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ABSTRACT

In this and two subsequent papers we develop analytic solutions for the rate of evaporative
mass loss from an isolated spherical cloud embedded in a hot tenuous gas. In the present paper we
consider systems in which the effects of radiation and magnetic fields may be neglected; these
effects will be considered in the two subsequent papers. It is pointed out that in many cases of
interest the classical form of the thermal conduction is inapplicable and an upper bound to the
heat flux which may be carried by the electrons is derived which is substantially lower than most
previous estimates. Eigenvalues of the time-independent energy conservation equations are found
both in the case where the classical conduction is applicable throughout the interface and in the
case where the heat flux reaches its limiting value. (We refer to this as saturation.) The dynamics of
the flow from the cloud is analyzed in both cases, and the use of the time-independent equations is
justified. The theory is compared with the theory of thermal conduction fronts described by
McKee and Cowie. Finally we consider the application of the theory to clouds within supernova
remnants where anisotropy and dynamical effects are important. Discussion of the applications of

these results is deferred to Paper II, where the effects of radiation are considered.
Subject headings: interstellar: matter — nebulae: general — nebulae: supernova remnants

I. INTRODUCTION

Thermal conduction processes, while extensively
considered in the case of the solar wind and corona,
have seldom been thought to be of much importance
in other astrophysical systems, and in particular to
have little effect on the dynamics or thermal balance of
the interstellar gas. Some exceptions to this must be
noted, however, and the effects of electron thermal
conduction on the energy balance of a galactic corona
(Spitzer 1956) and on the stabilization of radiatively
cooling gas (Field 1965) have been considered in some
detail. More recently the importance of conduction in
the evolution of supernova remnants (Chevalier
1975a, b; Solinger, Rappaport, and Buff 1975) and on
the evolution of gas within clusters of galaxies (Lea
1974) has been pointed out.

Neglect of thermal conduction in the interstellar gas
was justified by the comparatively low temperatures
(<10% K) and high densities (0.3 cm~2) considered
characteristic of the interstellar gas (e.g., Spitzer 1968).
Only recently has evidence from the O vi absorption
lines detected by Copernicus (Jenkins and Meloy 1974)
and from the uniform soft X-ray background (William-
son et al. 1974) indicated the presence of a higher
temperature (~ 106 K, n ~ 10~2 cm~3) component of
the gas. Whatever the theoretical interpretation of this
gas (Castor, McCray, and Weaver 1975; Cox and
Smith 1974; McKee and Ostriker 1975), it is clear that

thermal conduction processes will play a dominant
role in its evolution, since the conductive heat flux in a
fully ionized plasma is an extremely sensitive function
of temperature (ocT7/2, Spitzer 1962).

Finally, in addition to the problems mentioned
above, thermal conduction should play an important
(and as yet unconsidered) role in the evolution of gas
in elliptical galaxies and in the evolution of inter-
galactic medium gas. Of particular interest is the inter-
action of intergalactic or intracluster hot gas with the
gas within galaxies (De Young 1973).

One of the most important effects of thermal con-
duction is the evaporation of density inhomogeneities
or “clouds,” and this is the topic we shall consider
here. While particular solutions to this problem exist
(Ze’'dovich and Pikel'ner 1969; Penston and Brown
1969; Graham and Langer 1973; Chevalier 1975b),
most emphasizing the case of interstellar clouds
evaporating in an intercloud medium (7 ~ 10*K,
n ~ 0.3 cm~3), no attempts at a general solution have
as yet been made. In particular most of the solutions
have been numerical, and it is difficult to scale the
results to conditions of different ambient temperature
and density. In this paper (Paper I) and in two sub-
sequent papers (McKee and Cowie 1977a, b [Papers
IT and III]), we shall obtain analytic solutions for the
case of a spherical cloud embedded in a hot tenuous
gas.

In Paper II we shall discuss the conditions under
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which radiative losses play an important role in the
evaporative process, and obtain solutions for the
radiative losses in the evaporating interface, while in
Paper III we shall consider the importance of the
magnetic field configurations in determining the rate of
evaporative mass loss. There we shall show that under
a wide variety of conditions the presence of a magnetic
field does not significantly affect the evaporation. In
the present paper (Paper I) we shall obtain analytic
solutions for the cases in which radiation and magnetic
fields may be ignored. We consider only the evapora-
tion of spherical clouds where the evaporative mass
loss rate is an eigenvalue of the time-independent
energy conservation equation. As we shall discuss,
these solutions may normally be expected to be
accurate approximations to the exact time-dependent
mass loss rates. Such solutions are, however, unique
to the spherical geometry, and different (time de-
pendent) methods are required for the evaporation of
plane and cylindrical clouds.

In those cases where the classical thermal conduc-
tion formula (e.g., Spitzer 1962) is applicable through-
out the interface, the solution for the evaporation rate
is straightforward and is described in §III. Un-
fortunately, for many situations of interest, the mean
free path of the electrons in the hot gas is not small
compared with the radius of the evaporating cloud. In
such cases we may no longer use the classical theory
of thermal conduction, which is based on a diffusion
approximation (Parker 1963). (We may note that
when the classical theory is incorrectly applied to
systems in which the approximation has broken down,
it can result in gross overestimates of the importance
of thermal conduction). In § IT we consider the upper
bound on the heat flux which may be carried by the
electrons, and conclude that this is smaller than has

previously been considered. For collisionless gases the -

exact heat flux should closely approximate this maxi-
mum value, and indeed, as we shall discuss in § 115,
the theory gives good numerical agreement with solar
wind observations. ‘

Derivation of the evaporative mass loss rate when
the classical conduction formula is not applicable
throughout the interface is substantially more com-
plicated than in the classical case. However, it is still
possible to obtain analytic solutions under certain
limitations, and these are given in §IV. Readers
primarily interested in the results may wish to omit
the analysis in § IVa-IVe and note only the mass loss
rate given in equation (68). The restrictions of the
model are considered in § IVf, where it is shown that
the theory is adequate for most cases of interest.

In § V we compare the results of our present theory
with a previous, less accurate analysis in terms of
conduction fronts, which are analogous to ionization
fronts (McKee and Cowie 1975). The conduction
front, or thermal wave (Zel'dovich and Raizer 1966),
moving into the cloud is usually D-type.

