



Figure 2:

5



Figure 3:

6



Figure 4:

is better than that of N = 2048. This is not the case for the shared memory
implementations. In message passing, the communication overhead depends on
the size of the data structure being sent/received. Therefore although there will
be more computations per communication with a greater n, the communication
also takes longer. While in shared memory there is no this kind of countering
effect since data structures are not being sent around. The result of the said
tradeoff is determined by the implementation detail as well as the underlying
architecture. For the OpenMP implementation, we see that the parallel perfor-
mance is poor for p > 2. Although OpenMP offers , it requires fine tuning on
each particular architecture for optimal performance. In our case, it is probably
better to use a MPI-OpenMP hybrid to simplfy the code as well as getting good
performance on the x86 machines. The performance of the Pthread implemen-
tation is in agreement with the MPI implementation, except that the N = 2048
case performs better because of the lack of communication in this model.
Fig. 4, 5, 6 show the speed up of Gauss MPI, OpenMP and Pthreads on the

SunBox. Here we have 8 cores 32 hardware threads. For the MPI implemen-

7



Figure 5:

8



Figure 6:

9



tation, we see a similar behavior as on the x86 machine, except that now the
N = 2048 case performs much better than the N = 512 case. This shows a
dependence of the matrix dimension tradeoff on the architecture of the com-
munication network: in this case the network scales well with the size of the
message. The decline of performance on more than 8 threads can be either a
result of poor network scalability on the number of nodes, or implementation
inherent. For the OpenMP implementation, we see much more consistent per-
formance compared to that on x86 machines. The SunBox performs better in
shared memory because of its 4 threads per core architecture as indicated by the
Pthread results (Fig.6) for large matrix dimension. The N = 512 case does not
perform well in either OpenMP or Pthread, because with the same amount of
computation but a increased number of processors, not only the ratio overhead
from invalidation/update becomes higher, the chance of false sharing can also
be much greater.

10


