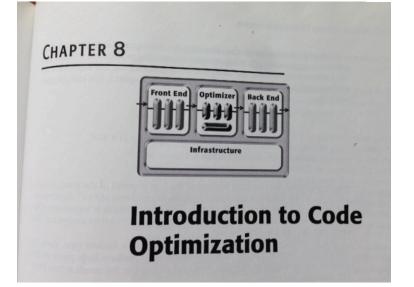
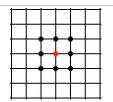

CSC 255/455

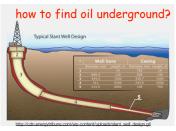

Redundancy Removal through Value Numbering (EAC, 8.3 in 1st ed. or 8.4 in 2nd)

Chen Ding

Course page: <u>http://www.cs.rochester.edu/drupal/u/cding/csc-255455-advanced-programming-systems-spring-2014</u>

Sources of Redundancy





Data Abstractions

• Is there any redundancy in the code below?

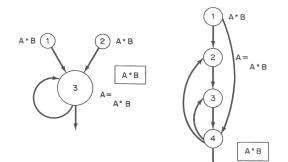
9-point stencil computation a[i,j] = ...

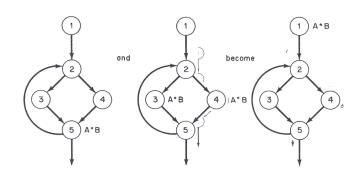
Macros

5

• Is there redundancy in the code below?

#define larger(x,y) (x)>=(y)? (x): (y)
#define smaller(x,y) (x)>=(y)? (y): (x)
...
l = larger(a+b, a-b)
s = smaller(a+b, a-b)


A CATALOGUE OF OPTIMIZING TRANSFORMATIONS


Frances E. Allen John Cocke IBM Thomas J. Watson Research Center Yorktown Heights

A result of the recent work in optimization has been to systematize the potpourri of optimizing transformations that a compiler can make to a program. This paper catalogues many of these transformations.

Redundant Expression Elimination

Function Abstraction

9

Finding Common Subexpression

• Is there redundancy in the code below?

if (find_min(list) > 0)
 return find_max(list);

Other Sources

Program monitoring

• for optimization, parallelization, correctness, or security

Libraries

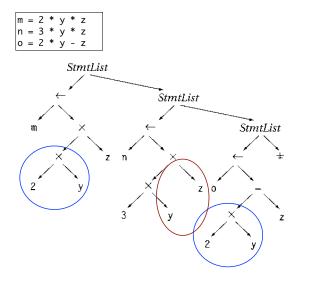
- interpreted languages
- e.g. try incrementing a vector in R

allocate 10 million data n = 10000000 a = rep(0, n) # compare the speed of this a[1:n] = 1 # with this

for (i in 1:n) a[i] = 1

Xiaoming Gu, LCPC 2010 poster

Finding Identical Expressions


10

Assumptions

- straight line code
- different names means different variables
- Example

m	=	2	*	у	*	z	
n	=	3	*	у	*	z	
0	=	2	*	у	-	z	

- Optimization?
- side effects?
- Representation?
- · Potential issues?

Problems

- $\boldsymbol{\cdot}$ Same name does not mean same value
- Side effects?
- Other potential issues?

The Idea: Assigning Numbers to Values

• The example from Allen-Cocke, 1971 = A * B C = A = C * B

Value Numbering

• Assumptions

straight-line code, at most 2 operands on rhs

• Algorithm for finding redundancy

х	=	а	*	b
с	=	а		
У	=	С	*	b

• Problems

 $\boldsymbol{\cdot}$ assignments, pointers, order of operands, constants, code generation

Value Numbering

16

• Example

x = a * b	a = b - c
c = a	b = a + d
y = c * b	c = b - c
	d = a + d

- Key property
- number the values, same number -> same value
- Extensions
- what about "d = d + a"?

EAC, Chapter 8

Reviews of EAC on Amazon

ENGINEERING A COMPILER

• Time to substantiate the class slogan

• What is code optimization?

- "is to discover, at compile time, information about the run-time behavior of the program and to use that information to improve the code generated by the compiler"
- Engineering A Compiler, Cooper & Torczon Extensions later
- it finds more than just redundancy
 what other attributes are useful?
- it doesn't have to be just performance
- it doesn't have to be compile time
- it doesn't have to be code generation

19

- "Between the Tiger and the Dragon. I found the book to be a nice balance between the deep theory of Aho et al's Dragon book and the implementation focus of Appel's Tiger book."
- "By contrast, this book (Cooper/Torczon) is not only digestible (nice presentation, not overly terse), but it also covers new and interesting algorithms and data-structures."
- "Pseudo code was given ... but there were always special cases... I liked the constant summaries, but when I faced the questions at the end of the chapters, I quickly realized I hadn't digested the material fully"
- "Concise, implementation-oriented, pragmatic but thoughtful"

20

Summary

• Sources of redundancy

- data abstraction
- language implementation
- modular design, code reuse (e.g. libraries)
- Redundancy removal
 - representation of code
 - name based redundancy analysis
 - the problem of re-assignments
- Value numbering
 - two names have same value if their numbers are the same
- Next
- attendance required
- weekly Friday recitation session 11-12pm, Room 601.
- compiler implementation in class next Monday

21