The theory of §§III and IV is premised on an
isolated spherical cloud in which departures from
spherical symmetry are neglected. The theory as such
is not directly applicable to a number of systems of
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interest, most particularly the evaporation of clouds
within supernova remnants (McKee and Cowie 1975;
Chevalier 1975b). In § VI we discuss the evaporation
of clouds in such systems and conclude that even in
such an extreme case the results of §§IIT and IV
should provide a reasonable approximation.

Finally in § VII we summarize the results, post-
poning discussion of the applications to the final
section of Paper II, where the effects of radiation are
also included.

II. SATURATED THERMAL CONDUCTION
a) Classical and Saturated Heat Fluxes

The thermal conductivity in a fully ionized hydrogen
plasma, in which many collisions take place over the
scale length for temperature variation, is given by
(Spitzer 1962)

-5775/2
K = -IJ&Z(THIOTTL ergss tdegtcm~!, (1)

where for T > 4.2 x 10° K the Coulomb logarithm is
In A =29.7 + Inn~Y%(T,[/10° K) . ¥))

The heat is conducted by the electrons, and equation
(1) includes the effect of the self-consistent electric
field required to maintain the electric current at zero;
this reduces « by a factor of about 0.4 from the value
it would otherwise have.

The conductivity is directly proportional to the
mean free path A for electron energy exchange:

. tgq(3}l;Te) i ®

e

where t,,, the electron-electron equipartition time, is
(Spitzer 1962)

3mell2 kTe 3/2
foa = 4ﬂ1’2ne(e4 113 A “
Here n, is the electron density, and the other symbols
have their usual meaning. The equipartition time is
only slightly larger than the time in which collisions
with other electrons cause the trajectory of a typical
electron to be deflected by 90°. The equivalent mean
free path for ions has approximately the same value,
since A is independent of m, ; numerically A & 10*T2/n
cm. In terms of A, the thermal conductivity is

k= 1.31nkNkT,/m)"? ; ©)
and the heat flux
g =—«VT ©®

is proportional to A/Ly, where L, is the temperature
scale height T/|VT)|.

The classical thermal conductivity (eq. [1]) is based
on the assumption that the mean free path is short
(A « L;). When the mean free path becomes com-
parable to or even greater than the temperature scale
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height, the heat flux is no longer equal to —«VT": we
describe this effect as saturation. The maximum heat
flux in a plasma can be expressed as (3/2)n.kT,Vcpars
where v, is a characteristic velocity which one might
expe?lt to be of the order of the electron thermal
velocity (Parker 1963). However, by a suitable choice
of distribution function, it is possible to make v,y
arbitrarily large (Manheimer and Klein 1975).

The actual magnitude of the “saturated” flux is
determined by the nature of the heat source and by
two constraints on the electron distribution function:
first, that it carry no current, since otherwise large
electrostatic fields would build up,® and second, that
it be stable against the various plasma instabilities
which tend to drive an anisotropic distribution toward
isotropy. Parker’s (1963) estimaté of vgper =
(3kT./m,)'"? corresponds to the electrons streaming
past the ions at the thermal velocity ; as such it violates
the zero current requirement and is also unstable
against the ion acoustic instability (Forslund 1970).

Morse and Nielsen (1973) have discussed the satura-
tion problem in the context of laser-heated plasmas.
They considered a one-dimensional distribution func-
tion, f(v), consisting of two components: “hot”
particles with 0 < v < vy, and f(v) = Ppe/Vnos, and
backward moving “cold” particles with —ov,q <
v < 0 and f(v) = feo1a/Veara- FiXing vy, and imposing
the zero current requirement, they found that the
maximum possible heat flux was (1/32)nmovy,°. In
three dimensions the same result holds, corresponding
0 Vgnar = 0.66(kT/m,)*/2, where T is the average tem-
perature of both the hot and the cold particles. They
supported their estimate by numerical simulations;
however, simulations by Manheimer and Klein (1975),
in which the system was allowed to relax to a steady
state, give a value several times smaller. Although
Morse and Nielsen’s distribution function is stable
against electrostatic streaming instabilities, it is
possible that it is unstable against instabilities of the
Weibel (1959) type.

We are interested in the case in which the heat
source (e.g., the Sun, or a hot gas surrounding a cloud)
has a Maxwellian distribution. An approximate upper
limit to the saturated heat flux in this case is the heat
flux due to a Maxwellian distribution in the presence
of an infinite temperature gradient—a hot gas abutting
a cold absorber. In the absence of the zero current
requirement, this would be the free molecular con-
ductivity (cf. Williams 1971) obtained by averaging
313 cos 6 over 0 5 0 < w/2, where 6 =0 is the
direction of the heat flux; the result is vopa, =
(8/9m)Y2(kT|m,)*'2. Just as in the classical case, how-
ever, a self-consistent electric field will be set up to
stop the current. We assume that the heat flux is
reduced by the same factor of 0.4 in the saturated case
as in the classical case so that the saturated heat flux is

qsa; = 0.4(2kTe) llznekTe . (7)

wm,

! More precisely, the divergence of the current density must
vanish; for spherical symmetry this reduces to the condition
above.
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This result for g.,, does not depend sensitively on the
distribution function; had we chosen a uniform dis-
tribution function (f[v] = const.) instead of a Max-
wellian, g,,; would have been reduced by only about
10%,. The estimate for the maximum steady heat flux
in a plasma given by equation (7) is 8.1 times less than
Parker’s (1963) estimate and 3.1 times less than Morse
and Nielsen’s (1973) estimate, but it is comparable to
Manheimer and Klein’s (1975) estimate. The validity
of our estimate must be determined by comparison
with observation (see below) and by future theoretical
work. As we shall see later, the fact that the saturated
heat flux is significantly less than conjectured by Parker
(1963) implies that the evaporative flow is not highly
supersonic and allows us to integrate the equation of
motion and the energy equation separately.

In order to explicitly allow for the uncertainty in our
estimate of gg,;, We introduce a factor ¢, which is of
order unity and rewrite equation (7) as

sas = 5¢spca = 5éxp, (8)

where ¢? = p/p is the isothermal sound speed, p is the
pressure, and p is the density. If the saturated heat
flux g, is correctly given by equation (7) and if the
electron and ion temperatures are equal, then ¢, = 1.1
for a fully ionized gas with cosmic abundances. For
T. # T;, equation (7) is unaffected; but the factor
[2T./(T. + T)]** must be included in ¢, in equation
8).

