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ABSTRACT

Galaxy clusters possess turbulent magnetic fields with a dominant scale length lB ’ 1 10 kpc. In the static
magnetic field approximation, the thermal conductivity �T for heat transport over distances 3 lB in clusters is
’ �SlB/LS(�e), where �S is the Spitzer thermal conductivity for a nonmagnetized plasma, the length LS(r0) is a
characteristic distance that a pair of field lines separated by a distance r0 < lB at one location must be followed
before they separate by a distance lB, and �e is the electron gyroradius. We introduce an analytic Fokker-Planck
model and a numerical Monte Carlo model of field-line separation in strong magnetohydrodynamic (MHD)
turbulence to calculate LS(r0). We also determine LS(r0) using direct numerical simulations of MHD turbulence
with zero mean magnetic field. All three approaches, like earlier models, predict that LS asymptotes to a value of
order several lB as r0 is decreased toward ld in the large-lB/ld limit, where ld is the dissipation scale, which is taken
to be the proton gyroradius. When the turbulence parameters used in the Fokker-Planck and Monte Carlo models
are evaluated using direct numerical simulations, the Fokker-Planck model yields LSð�eÞ ’ 4:5lB and the Monte
Carlo model yields LSð�eÞ ’ 6:5lB in the large-lB/ld limit. Extrapolating from our direct numerical simulations to
the large-lB/ld limit, we find that LSð�eÞ ’ 5lB 10lB, implying that �T ’ 0:1�S 0:2�S in galaxy clusters in the
static field approximation. We also discuss the phenomenology of thermal conduction and particle diffusion in
the presence of time-varying turbulent magnetic fields. Under the questionable assumption that turbulent re-
sistivity completely reconnects field lines on the timescale lB/u, where u is the rms turbulent velocity, we find that
�T is enhanced by a moderate amount relative to the static field estimate for typical cluster conditions.

Subject headings: galaxies: clusters: general — intergalactic medium — MHD — plasmas — turbulence

1. INTRODUCTION

In the cooling flow (CF) model of intracluster plasma, ra-
diative cooling causes plasma to flow toward a cluster’s
center and cool to sub–X-ray temperatures, presumably ending
up as either stars, smaller compact objects, and/or cold gas.
Aside from the gravitational work done on inflowing plasma,
heating of intracluster plasma is neglected in the model, and
mass accretion rates Ṁ are as high as 103 M� yr�1 for some
clusters (Fabian 1994). A long-standing problem for the CF
model has been the difficulty in accounting for all the accreted
mass. For example, the observed rates of massive star formation
are a factor of 10–100 less than expected if the cooling plasma
predicted by the model ends up forming stars with a normal
initial mass function (IMF; Crawford et al. 1999; Fabian 2002).
In addition, recent X-ray observations find no evidence of
plasma cooling to temperatures below 1–2 keV (Peterson et al.
2001; Tamura et al. 2001). These difficulties suggest that some
form of heating approximately balances radiative cooling,
thereby dramatically reducing Ṁ relative to CF estimates. A
number of heating mechanisms have been considered, such
as galaxy motions (Bregman & David 1989), supernovae
(Bregman & David 1989), cosmic rays (Bohringer & Morfill
1988; Tucker & Rosner 1983), active galactic nuclei (Pedlar
et al. 1990; Tabor & Binney 1993; Binney & Tabor 1995;
Ciotti & Ostriker 2001; Churazov et al. 2002), dissipation of
turbulent energy (Loewenstein & Fabian 1990; Churazov et al.

2004; Chandran 2004), and thermal conduction, which can
transport heat from the hot outer regions of a cluster into the
relatively cooler core (Binney & Cowie 1981; Tribble 1989;
Tao 1995; Chandran & Cowley 1998; Narayan & Medvedev
2001; Gruzinov 2002; Voigt et al. 2002; Zakamska & Narayan
2003). For thermal conduction to approximately balance
cooling, the thermal conductivity �T must be a significant
fraction of the Spitzer value for a nonmagnetized plasma, �S,
and in some clusters even greater than �S (Fabian 2002;
Zakamska & Narayan 2003), where

�S ¼ 5:2� 1032
kBT

10 keV

� �5=2
10�3 cm�3

ne

� �
37

ln �

� �
cm2 s�1;

ð1Þ

T is the temperature, kB is Boltzmann’s constant, ne is the
electron density, and ln� is the Coulomb logarithm (Spitzer
1962).1

