CSC 255/455

Redundancy Removal through Value Numbering
(EAC, 8.3 in 1st ed. or 8.4 in 2nd)

Chen Ding

Course page: http://www.cs.rochester.edu/drupal/u/cding/csc-255455-
advanced-programming-systems-spring-2014

CHAPTER 8

e—

Introduction to Code
Optimization

Macros

+ Is there redundancy in the code below?

#define larger(x,y) (x)>=(y)? (x): (y)
#define smaller(x,y) (x)>=(y)? (y): (XD
i(;lr.'ger'(a+b, a-b)
smaller(a+b, a-b)

Sources of Redundancy

DEPT. OF REDUNDANCY
DEPT.

Data Abstractions

+ Is there any redundancy in the code
below?

9-point stencil computation
afijl= ...

how to find oil underground?

ell_design.gif

A

CATALOGUE

OF

OPTIMIZING
TRANSFORMATIONS

Frances E. Allen

John Cocke

IBM Thomas J. Watson Research Center
Yorktown Heights

A result of the recent work in optimization
has been to systematize the potpourri of optimizing
transformations that a cecompiler can make to a pro-
gram, This paper catalogues many of these trans-
formations.

source:http://www.cs.rice.edu/~keith/512/RiceOnly/197 1 -allen-catalogue.pdf

Redundant Expression Elimination

Code Motion

Function Abstraction

@ ® OLL

become

1 1/
Ol () ()
e.o Give (Dwe(Gf 1@
3
{ O
¥

Other Sources

* Is there redundancy in the code below?

if (find_min(list) > 0)
return find_max(list);

Finding Common Subexpression

* Program monitoring

+ for optimization, parallelization, correctness, or security

+ Libraries

+ interpreted languages
+ e.g. try incrementing a vector in R

allocate 1@ million data
n = 10000000
a = rep(@, n)

compare the speed of this
all:n] =1

with this

for (i in 1:n)
ali] =1 Xiaoming Gu, LCPC 2010 poster

Finding Identical Expressions

* Assumptions

+ straight line code
- different names means different variables

+ Example

m
n

2 *y *z
3*¥y *z
2*y -z

* Optimization?

- side effects?

* Representation?
- Potential issues?

=2*y*z
n=3%y*z
=2*y-z

Stmtlist

= StmtList

PN %/\

StmiList

(—/ \-.t:

Local Value Numbering

Value Numbering

* Assumptions
+ straight-line code, at most 2 operands on rhs
+ Algorithm for finding redundancy

(g}
o
Nn Q9 Q9

<
Il

*

o

*

(o

- Problems

+ assighments, pointers, order of operands, constants, code

generation

Problems

- Same hame does hot mean same value
- Side effects?
+ Other potential issues?

The Idea: Assigning Numbers to Values

* The example from Allen-Cocke, 1971

= A *B
C = A
= C * B
16
Value Numbering
+ Example
X=4a%*b a=b-c
c=a b=a+d
y=c*b c=b-c
d=a+d
* Key property

- humber the values, same humber -> same value

- Extensions

- what about "d = d + a"?
- Stewart method
ce=f+ g
‘h=ze-f

EAC, Chapter 8

ENGI;‘;";“RING
COMPILER + Time to substantiate the class slogan
= * What is code optimization?

+ “is to discover, at compile time, information
about the run-time behavior of the program
and to use that information to improve the
code generated by the compiler”

+ Engineering A Compiler, Cooper &Torczon

+ Extensions later
+ it finds more than just redundancy
+ what other attributes are useful?

* it doesn't have to be just performance

+ it doesn't have to be compile time

* it doesn't have to be code generation

19

Summary

* Sources of redundancy
+ data abstraction
+ language implementation
+ modular design, code reuse (e.g. libraries)
* Redundancy removal
- representation of code
* name based redundancy analysis
* the problem of re-assignments
* Value humbering
* two names have same value if their numbers are the same
* Next
+ attendance required
+ weekly Friday recitation session 11-12pm, Room 601.
+ compiler implementation in class hext Monday

21

Reviews of EAC on Amazon

+ "Between the Tiger and the Dragon. I found the book to be a

nice balance between the deep theory of Aho et al's Dragon
book and the implementation focus of Appel's Tiger book.”

* "By contrast, this book (Cooper/Torczon) is not only digestible

(nice presentation, not overly terse), but it also covers new and
interesting algorithms and data-structures.”

* "Pseudo code was given ... but there were always special cases...

T liked the constant summaries, but when I faced the questions
at the end of the chapters, I quickly realized I hadn't digested
the material fully”

+ "Concise, implementation-oriented, pragmatic but thoughtful”

20