Both plasma turbulence and magnetic fields can
reduce ¢g,;. When the heat flux is saturated, the
collisional mean free path Ais large (A > Ly) and some
plasma turbulence can be expected in order to main-
tain approximate isotropy of the electrons. To some
extent, the effects of this level of turbulence have
already been included, since our estimate of ¢, is
based on the assumption that the electrons are nearly
isotropic. Higher levels of plasma turbulence which
reduce the effective mean free path significantly below
the temperature scale length L, will correspondingly
reduce ¢,. As we shall see shortly, the level of plasma
turbulence in the quiet solar wind does not reduce g,
below our estimate.

The above expressions for both the classical and
saturated heat fluxes apply only in the direction parallel
to any magnetic field which may be present; the
conduction perpendicular to the magnetic field is
determined by the gyroradius of the particles and is
negligible for most astrophysical problems. When a
uniform magnetic field lies at an angle 6 to the direc-
tion of the temperature gradient, the classical heat
flux parallel to the gradient is reduced by a factor
of cos? 6. The first factor of cos 6 corresponds to
the projection of the temperature gradient onto the
magnetic field and the second factor arises from the
projection of the resulting heat flux which is parallel to
the field back onto the direction of the gradient.
However, since the saturated heat flux is independent
of VT, it is reduced by only the second factor of cos 6.
This factor enters into ¢, and reduces its value. We
shall discuss the role of magnetic fields in detail in
Paper 111 (McKee and Cowie 1977b).
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An important parameter in our analysis is the ratio
of the classical heat flux to the saturated heat flux,
which we denote by o. In terms of the temperature
scale height L, defined above we have

«T,

7= 5¢spc®Ly ©)
4.6
~ L 10

where we have used equation (5) in the last step and
inserted numerical values appropriate for T, = T; and
a helium abundance of 10%, by number. The transition
from classical (¢ « 1) to saturated (o > 1) heat flow
occurs at o ~ 1. Since this correspondsto A ~ 0.2¢,L,,
the gas is still collision dominated at the onset of
saturation.

b) Comparison with the Solar Wind

Thermal conduction plays an important role in
providing energy to the solar wind (Parker 1963), but
uncertainty concerning the transport coefficients in
dilute plasmas (A ~ L;) has prevented a satisfactory
theoretical explanation of its effects in the solar wind.
Observations show that the heat flux is less than that
predicted from classical theory (Montgomery 1972a;
Feldman et al. 1973), and models based on classical
conduction give electron temperatures higher than
observed (e.g., Cuperman and Metzler 1973).

Forslund (1970) suggested that plasma instabilities
reduce the conductivity below the classical value.
Perkins (1973) has shown that because most solar
wind electrons bounce between the Sun and an electro-
static potential barrier, the conductivity is reduced;
however, he argues that plasma instabilities per se do
not reduce the conductivity. Hollweg (1974) pointed
out that the electrons which are not in bound orbits
provide a collisionless (i.e., saturated) heat flux which
can be much larger than the collisional heat flux
estimated by Perkins. Hollweg went on to suggest that
plasma instabilities determine the magnitude of the
saturated heat flux, but his first estimate of 1.45 x
10-%ergscm~2s~! is several times less than the
observed value.

In the model of §Ila, the principal effect of in-
stabilities on solar wind electrons is to produce the
observed isotropy, while the heat flux along the
magnetic field is approximately given by gg in
equation (7). Averaging of the Vela-4 data gives
n,=7cm 3 T, =14 x 105K, and a heat flux of
7 x 1073 ergscm~2s~! (Montgomery 1972b); equa-
tion (7) gives 6.3 x 10-3 ergs cm~2 s~1. For the quiet
solar wind (v < 350 km s~!) the averages are n, =
83cm~3, T, = 1.310° K and a heat flux of 5 x 10~3
ergscm~2s~1; in this case equation (7) yields 6.7 x
10-%ergscm~2s~!, The most direct evidence for
saturation of the heat conduction has been presented
by Feldman et al. (1973), who showed that g/nT3/2
remained nearly constant for values of T ranging over
a factor of 2. We conclude that our model of saturated
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thermal conduction is consistent with observations of
the solar wind.

Within the context of a one-fluid model Cuperman
and Metzler (1973) have shown that the observed
properties of the solar wind are reproduced if the
classical conductivity is reduced by the empirical
factor (r/Rp)~°22 cos? (r), where (r) is the angle
between the radial direction and the magnetic field.
Utilizing the temperature and density profiles calcu-
lated by Cuperman and Metzler, we find that the ratio
of saturated to classical heat fluxes agrees closely with
the empirical reduction factor for all radii greater than
a few solar radii. However, a full two-fluid calculation
utilizing a saturated conductivity is clearly desirable.

In view of the complexity of the solar wind, our
model is by no means a complete description. How-
ever, the numerical agreement between our model and
these detailed observations encourages us to believe
that it should provide a good approximation to other
physical systems.

III. CLASSICAL EVAPORATION
a) Evaporation Rates

Throughout §§III and IV we shall consider the
evaporation of a spherical cloud of radius R embedded
in a hot gas which has density n; and temperature 7
far from the cloud, under the assumption that radia-
tion, ionization, and magnetic fields may be neglected.
(Ionization may be neglected if the surface of the
cloud is ionized or if the ambient plasma is very hot,
kT; > 1 Ryd.) We seek time-independent solutions for
the mass loss rate

m = 4ar2pv (11)
which are eigenvalues of the energy conservation
equation

V-pr(30® + 5¢%2) + V- = 0 (12)

subject to the boundary condition that T approaches
T; as r approaches infinity and T ~ 0 at r = R. Such
solutions may be found only for spherical geometries,
and the solutions described are not directly applicable
to plane or cylindrical cases. (Time-independent
solutions for the latter two cases exist only if T is
constrained to approach T; at a finite distance from
the cloud.) For simplicity of notation we define the
dimensionless variables

y=r/R, 13)
T =T/T;, (149)
and
W = F[Mgags » (15)
where
Mlgass = 16mpr;R[25k . (16)

Here p is the mean mass per particle so that ¢ = kT/u,
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and «; is the value of the conductivity at temperature
T;.
In this section we shall derive a solution to equation
(12) when the classical conduction formula is applic-
able throughout the interface between the cloud and
the hot gas. The solution in this case is particularly
simple since for small values of the quantity 1M?
(where M is the Mach number = v/c) the equations of
motion and energy conservation are separable. As we
shall show in §IIIb, this approximation is always
satisfied.