Galaxy clusters are filled with tangled magnetic fields with
a dominant length scale lB ’ 1 10 kpc (Kronberg 1994;
Taylor et al. 2001; Taylor, Fabian, & Allen 2002) that is
much less than the size of a cluster core, Rc ’ 100 kpc. Both

1 In terms of this definition, in which �S is expressed as a diffusion co-
efficient, the heat flux is given by �nekB�SHT.
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optical-line–emitting gas in clusters and hot intracluster
plasma are observed to be in turbulent motion (Fabian 1994;
Churazov et al. 2003). The effects of turbulent magnetic fields
and velocities on �T are the subject of this paper and have been
investigated by a number of authors (e.g., Tribble 1989; Tao
1995; Chandran & Cowley 1998; Chandran et al. 1999;
Narayan & Medvedev 2001; Malyshkin & Kulsrud 2001;
Gruzinov 2002).

Transport in the presence of strong turbulence is a difficult
and unsolved problem. It is likely that the thermal conduc-
tivity for a particle species scales like the test particle diffusion
coefficient for that particle species (Rechester & Rosenbluth
1978; Krommes, Oberman, & Kleva 1983): since the colli-
sional transfer of energy between particles occurs locally in
space, diffusion of heat accompanies the diffusion of heat-
carrying particles. We thus estimate �T in clusters from the
relation

�T
�S

’ D

D0

; ð2Þ

where D is the diffusion coefficient of thermal electrons and
D0 is the thermal electron diffusion coefficient in a non-
magnetized plasma.2,3,4

Since thermal electrons in clusters move much faster than
the E��� B velocity of field lines, a reasonable first approxi-
mation for D is obtained by treating the magnetic field as
static. In a collisional plasma, particle diffusion over distances
3lB in a static field depends critically on the rate of separation
of neighboring magnetic field lines (Rechester & Rosenbluth
1978; Chandran & Cowley 1998). If two field lines within a
snapshot of strong magnetohydrodynamic (MHD) turbulence
are at some location separated by a distance r0TlB, they will
separate by a distance lB after some distance z along the
magnetic field. The length LS(r0) is a characteristic value of z
defined in x 2. In the static magnetic field approximation, the
thermal conductivity �T in galaxy clusters over distances 3 lB
satisfies

�T ’ �SlB
LSð�eÞ

; ð3Þ

where �e is the electron gyroradius. Equation (3) makes use of
the fact that electron motion along the magnetic field is rela-
tively unimpeded by magnetic mirrors and whistler waves
excited by the heat flux because the Coulomb mean free path
is short compared to both lB and the temperature gradient
length scale (see x 3). The factor lB/LS(�e) in equation (3)
measures the reduction in �T associated with tangled field

lines, which increase the distance electrons must travel in
going from hotter regions to colder regions.

Three previous studies (Jokipii 1973; Skilling, McIvor, &
Holmes 1974; Narayan & Medvedev 2001) calculated LS(r0)
for strong turbulence assuming a power spectrum of magnetic
fluctuations on scales ranging from lB to a much smaller dis-
sipation scale ld, which is approximately the proton gyroradius
�i in galaxy clusters (Quataert 1998). Using different defi-
nitions of LS, each study found that LS(r0) is of order lB in the
small-r0/lB and small-ld/lB limits provided that r0 is not vastly
smaller than ld. Jokipii (1973) assumed an isotropic turbulent
magnetic field and employed a stochastic model of field-line
separation, which he solved using a Monte Carlo numerical
method. Skilling et al. (1974) assumed isotropic turbulence and
introduced an approximate equation of the form dhri=dz ¼
FðhriÞ for the average separation r of a pair of field lines,
with the function F estimated from the power spectrum of the
turbulence. Narayan & Medvedev (2001) introduced a similar
equation for the evolution of the mean square separation,
dhr2i=dl ¼ Gðhr2iÞ, and estimated G using the Goldreich &
Sridhar (1995) model of anisotropic MHD turbulence.

