
CSC 255/455

Redundancy Removal through Value Numbering
(EAC, 8.3 in 1st ed. or 8.4 in 2nd)

Chen Ding

Course page: http://www.cs.rochester.edu/drupal/u/cding/csc-255455-
advanced-programming-systems-spring-2014

Sources of Redundancy

Data Abstractions

• Is there any redundancy in the code
below?

9-point stencil computation
a[i,j] = ...

4

how to find oil underground?

http://cdn.energytribune.com/wp-content/uploads/slant_well_design.gif

Macros

• Is there redundancy in the code below?

5

#define larger(x,y) (x)>=(y)? (x): (y)
#define smaller(x,y) (x)>=(y)? (y): (x)
... ...
l = larger(a+b, a-b)
s = smaller(a+b, a-b)

Frances E. Allen

John Cocke

IBM Thomas J. Watson Research Center

Yorktown Heights

A pesuZt of the peaent 1A1oPk in optimization

has been to systematize the potpouppi of optimizing

tpansfopmations that a aompiZep aan make to a pPO-
gpamt This papep aataZogues many of these tpans-

fopmations.

INTRODUCTION

A catalogue of optimizing transformations which

a compiler can make on a program is presented in

this paper. The catalogue does not pretend to in~

clude all possible transformations; what is presen-

ted is a categorization of most of the transforma-

tions which are currently reasonably well understood.

The basic purpose of the transformations pre-
sented is to improve the execution time of compiled
programs. Some attention is given to execution
space, but no attention is given to optimizing com-
pile time or to the more general questions of total
job or system optimization.

The term optimization is a misnomer in that it

source:http://www.cs.rice.edu/~keith/512/RiceOnly/1971-allen-catalogue.pdf

Redundant Expression Elimination

Optimizing 13Transformations

basic block --and the literature [3,5,6,10,11]

describes many optimizing transformations for such

statements.

The primary emphasis in the collection of
transformations presented here is on global optimi-
zation; that is, it is on transforming the program
based upon the dependency relationships which are
found to exist between expressions in different
basic blocks as well as in'the same block.

In the examples that follow, a directed graph

is used to express the control flow relationships

between the basic blocks in a program. The nodes

of the graph represent basic blocks and the edges

control flow paths.

REDUNDANT SUBEXPRESSION ELIMINATION

This optimization, which is also called aommon

subexpression elimination, involves finding and
eliminating those computations which calculate
values already available. Consider the following
examples in which the redundant subexpression is
identified by being enclosed in a box.

Code Motion

John CockeE. Allen,'6 Frances

It will be noted that the number of times the over-
flow may occur is probably being altered. The true
correctness of moving any subexpression which can
cause side effects is probably questionable and
certainly dependent on language rules. If a standard
system action is taken such as stopping the program
or flagging the result, then maintaining the number
qf occurrences of the side effect is not important,
but maintaining the conditionality for its occurrence
is important. Consider the following two examples:

Assuming A/!3-is considered an unsa£e subexpres-
sion, i.e., one which might cause a side effect,
then, clearly, A/!3 in node 3 in the first example
cannot be moved to node I. However, the second
example has an A/!3 subexpression in node 4 which
may, at first glance, appear to be movable to node
I. It is not, however, because a divide check error
may result which would not occur in the program as

given.

The basic intent of code motion is to move
instructions from frequently executed areas of the
program to less frequently executed areas. Since
it is not always apparent what the relative execu-

tion frequencies of various areas are, an improve-

ment may not always result.

Optimizing Transformations 15

In the next section it will be seen that code
motion and redundant subexpression elimination are
intimately related. By inserting instructions at
propitious places in the code, more subexpressions
can be eliminated than could be in the original
program form.

CODE MOTION

A subexpression can be moved if the value
available to its uses is not changed by this move
and if the move is "safe." The safety criterion is
somewhat vague, but it essentially means that a
moved subexpression will not cause side effects to
occur which would not have occurred if the sub~
expression had remained in its original position.
Two examples of movable subexpressions are:

In each case it was assumed that neither A
nor B were changed by the other instructions in
nodes 2, 3, 4 and 5, that is A*B is invariant with
respect to the loop. Even if it is assumed that
A*B might cause an overflow condition it is clear
that the occurrence of this side effect is not being
altered by moving the subexpression into node I.

Function Abstraction

• Is there redundancy in the code below?