Integration of the energy conservation equation
(12) gives the equation

(5/2)rigc® — dmrPe fld—f —4, an

where A4 is the constant of integration, and
g=1+iM2. (18)

The integration constant A represents the difference
between the outward enthalpy flux and the inward
conductive heat flux; we assume that the cloud is cold
relative to its surroundings so that both fluxes are
negligible at the cloud surface and 4 ~ 0. One can
show that this argument is valid even if the cloud
itself is not ionized.

In terms of our dimensionless variables, equation
(17) may be rewritten as

7312

dr 2

&5 gwly* )
which is subject to the boundary conditions 7 ~ 0 as
y—1and 7—1 as y — c0. Our approximation con-
sists of treating g as constant in the integration. Since
this procedure is valid only for g of order unity, we
shall in fact set g = 1 after integration. The eigenvalue
of the equation is w = 1/g & 1, and the solution of
equation (19) is

T=(~1-y ). (20)
The mass loss rate from the cloud is then
m = 16mux,R[25k
= 2.75 x 10*T;52R,,(30/In A) gs~*, (21)

where R, is in parsecs, the Coulomb logarithm In A
is evaluated at T = T; and n = n;, and we have set
g = 1. The cloud will evaporate in a characteristic
time

In A .
30 y b

22)

lovap = Mc[m = 3.3 x 10%%7,R, 2T, >/

where m, and 7, are the mass and mean hydrogen
density of the cloud, respectively. The numerical value
assumes a 10%, admixture of helium by number.
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b) Dynamics

We have been able to integrate the energy equation
(12) independently of the equation of motion under
the assumption that the Mach number M is not large.
This approximation is in fact equivalent to the
assumption that the classical conductivity is applicable
throughout the flow. From equation (12) we find that
the ratio o of the classical heat flux to the saturated
heat flux g, is

o = Mg|2¢, (23)

provided o < 1 so that the heat flux is not saturated.
The Mach number at which o = 1 and saturation
occurs is 2¢,/g, which is of order unity since ¢, is.
Hence M is not large in classical evaporative flow.

With the temperature determined from the energy
equation, analysis of the dynamics of the evaporative
flow is straightforward. The time-independent equa-
tion of motion,

dvo _ dp
pPU E‘ = —E s (24)
may be rewritten in the forms

4

Z(no)=(1 - Mz)'ldir(ln Tir3)  (25)

or

d M? d

Furthermore, the heat flux g varies as T/r? according
to equation (20). Hence for subsonic flow the maximum
velocity, the minimum pressure and the maximum
inward heat flux all occur at the maximum value of
T/r? or, from equation (20), at y = 1.2. For transonic
flow this is the sonic point where M2 = 1.

Equation (25) may be combined with equation (20)
‘;_o cast the equation of motion in the dimensionless
orm,

dlIn M2
dy

=0.4[26 —59) + M2 - 1][y(y - 1. 27)

The solutions curves of equation (27) are shown in
(M?, y)-space in Figure 1. These curves are not valid
at Mach numbers much greater than 1, since our
approximation that g = 1 + M?2/5 is constant breaks
down and the shock transition back to subsonic flow
has been neglected. For the subsonic flow solutions,
the maximum of M2 occurs at y = (11 + Mp,,?)/10,
which lies between 1.1 and 1.2. Each solution is
parametrized by the value of M, or equivalently by
the maximum value of ¢ which may in turn be derived
from the value of the mass loss rate.

Finally we may investigate the conditions under
which the evaporation is a steady-state process. If the
cloud is in pressure equilibrium with its surroundings,

(1 - M?)
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FiG. 1.—Possible solutions for the Mach number squared
versus the normalized radius y (=r/R). For the transonic
solution, the flow will ultimately undergo a weak shock
beyond the sonic point and return to the subsonic curves.

the steady-state assumption will be valid provided the
time 5, for evaporating gas to flow from the surface
of the cloud to a point at which 7 ~ 1 is small com-
pared with ¢.,,, defined in equation (22). We define
tnow to be the time required for the gas to reach
y = 1.5, where 7 = 0.64. Since the Mach number is
not large, the pressure is approximately constant
throughout the flow and the flow time is given by

tnow = 1.70 X 47T.R3Pf/’h (28)
so that the condition for time independence is
Pc = 5ps - (29)

IV. SATURATED EVAPORATION

The solution for the evaporation rate derived in
§ I1I breaks down when the classical heat flux exceeds
the saturated heat flux, i.e., o > 1. From equations
(9) and (19) we find that, in the classical solution,

_ 2x,T; (Pﬂ'l/2
’T (25¢st‘—'st) )’ o<l 30)

which approaches zero at y =1 and y— o0 and
reaches a maximum in the interface. For sufficiently
large T; or sufficiently small p,R this maximum
exceeds unity and the heat flux saturates.

It is convenient in discussing the evaporation to
have a global rather than a local criterion for satura-
tion. To this end, we collect the constants in the-above
expression for o into the saturation parameter o,:

o0 = (2/25)k;Ty/$spsc,°R - G1)

Since the maximum value of (p,7'/2/py?) is of order
unity, the condition for saturation [Max (¢) > 1] is
equivalent to o, > 1; more precise values will be
determined below. Using equation (5), we find that o,
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is related to the mean free path A; in the ambient
medium by o, = 1.84A;/Ré,. Setting the Coulomb
logarithm In A = 30 throughout, we find

_ T 2 1 (32)
7= \154 x 100K n,R,.9,

What are the consequences of saturation of the
conductivity in the interface on the evaporative mass
loss rate ? Because the incoming heat flux drops below
the classical value, the evaporative mass loss rate tends
to be less than the classical value of equation (21).
However, there is a lower bound on . since the
integrated heat flux must be > 5¢.p;c;°47R?, we find
m * 8wR%p;c;$s. This crude minimum may sub-
stantially underestimate the evaporation from a
spherical cloud, however, since the thickness of the
zone between cloud and intercloud may be compar-
able to or even greater than R, thereby significantly
increasing the integrated heat flux.

