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Problems of Value Numbering

• Merging values
• Inconsistent values

• value numbers differ in different blocks
• Redundant computation

• but not the same value
• Computing the dominator sets
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Global Analysis

• What do we analyze?
• names, values, or locations?

• What is different from local or super-local analysis?
• merge points

• why are they needed?
• why are they difficult?

• two examples

• Assumptions
• different names, different variable
• single name space
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Global Redundancy Elimination (GRE)

• Expression and program point
• An expression is a computation that produces a 

new value
• A program point can be the point before or 

after a statement and before or after a basic 
block

• Expression definition, kill, and availability
• An expression e is defined at point p in CFG if 

its value is computed at p
• Expression e is killed at point p if one of its 

operands is redefined at p
• Expression e is available at p if every path 

leading to (but before) p has a prior definition 
and e is not killed in between
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a = b - c
...
b = a + d
...
c = b - c
...
d = a + d

Meet-over-all-path Solutions (MOP)

• Control flow graph
• any block may reach any other block

• finite graph
• infinite (and infinitely long) paths

• may provide a value
• may kill a variable

• What can we call truth?
• meet-over-all-path (MOP)

• invariant properties in all paths
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Data Flow Framework

• Data flow analysis
• solving “a set of equations, posed over a graphical 

representation of the code to discover facts about what can 
occur when program runs”

• solving all path problems of a graph
• “truth”

• Three steps
• build the control flow graph
• gather local information
• solve iteratively
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AVAIL Analysis (Step 2)

• DEExpr(n): expressions defined but not killed in block n
• ExprKill(n): expressions killed in block n
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e = b + 18
...
u = e + f

u = e + f
...
u = b

A:

B:

AVAIL Analysis

• Local sets
• DEExpr(n): exprs defined but not killed in block n

• downward exposed expressions
• ExprKill(n): exprs killed in block n

• MOP sets
• AVAIL(n): exprs available at the start of block n

• defined at or before all its predecessors
• not killed after the definition
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Solving Recursive Equations

• Example
• solve cos(x) = x for x

• Solution?
• Problems?

• hint: at least three

>> def solve(x)
>>   y = Math.cos(x)
>>   return x if (x-y).abs < 0.0001
>>   return solve(y)
>> end
>> z = solve(1)
=> 0.739130176529671
>> Math.cos(z)
=> 0.739054790746917

e = b + 18
...
u = e + f

e = b + 17
...
u = e + f

x = e + f

A: B:

Review Questions

• What is the purpose of data flow analysis?
• why is it called a framework?

• What are the three steps?
• What are the local sets computed for AVAIL?
• What is the data flow equation for AVAIL?

• can you prove correctness and completeness?
• Can you draw the two basic cases of control flow merge?
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