CSC 255/455

Data FIova; >+ d 5}
: =
(EAC; 8.6 _and°9;both editions)

|
A 23
2 N \ 5)

Chen Ding §Z5 b

Course page: http://www.cs.rochester.edu/drupal cding -cl‘fsc-255455-
advanced-programming-systems-spring-2014 1Bl

s

Global Analysis

—

Problems of Value Numbering

* Merging values

- Inconsistent values
+ value humbers differ in different blocks

+ Redundant computation
* but not the same value

* Computing the dominator sets

Global Redundancy Elimination (GRE)

* What do we analyze?
- names, values, or locations?
* What is different from local or super-local analysis?
* merge points
+ why are they needed?
- why are they difficult?
* two examples

* Assumptions

- different names, different variable
+ single name space

Meet-over-all-path Solutions (MOP)

- Expression and program point

* An expression is a computation that produces a
new value

+ A program point can be the point before or ce
after a statement and before or after a basic b=a+d
block

+ Expression definition, kill, and availability cb-c
+ An expression e is defined at point p in CFG if
its value is computed at p d-a=+d

+ Expression e is killed at point p if one of its

operands is redefined at p

+ Expression e is available at p if every path
leading to (but before) p has a prior definition
and e is not killed in between

Data Flow Framework

* Control flow graph
+ any block may reach any other block
« finite graph
+ infinite (and infinitely long) paths
* may provide a value
+ may kill a variable
* What can we call truth?
+ meet-over-all-path (MOP)
+ invariant properties in all paths

- Data flow analysis

+ solving "a set of equations, posed over a graphical
representation of the code to discover facts about what can
occur when program runs”

+ solving all path problems of a graph

+ “truth”

* Three steps

+ build the control flow graph
+ gather local information
+ solve iteratively

AVAIL Analysis (Step 2)

+ DEExpr(n): expressions defined but not killed in block n
« ExprKill(n): expressions killed in block n

VARKILL — O A:
DEEXPR(n) « 0 '
fori=kto]
assume operation o; is x <y op 2" u=-e+ f
if (v ¢ VARKILL) and (z ¢ VARKILL)
then add “y + z” to DEExPR(n) B:
VARKILL+ VARKILL U {x} u=-e+f
ExPRKILL(N) - 0
for each expression e in the procedure u=>b
for each variable v € e
if v € VARKILL
then ExprKILL(n) + ExPRKILL(n) U {e}
7

[¢]
Il
o
+
oo

source: EAC figure 8.8

b + 18

(o] ..
[

AVAIL Analysis

« Local sets

+ DEExpr(n): exprs defined but not killed in block n
+ downward exposed expressions
« ExprKill(n): exprs killed in block n
* MOP sets

+ AVAIL(n): exprs available at the start of block n
- defined at or before all its predecessors

+ not killed after the definition

Solving Recursive Equations

+ Example
- solve cos(x) = x for x > def solveCoO
. Solution? >> Yy = Math.;os(x)
' >> return x if (x-y).abs < 0.0001
* Problems? >> return solve(y)
+ hint: at least three >> end

>> z = solve(l)
=> 0.739130176529671
>> Math.cos(z)
=> 0.739054790746917

Review Questions

* What is the purpose of data flow analysis?
* why is it called a framework?
* What are the three steps?

* What are the local sets computed for AVAIL?
* What is the data flow equation for AVAIL?

* can you prove correctness and completeness?
+ Can you draw the two basic cases of control flow merge?