In this section we shall obtain an exact hydro-
dynamic solution for the evaporative mass loss rate in
the case where the heat flux saturates in the interface.
We shall assume that electron and ion temperatures
are equal throughout the interface; this approxima-
tion will be discussed in § IVf.

a) Hydrodynamic Approximation

The principal approximation in our analysis is our
use of the hydrodynamic equations of motion and
energy conservation when the mean free path becomes
large (A;/R > 1). The exact time-independent equa-
tions of motion and energy conservation for a collision-
less plasma are (e.g., Delcroix 1965)

pv-Vo = =V. ¥, 33)
V-[pv(30® + w)] + V-(F-0) = -V-q, (34)

where ¥ is the stress tensor and u = (2p) " * Tr ¥ is
the internal energy per gram. We have assumed that
plasma waves do not make a significant contribution
to the momentum and energy balance of the plasma,
although they may be important in maintaining the
isotropy; hence we have neglected fluctuating currents
and charge densities.

These equations reduce to the normal hydrodynamic
equations provided only that the plasma is approxi-
mately isotropic and the stress tensor may be written
as W¥;; = pd;;. We shall assume subsequently that
plasma instabilities maintain the required isotropy.
We may note that in the case of the solar wind at 1 AU
the anisotropy in pressure is less than 20%, (Mont-
gomery 1972a).

b) Structure of the Interface

The transition between the cloud and the ambient
medium breaks up into three zones (Fig. 2): (1) the
inner classical zone, extending from the cloud surface
(y = r/R = 1) to a point y,;, in which the heat flux is
not saturated because the temperature and hence the
classical conductivity are small; (2) the saturated zone
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F1G. 2.—The temperature profile for the case of saturated evaporation with ¢, = 170 and M, = 1. The flow divides into three
zones: y < s where the temperature is low and classical conduction is applicable, ys; < y < ys» where the conduction is saturated,
and y > y,; where the temperature gradient is small and the classical conduction is again applicable.

(Js1 < ¥ < ys2) in which the heat flux is saturated;
and (3) the outer classical zone, (y > y3), in which the
heat flux is not saturated because the temperature
gradient is small. Balancing the outward enthalpy flux
and the inward heat flux at y,, (i.e., integrating the
energy eq. [12]) gives

i = 4mR%p;c,[(2¢s/2)(Pealp )(slCsa)ysa®] . (35)

All the factors in the brackets except y.,2, which
reflects the increase in effective area mentioned above,
are expected to be of order unity. We shall now pro-
ceed to demonstrate that this expression is physically
self-consistent and to evaluate the factors in the
brackets. In the interests of obtaining an analytic
solution, the heat flux is taken to be either classical or
saturated with abrupt transitions in functional form
at y,; and yg,. Since temperature scale lengths and
mean free paths vary rapidly in the interface, this
should be an excellent approximation.

¢) Dynamics of the Saturated Zone

In the case of classical evaporation it is possible to
integrate the energy equation and obtain the tem-
perature profile independently of the equations of
motion. When the heat flux is saturated (gsa: =
5¢spc®), this is no longer possible because ¢ depends on
p as well as on T. Integration of the energy equation
does show that the Mach number M in the saturated
zone-is constant:

Ms(l + %Msz) = 2¢s . (36)
The relation between M, and ¢, is shown in Figure 3.

Since M, is constant, the equation of motion can be
easily integrated; in the notation of § III we find

7 oc pHA+MD 37
poc y—2M,2/(1 +M2) , (38)
pocy” 2A2+MDIA+MD (39)

Note that such a steady-state solution would not be
possible in the plane case since the equation of motion,
has only the trivial solution of constant velocity,
temperature, and density in this case.

The constant of proportionality in equation (37)
may be found from equation (35). Defining the
constant

@ = 0o(py[psa)yse ™ 2MSIATMD (40)

after some straightforward algebraic manipulation we
obtain

= {1 /(aw)z}yyu +M2) ,

where w was defined in equation (15) as #1/Mcass.

The Mach number M, cannot be much greater than
unity because ¢ is of order unity (eq. [36]). If the flow
in the saturated zone is supersonic (M, > 1, or
és = 0.6), then a shock transition to subsonic flow
must occur in the outer classical zone. Since this shock
would be weak, it would have only a minor effect on
the evaporation rate, and we shall ignore it.

(41

d) Solution for the Evaporation Rate

The solutions just found for the temperature profile
in the saturated zone must be matched to the solutions
in the inner and outer classical zones in order to
determine the three unknown quantities w oc #1, Yy,
and yg,.

The solutions for the classical zones may be ob-
tained by the methods of § IIl. In the inner classical
zone

T=wl(1 -y Y, y < yu; (42)
while in the outer classical zone
r=0-=wyt, y=ys. 43)
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FiG. 3.—The Mach nurﬁber of the saturated zone M;, the
position of its inner surface y;;, and the constant H defined in
g(eq). (52) are shown in terms of the factor ¢, defined in eq.

8).

Two equations are provided by matching these tem-
peratures to those in the saturated zone at the zone
boundaries,

Vsi"[e*w® — yy +1 =0, 44)
Vs le®We — yo/w + 1 =0, (45)

where £ is defined as
h=(11+ M3A + M3 . (46)

These equations also ensure continuity of the heat
flux g oc mc?. Note that o itself depends on both y,,
and p,; (eq. [40]); the latter may be evaluated by
integrating the equation of motion in the outer classi-
cal zone.

It is possible to complete the solution by finding an
equation for yy. For supersonic flow (M, > 1,
¢s = 0.6) this is provided by the unique transonic
solution of the equation of motion. The solution for
M(y) in the case of classical evaporation (see Fig. 1)
remains valid in the inner classical zone in the case of
saturated evaporation since 7(y) (eq. [42]) has the
same functional form in the two cases. [Note that in
the outer classical zone y must be replaced by y/w in
order for 7(y) to have this form and for Fig. 1 to be
applicable.] The value of y,, is then determined by the
point at which M(y) reaches M, (see Fig. 1).