9

if (find_min(list) > 0)
return find_max(list);

Other Sources

• Program monitoring
• for optimization, parallelization, correctness, or security

• Libraries
• interpreted languages
• e.g. try incrementing a vector in R

10

allocate 10 million data
n = 10000000
a = rep(0, n)

compare the speed of this
a[1:n] = 1

with this
for (i in 1:n)
 a[i] = 1 Xiaoming Gu, LCPC 2010 poster

Finding Common Subexpression

Finding Identical Expressions

• Assumptions
• straight line code
• different names means different variables

• Example

12

m = 2 * y * z
n = 3 * y * z
o = 2 * y - z

• Optimization?
• side effects?

• Representation?
• Potential issues?

19{ CH-APIER 8 ; | | :. d n. : r, t: : |) t, nir ()r) irn)t11trcnl

Stn,.List

8.5.1 Building a Directed Acyclic Craph

On€ way to represent redundant computation explicitly is with a direcled
ac_vclic graph (DAG). In an AsT, €ach node has at nrost one parent. Thus, rhe
AsTfof the example code in Figure 8.2(aJ might be as follows:

Stnl

/,,
-...----_--__._

5tmrList

StmtList

//

.-.-----_-___._

< StntList

/ / \ / / \

r/ \ ,/\
^ zo -

tz \
"z\Yxz

t/ \

ln contrast, the DAG represents each distinct expression once, In a DAG a
node canhave multiple parcnts. Eachparent represents a distinci rcference to
the value represented by the nodei any node \r.ith muhiple parents must be a
redundant expression. A D G built fron the prerious AsT would looklike:

StmtList

m = 2 * y * z
n = 3 * y * z
o = 2 * y - z Problems

• Same name does not mean same value
• Side effects?
• Other potential issues?

Local Value Numbering

The Idea: Assigning Numbers to Values

• The example from Allen-Cocke, 1971

16

Allen, John Cocke14 Frances E ..

The subexpression A*B has, of course, a sub-

sequent use: its value is used in another expres-

sion, is assigned to a variable or used in a test.

In both examples, correct though not necessarily

identical values are available on every path to the

subexpression and hence to its use. The subexpres-

sion is therefore redundant.

In the two examples the redundant subexpression
was formally identical with the subexpressions pro-
ducing usable values. One form [7] of global
analysis for this optimization depends upon the
existence of formal identities. Another form of
analysis, based upon the value number algorithm [8] ,
does not depend upon explicit formal identities for
the identification of a redundant calculation.
Consider the following example of straight-line

code:

A * B-

c A=

c * B-
-

C*B is not formally identical with A*B but computes
the same value so is a redundant calculation. The
two methods for detecting redundant subexpressions
find different cases as well as some of the same
cases. The value number method as it is currently
formulated would not find either of the cases shown
in the first two examples in this section; the
method requiring formal identities would not find

C*B in the last example.

The major advantages of this optimization are

that

andfewer instructions are executed,a.

instruction space is saved.b.

The disadvantage is that register usage is

extended.

Value Numbering

• Assumptions
• straight-line code, at most 2 operands on rhs

• Algorithm for finding redundancy

• Problems
• assignments, pointers, order of operands, constants, code

generation

17

x = a * b
c = a
y = c * b

Value Numbering

• Example

18

x = a * b
c = a
y = c * b

• Key property
• number the values, same number -> same value

• Extensions
• what about “d = d + a”?
• Stewart method
• e = f + g
• h = e - f

a = b - c
b = a + d
c = b - c
d = a + d

EAC, Chapter 8

• Time to substantiate the class slogan
• What is code optimization?

• “is to discover, at compile time, information
about the run-time behavior of the program
and to use that information to improve the
code generated by the compiler”

• Engineering A Compiler, Cooper &Torczon
• Extensions later

• it finds more than just redundancy
• what other attributes are useful?

• it doesn’t have to be just performance
• it doesn’t have to be compile time
• it doesn’t have to be code generation

19

Reviews of EAC on Amazon

• “Between the Tiger and the Dragon. I found the book to be a
nice balance between the deep theory of Aho et al's Dragon
book and the implementation focus of Appel's Tiger book.”

• “By contrast, this book (Cooper/Torczon) is not only digestible
(nice presentation, not overly terse), but it also covers new and
interesting algorithms and data-structures.”

• “Pseudo code was given ... but there were always special cases...
I liked the constant summaries, but when I faced the questions
at the end of the chapters, I quickly realized I hadn't digested
the material fully”

• “Concise, implementation-oriented, pragmatic but thoughtful”

20

Summary

• Sources of redundancy
• data abstraction
• language implementation
• modular design, code reuse (e.g. libraries)

• Redundancy removal
• representation of code
• name based redundancy analysis
• the problem of re-assignments

• Value numbering
• two names have same value if their numbers are the same

• Next
• attendance required
• weekly Friday recitation session 11-12pm, Room 601.
• compiler implementation in class next Monday

21

