
CSC 255/455

Data Flow
(EAC, 8.6 and 9, both editions)

Chen Ding

Course page: http://www.cs.rochester.edu/drupal/u/cding/csc-255455-
advanced-programming-systems-spring-2014

Problems of Value Numbering

• Merging values
• Inconsistent values

• value numbers differ in different blocks
• Redundant computation

• but not the same value
• Computing the dominator sets

2

Global Analysis

• What do we analyze?
• names, values, or locations?

• What is different from local or super-local analysis?
• merge points

• why are they needed?
• why are they difficult?

• two examples

• Assumptions
• different names, different variable
• single name space

3

Global Redundancy Elimination (GRE)

• Expression and program point
• An expression is a computation that produces a

new value
• A program point can be the point before or

after a statement and before or after a basic
block

• Expression definition, kill, and availability
• An expression e is defined at point p in CFG if

its value is computed at p
• Expression e is killed at point p if one of its

operands is redefined at p
• Expression e is available at p if every path

leading to (but before) p has a prior definition
and e is not killed in between

4

a = b - c
...
b = a + d
...
c = b - c
...
d = a + d

Meet-over-all-path Solutions (MOP)

• Control flow graph
• any block may reach any other block

• finite graph
• infinite (and infinitely long) paths

• may provide a value
• may kill a variable

• What can we call truth?
• meet-over-all-path (MOP)

• invariant properties in all paths

5

Data Flow Framework

• Data flow analysis
• solving “a set of equations, posed over a graphical

representation of the code to discover facts about what can
occur when program runs”

• solving all path problems of a graph
• “truth”

• Three steps
• build the control flow graph
• gather local information
• solve iteratively

6

\-{,nKrn .- t)
DEExrninl <- @

for i :ktot

oss,ume operotion 01 is ,
,x

+_ y op 2,,
if (y (ynnkrr) ond e i.vlrlfurr)

then odd "y + 2,, to DEExen(n)
'

VenKrrr+-VanKnr u {x}

ExnnlGrr(n) <- 0

for eoch expression e in the procedure

for eoch vorioble v e e
/ y e VanKrrr

fhen ExpnKnr(n) +_ ExenKlrr(n) u {e}

Frcunr 8.8 Computing Local Information for AvRrL

Computing the Local Sets

Before it can compute Averl sets, the compiler needs to produce ::.r l

:li,:j:lT:?T:::r:, "j:h
br".k C;;;;;Hg DEExnn is srraightron,a_

puting ExlnKILr is more com nlev n;-,i-" . "
"!!ff n rD otr dr6r I r'r (

these sets for a basic ;l::lT.tt*.
Figure 8.8 shows an algoritfrm for c.:,:

It initializes the sets VnnKlrr and DEExpn(n). Then, in a pass trn=

:iT"?:ll*:.X1":,::lf
it,mls.in these sets. For each op!rotion. , .

checks v andz for membersrrip invenri;'. j;ffiffi1r"t1",;ii?l; ;;T
is downward exposed and belfngs i"'bn"E"*1n). since the operar:.: fr
x, the algorithm addsx toVanKrrrlx, the algorithm adds x to VanKrrr;

eurLs Lrrc ulrer

The second part of the algorithm computes ExpRKTLL(n) from ::_,r .

ff : *=:T: ij 1T"^1, li i "",
gl,j" l".t;;.'F". e ach exp re s s i o n e c c, ::;rl

the pro cedure, it checks,o r"." iin ri,i; ;#;r; ;:ffi:i::i; ;". : :;
ExpnKnr(n).

T,tT:,i ll^,):r^.."I0^liatio
n, th e c o mpite r mi ght p re c o mp u r e a ::. i

3:*,1:::*ll, 1,,?,1 " i " I ; f-",.p;;.; il5 ;;ffi';ilffi: Tfl.T : : :;
:truc]

ExenKru(n) by iterati
- _^ vrr , - rveurvrrD ul<t l uIUIuqe l I . lnen, : : ;

ing over variables y in VenKnr and add:nt

ExrnKrr.r(n).

Computing Avnn

ln""""SJ:jfT-::l1y':
sygciV the contents of Avarr(n) as a i;:,

l* 3"i3:1,, I1::",.1, ""d' A"; ;; ;;;;;#;#;! ?" t "" Juseasimprei,".",i";;;;;i;#:iiL::ii.'"'#i,$tffiT::?:X$;;:

AVAIL Analysis (Step 2)

• DEExpr(n): expressions defined but not killed in block n
• ExprKill(n): expressions killed in block n

7 source: EAC figure 8.8

e = b + 18
...
u = e + f

u = e + f
...
u = b

A:

B:

AVAIL Analysis

• Local sets
• DEExpr(n): exprs defined but not killed in block n

• downward exposed expressions
• ExprKill(n): exprs killed in block n

• MOP sets
• AVAIL(n): exprs available at the start of block n

• defined at or before all its predecessors
• not killed after the definition

8

Solving Recursive Equations

• Example
• solve cos(x) = x for x

• Solution?
• Problems?

• hint: at least three

>> def solve(x)
>> y = Math.cos(x)
>> return x if (x-y).abs < 0.0001
>> return solve(y)
>> end
>> z = solve(1)
=> 0.739130176529671
>> Math.cos(z)
=> 0.739054790746917

e = b + 18
...
u = e + f

e = b + 17
...
u = e + f

x = e + f

A: B:

Review Questions

• What is the purpose of data flow analysis?
• why is it called a framework?

• What are the three steps?
• What are the local sets computed for AVAIL?
• What is the data flow equation for AVAIL?

• can you prove correctness and completeness?
• Can you draw the two basic cases of control flow merge?

12