For subsonic flow the situation is more complex
since the flow in the inner classical zone is not unique.
We shall show that dr/dy and dM/dy are continuous
at y,; and that this allows y,; to be determined. Note
that the continuity of dr/dy at y,; does not follow from
the continuity of the heat flux ¢ since in the saturated
zone q is independent of the temperature gradient.
The equation of motion may be written in the form

dinM?* (1 + M*)dlnr 4 @7
dy (A -M) dy (1-Mdh’

which is applicable in all three zones. It follows that
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for subsonic flow any discontinuity in dr/dy at y; will
be accompanied by a discontinuity in dM/dy of the
same sign. Now dr/dy « o, the ratio of the classical to
the saturated heat flux; ¢ — 1 as y — y,; from below
and ¢ cannot decrease at y, if the heat flux is to be
saturated for y > y5;. Hence any discontinuity in
dr|dy at y;; must be nonnegative. On the other hand,
in the inner classical zone o = Mg/[2¢, (eq. [23]) and
dM|dy oc dr[dy > 0 up to the point of saturation.
Since M = M, = constant in the saturated zone,
dM|dy can only undergo a nonpositive discontinuity
at y,. These two results are consistent only if dr/dy
and dM/dy are both continuous at y,;; in particular
dM|dy = 0 at y.

(Note that a similar argument cannot be used to
show that dr/dy and dM|/dy are continuous at y,, the
outer boundary of the saturated zone, since both
quantities have the same sign there and eq. [47] is not
violated.)

We can now determine yg; for subsonic flow: it is
the point at which dM/dy = 0, so that M is a maxi-
mum. In § ITIb it was shown that M attains its maxi-
mum value at y = (11 + My0,2)/10 so that

Ya=(11+M)10="h/h-1),  49)

where 4 is given by equation (46).

Having found y,, for both the subsonic and super-
sonic cases, we can solve equation (44) for the normal-
ized mass loss rate

w = HYsa-5i9, (49)

where
H=y4"(ya—1).. (50)

Both y,; and H are plotted as functions of M, in

Figure 3. In the subsonic case y,, is given by equation
(48) and ,

H=nr[h-1)"" (M;<1). (51

In the supersonic case H is approximately constant
and equal to 11.5.

Equation (49) for w depends on y,, and p,, through
o« and must be solved together with equation (45).
Before developing an approximate solution for these
equations, we note that in general

ws<l, (52)

so that the effect of saturation is to reduce the evapora-
tion rate below the classical value. This can be demon-
strated by combining equations (44) and (45) to give

—_ (yszlysl)ysl
v= 1+ (ysl - 1)()’s2/)’s1)h (53)

and applying the inequalities y,/y; = 1, A > 1, and
Ys1 = h[(h — 1) (in this last condition, equality corre-
sponds to M, < 1; the inequality for M, > 1 follows
from the condition o < 1 for y < yg).
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The transition from classical to saturated evapora-
tion occurs at w = 1 and yg; = y,,. The value of o, at
the onset of saturation can then be found from equa-
tions (40) and (49),

oo(onset) = (Pso/p)ysi®/(ys — D® . (54)

Using the approximation for ps/p, given in equation
(56) below, one finds that oo(onset) is of order unity,
as expected: for M, x 2¢; < 1, oo(onset) = 1.95; for
M? = 2 and ¢, = 1, oy(onset) = 1.08.

e) Highly Saturated Evaporation

While equations (45) and (49) may always be solved
numerically in order to obtain the evaporation rate, it
is possible to find an analytic solution for the highly
saturated case (o, > 1) which turns out to also provide
2(1 good)approximation for the nearly classical case

Og ~ l .

In the highly saturated case, one has o ~ oy » 1
and w ~ «7%% « 1 so that the temperature in the
outer classical zone (eq. [43]) is very nearly constant.
Combining equations (26) and (47) for the case of
isothermal flow yields

dinp _ _1dM?

& 27 ar
which may be integrated to give the pressure at y,,,

Ps2 = prexp (—3M?) . (56)

Since we have ignored the weak shock which is
present in the outer classical zone in the case of super-
sonic flow, this result is strictly valid only for M2 < 1.
However, we shall adopt it as an approximation for all
cases.

The solution for y,, and w may now be obtained.
Using equation (49) and applying the conditions
o> 1 and w « 1, we can approximate equation (45)
as

(55)

V2" Tt = (eH)®". (57

Solving this equation simultaneously with equation
(40) for o gives
yia = looH exp (LM HDIEHD - (58)
which is a weakly varying function of o,. Substitution
of this result into equation (49) then leads to an ex-
plicit form for w:
w = [0o SH*M® exp (—2.5M)]VE+MD  (59)
Although these results have been derived from the
assumption w < 1, they provide a good approxima-
tion even at the onset of saturation when w = 1,
agreeing with numerical calculations to within 30%,.
Expression (56) for p;/p;, is within 6%, of numerical
calculations for the case of classical evaporation with
¢s = 0.6 and a maximum Mach number of 0.99, which
corresponds to the onset of saturation.
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In view of the fact that our results for highly
saturated evaporation provide a good approximation
for all cases of saturated evaporation, a more con-
venient form for the mass loss rate 71 is called for. In
general, define the function F(s,) by

i = 4w R?pse,$F(o0) . (60)

In the classical case one finds
F(oo) = 200, (61)

whereas in the saturated case
F(05) = 2[(0oH)**Ms" exp (—2.5M2)JHE+MD | (62)

As is shown in Figure 4, F is of order unity for o, of
order unity; furthermore, F depends only weakly on
M; or ¢,. Numerically, the saturated mass loss rate is

= 325 x 10, TV2R,2¢.F(oo) gs~, (63)

where for ¢, = 1, for example, F(o,) = 2.735,%8. The
corresponding evaporation time is

tevap =28 loe(ﬁc/nf)Rpc/ [Tf 1/2¢sF (0'0)] yr. (64)

The dependence of 72 on the basic variables n;, Ty, and
Ris
m oc [nST,252 +MH)p11 +M,2]1/(6+M,2) . (65)

The variation of temperature with radius is shown
for the particular case o, = 170 and M, = 1 in Figure
2. The saturated zone extends from 1.2R to 2.3R. As
discussed in § IVd, the temperature gradient is con-
tinuous at y,; and discontinuous at y,,; the latter is an
artifact of the abrupt switch in the functional form of
the conductivity at the zone boundaries.

Finally we may note that for highly saturated
evaporation the pressure in the cloud may sub-
stantially exceed the ambient pressure. Numerical
integration shows that the pressure drop in the inner

100

Flo,)

| [ 1 1 [ 1 1 L1
o 1.0 100 1000

Oo

Fic. 4.—The function F(oo) defined in eqgs. (61) and (62)
plotted as a function of o,. The break in the profile cor-
responds to the onset of saturation. (1) M2 = 5, ¢, = 2.24.
(2)M323—2 ¢ = 1. (3) M3 =1, ¢, = 0.60. (4)Ms = 0.2,

s =
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classical zone is py/p. & exp (—0.8M%). Combining
this with the above results gives

De
Dy
= [ooH exp (1.8 + 0.8M2)|M2IC+MDy,  -2M2A+MD) |

(66)
so that for ¢, = 1 one has p,[p, = 2.430,/%.

f) Limitations

We now analyze the limitations imposed on our
results by our assumptions. In addition to explicitly
assuming that the evaporation is a steady-state process
and that the electron and ion temperatures are equal,
we have also implicitly assumed that the electron mean
free path is not too long, as we now discuss.

1. Mean free path approximation.—The saturated
zone in effect forms an insulating region between the
hot ambient gas and the cool cloud. At the outer
boundary of the saturated zone, the mean free path of
the electrons can greatly exceed the temperature scale
height. However, we require that the range of the hot
electrons be less than the thickness of the saturated
zone. Otherwise, the hot electrons could penetrate
into the inner classical zone, where we have explicitly
assumed that the mean free path is small. An additional
effect which occurs at this point is that heat flux may
no longer be carried by the electrons which determine
the temperature (§1II); however, the value of the
saturated heat flux does not depend critically on this
assumption.

What is the condition placed on the saturation
parameter o, by the condition that the ambient
electrons be unable to penetrate the saturated zone?
In highly saturated flow, the hot electrons are supra-
thermal in much of the saturated zone, and they can
penetrate a column density n;A;/8 (see Spitzer 1962),
where A, is the thermal mean free path defined in § II.
The column density of the saturated zone in this case
is

Nsat

2
= R (3 (ot exp (20

X o @M, ©7)
which amounts to 0.61¢,'?nR at ¢, = 1. Comparing
this with n,A,/8, we find that our approximation breaks
down at o, & 100¢,~ 1. Even above this value of oy,
however, we expect that our results should remain
qualitatively correct until ultimately the range n,A;/8
approaches the cloud column density 77,R and the
theory breaks down completely; this occurs at
oo X 157, (nss.

2. Steady state.—As discussed in § ITI, the assump-
tion that the evaporation is a steady-state process is
justified if the evaporation time #,,, is much greater
than the time ¢4,y for the evaporating gas to flow from
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the cloud to a point at which = ~ 1. For ¢, § 10%¢,~*
we find

tﬂow X Rysz/ (Mscf) . (68)

This must be less than ..., given in equation (64),
which leads to the condition
i, /n, > 3(00 H)1,5(1 +M2)/(6 + M2) . (69)
For example, for ¢, = 1 this becomes 7i,/n; > 120,°-%.
3. Ion-electron equipartition—For simplicity we
have set T; = T, in our analysis. The ion temperature
is controlled by electron-ion collisions except in the
outer parts of the saturated zone, where ion-ion
collisions may dominate. Comparison of the electron-
ion heating rate with the term kvdT/dr shows that
T. ~ T; in most of the inner classical zone, but T;
rapidly drops below T, within the saturated zone. The
main effect of this is to enhance the efficiency of the
evaporation process since the electron temperature
remains higher than it would otherwise be. This may
be approximately included by multiplying ¢, by a
factor of 232 (see § I); as can be seen from equation
(60), this leads to a comparable increase in the evapora-
tion rate.

V. CONDUCTION FRONTS

McKee and Cowie (1975) have analyzed the
evaporation process in terms of a conduction front
advancing into the cooler gas. This analysis is based
on the one-dimensional equations of mass and mo-
mentum conservation; the energy conservation equa-
tion is not considered. Just as in the case of ionization
fronts (e.g., Spitzer 1968), the velocity of the front
Usona Telative to the gas ahead of the front must be less
than 4c.2/c; (D-type front; rarefaction) or greater than
2¢; (R-type front; compression). Furthermore, the
fronts can be characterized as “weak” or “strong”
depending on the magnitude of the density jump
across the front; in particular, a weak R-type front has
a small density jump and moves supersonically relative
to both the gas ahead of the front and the gas behind
the front. We have previously argued that plasma
instabilities prevent the occurrence of weak R-type
conduction fronts.

Here we have improved upon our previous treatment
by integrating the energy equation and including the
effects of spherical divergence. This allows a de-
termination of the velocity of the conduction front

Ucona = Ifl/4‘77R2Pc . (70)

For classical evaporation, equations (60) and (61) give
VUcona = 2°0¢s(pflpc)(cc2/ cf) . (71)
Since in this case o, 5 1 and in general p,/p, < 1, we

find veona < ¢.2/c;. Hence classical conduction fronts
are D-type, as suggested by McKee and Cowie (1975).
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For saturated evaporation, equations (62) and (65)
give

Voona = 265{00H exp [~ M*(4.3 + 0.8 M2)[HC+M:>

2
C
x yamon(£) ™)

which leads t0 weona = 1.1200%8¢.2/c; for ¢, = 1.
Since the coefficient of ¢2/c; is of order unity in
equation (72), we conclude that saturated conduction
fronts are approximately D-critical. The fact that both
the classical and the saturated conduction fronts are
D-type is a consequence of our assumption that the
cloud density is much greater than the ambient density
(see §§ 1116 and IVY). If the front were to be an R-type
front, a region of extremely high pressure would occur
near the cloud because the density as well as the tem-
perature increases behind such a front. This high-
pressure layer would rapidly expand and relax to the
pressure distribution appropriate for a D-type front.

Even if we drop the assumption that the hot gas has
a much lower density than the cold gas, the saturation
of the heat flux limits the nature of the front. For one-
dimensional R-type fronts with negligible radiative
losses, one can show that the velocity of the front
cannot greatly exceed 2c;:

Vcond 5¢32 + 0-8

2cf B ¢s + 2(¢32 + 0-12)1/2 '

For ¢; = 1, one finds v,ng = 1.86(2¢;). Hence, in a
uniform medium, weak R-type conduction fronts are
limited to relatively low velocities by the saturation of
the heat flux; by contrast, weak R-type ionization
fronts can propagate at up to the speed of light. For
¢s ~ 1 there is no limitation on strong R-type fronts.
If ¢, < 0.2, however, v.q is less than 2¢; and no
R-type front is possible.

Similar considerations apply to problems other than
evaporation: a particularly interesting example is the
case of a strong point explosion (e.g., a supernova
remnant). In the early stages of the evolution of such
a system, the temperature is too high for the classical
conduction formula to be applicable, and the conduc-
tion is saturated. Incorrect use of the classical con-
duction formula in this phase of the evolution then
results in a weak R-type front which propagates much
faster than the blast-wave shock (Chevalier 1975q).
When the saturated heat flux is used, the velocity of
conduction front is constrained to be close to that of
the blast-wave shock, and plasma instabilities will
probably make the front and the shock coincident. In
that case the volume of the heated gas is approximately
the same as in the normal blast-wave solution (e.g.,
Woltjer 1972).

(73)

VI. EVAPORATION OF CLOUDS WITHIN
SUPERNOVA REMNANTS

We have assumed in deriving the results of §§ ITT and
IV that the temperature distribution of the hot gas is
isotropic and that dynamical effects may be neglected.
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As such, the results are not directly applicable to
certain systems of interest, in particular the evapora-
tion of clouds which have been overtaken by a shock
wave. In this case, the cloud may no longer be in
pressure equilibrium with its surroundings, and con-
vective energy transfer and the presence of bow shocks
may result in temperature anisotropy and in per-
turbations of the temperature gradients.

McKee and Cowie (1975) have extensively discussed
the dynamical interaction of an initially stationary
cloud with a supernova blast wave, while Sgro (1975)
has given numerical simulations of this problem.
After the cloud has been engulfed by the blast wave, it
is penetrated by a shock wave driven by the ram and
thermal pressures of the surrounding material.
Initially a bow shock forms in the surrounding
material, which eventually disappears when the flow
of the surrounding material relative to the cloud
becomes subsonic. McKee and Cowie (1975) have
demonstrated that the time for a shock to cross the
cloud is short compared with the evaporation time
scale; on the other hand, the shock crossing time is
generally much greater than fg.,, the time for the
evaporating gas to flow across the conductive inter-
face. Hence, we may neglect the internal dynamics of
the cloud in evaluating the evaporation rate, and treat
the cloud as instantaneously stationary.

Similar arguments may also be applied to the
evaporation of a cloud or knot moving supersonically
in a stationary cool gas (Chevalier 1975b). In this case
the bow shock can be strong.

The flow of the hot ambient gas around the cloud
has several effects. First, it tends to bend the magnetic
field in the evaporating gas back around the cloud,
which reduces the evaporation rate. This effect is less
important if the evaporative flow velocity exceeds the
velocity of the flow past the cloud, but the magnitude
of the effect is difficult to estimate. Second, the flow
may lead to turbulent mixing of the cool cloud with
the hot gas, which both increases the effective surface
area for evaporation and tangles the magnetic field.

A third effect is that convective energy transport can
increase the temperature gradient and hence, in the
classical case, increase the evaporation rate. If the flow
velocity around the cloud is related to the local sound
speed by the equation v = 8¢ (8§ < 1), comparison of
convective (1.5pc?v) and conductive energy transfer
(«T|/L, where L is the temperature scale length)
indicates that convective energy transfer can maintain
the temperature at T ~ T, for radii y > 1 + (o,/8)*'2
(In deriving this result, we have assumed that the scale
lengths are small compared with the cloud radii,
00/8 « 1.) The resulting classical rate, based on
arguments similar to those of § III, is of order

(0o/)? < 1.
(74)

Mlglass.anis. = n:lcla.ss(o'ols)_ll2 ’

If, on the other hand & < oy, the usual classical
evaporation rate is applicable, and the relative flow
may be ignored. In terms of the general mass loss
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equation, (60), equation (74) corresponds to F(o,) =
2(008)"'? which decreases less rapidly with o, than the
isotropic rate F(o,) = 20,. The enhancement of the
evaporation rate over the isotropic value is limited to
a factor of about 5 since, as shown in Paper II,
radiative losses quench the evaporation for ¢, <
0.03¢;.

For the case of saturated evaporation, convective
energy transport has a small effect since the flow
behind the shock is subsonic, whereas the evaporative
flow occurs at about the sound speed. Because of the
evaporation the exact position of the bow shock is
uncertain. For a nonevaporating spherical cloud,
Ysnook = 1.2 in the highly supersonic case (e.g., Hayes
and Probstein 1963); for the more general case this
value is a lower bound. If the bow shock occurs close
to the cloud, the saturated evaporation from the front
of the cloud may be somewhat reduced, although in
the absence of a magnetic field it must always exceed
47 R%psc;, Where p, and ¢; are now average values of p
and ¢ just behind the bow shock. Note that this
minimum corresponds to setting ¢ .F = 1 in the ex-
pressions for m (eqs. [60] and [63]) and probably
provides a reasonable estimate for » in this case.

VII. SUMMARY

We have derived expressions for the rate of evapora-
tive mass loss in a hot medium under the assumption
that both radiative and magnetic effects can be
neglected. In terms of the saturation parameter o, (eq.
[32]), which is proportional to the ratio of the mean
free path to the cloud radius, the results split into two
cases. For oy < 1, the classical thermal conductivity is

COWIE AND McKEE

applicable and the mass loss rate m is given by
equation (21) in § III. The flow is generally subsonic in
this case and the pressure in the cloud is only some-
what greater than that in the ambient medium. For
oo > 1, the thermal conduction in the outer part of the
conductive interface saturates at a value 5¢,pc®, where
¢, is an unknown constant which theoretical and
observational arguments suggest is of order unity
(§ I). The mass loss rate is now given by equation
(63). The flow in the saturated zone occurs at a con-
stant Mach number, M,, which is related to ¢; by
equation (36) (see Fig. 3). For saturated evaporation,
the pressure in the cloud can significantly exceed that
in the ambient medium. Analysis of the limitations of
our theory in § IVf shows that it is accurate only for
o, < 100/¢,, although it should provide a reasonable
approximation at even higher values of o,.

Applications of these results will be deferred to
Paper II. There we shall demonstrate that radiative
losses can stop evaporation for o, < 0.03/¢,, so that
the domain of classical evaporation (0.03/¢, < d, < 1)
is comparable to the domain of saturated evaporation
which is accurately treated by our theory (1 < oo <
100/¢). In Paper III we shall show that under a wide
variety of conditions the presence of a magnetic field
in the evaporating gas does not significantly inhibit
the evaporation.
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