In this paper we calculate LS using three different methods.
First, we consider an approximate model in which the sepa-
ration r of a pair of field lines evolves stochastically and is
described by the Fokker-Planck equation

@P

@l
¼ � @

@y

h�yi
�l

� �
P

� �
þ @2

@y2

ð�yÞ2
D E

2�l

2
4

3
5P

8<
:

9=
;; ð4Þ

where y ¼ ln ðr=lBÞ, l is distance along the field in units of lB,
�y is the increment to y after a field-line pair is followed a
distance �l along the field, h: : :i is an average over a large
number of field-line pairs, and Pðy1; lÞ dy is the probability
that y is in the interval ðy1; y1 þ dyÞ after a distance l along
the field. Our model is similar to that of Jokipii (1973),
although we determine the functional form of h�yi=�l and
hð�yÞ2i=�l using the Goldreich-Sridhar model of locally
anisotropic MHD turbulence, and we solve the Fokker-Planck
equation analytically, which allows us to determine the func-
tional dependence of LS on turbulence parameters. If we
evaluate the turbulence parameters in the model using data
from direct numerical simulations, we find that LSðr0Þ ! 4:5lB
as r0 is decreased toward ld in the large-lB/ld limit and that
LSð�eÞ ’ LSðldÞ.

Our second method for calculating LS(r0) uses a numerical
Monte Carlo model of field-line separation in which each
random step �y is of order unity (the Fokker-Planck equation
assumes infinitesimal Markovian steps). When the model
parameters are evaluated using data from direct numerical
simulations, the Monte Carlo model gives LSð�eÞ ’ 6:5lB in
the large-lB/ld limit.

Our third method for calculating LS(r0) involves tracking
field-line trajectories in direct numerical simulations of
MHD turbulence with zero mean magnetic field. The results of
our highest resolution simulations are consistent with the
prediction of the theoretical studies that LS(r0) approaches a
value of order several lB as r0 is decreased toward ld
in the large-lB/ld limit. Extrapolating our numerical results
to the large-lB/ld limit suggests that LSð�eÞ ’ 5lB 10lB in
clusters.

Field evolution and turbulent fluid motions increase
electron (and ion) mobility, enhancing �T to some degree.

2 Electrons generally make the dominant contribution to �T because they
diffuse more rapidly than ions.

3 In a steady state, an electric field is set up to maintain quasi neutrality.
This electric field reduces �T by a factor of ’ 0.4 in a nonmagnetized plasma
(Spitzer 1962). We do not consider the effects of turbulence on this reduction
factor.

4 There is some ambiguity in the right-hand side of eq. (2). We take D and
D0 to be diffusion coefficients for particles of a specified energy as opposed to
diffusion coefficients of a particle that diffuses in energy as well as space.
Thus, D/D0 may scale differently for electrons of energies, e.g., kBT and 2kBT.
In the static field approximation this is not an issue since D/D0 is the same for
all energies of interest for cluster parameters. However, when we estimate the
effects of turbulent resistivity, we pick a representative energy at which to
evaluate D/D0 as discussed in x 6.
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Turbulent diffusion in clusters has been studied by Cho et al.
(2003). In this paper we develop a phenomenology to describe
the interplay between field evolution and single-electron
motion under the questionable assumption that turbulent
resistivity completely reconnects field lines on the timescale
lB/u, where u is the rms turbulent velocity. A similar as-
sumption was explored by Gruzinov (2002). We find three
limiting cases for the thermal conductivity. For typical cluster
parameters and turbulent velocities (Churazov et al. 2004)
�T � ð�SulBÞ1=2, a value that is somewhat larger than both the
turbulent diffusivity � ulB and the static field estimate of
�SlB=LS ’ 0:1�S 0:2�S. More work, however, is needed to
clarify the role of turbulent resistivity before firm conclusions
can be drawn about its effects on �T. Additional work is also
needed to quantify factors of order unity that have been
neglected in estimating �T both in the presence of efficient
turbulent resistivity and in the static field approximation.

The remainder of this paper is organized as follows. In x 2
we review the phenomenology of thermal conduction in static
tangled magnetic fields. In x 3 we discuss the effects of
magnetic mirrors and microturbulence on electron diffusion
along field lines. We present our Fokker-Planck and Monte
Carlo models of field-line separation in x 4. We compare these
approximate theoretical models with results from direct nu-
merical simulations in x 5. We estimate the effects of turbulent
resistivity on �T in x 6 and summarize our conclusions in x 7.
We present numerical simulations of field-line separation for

different types of MHD turbulence in a companion paper
(Maron, Chandran, & Blackman 2003). Table 1 defines some
frequently used notation.

2. THE PHENOMENOLOGY OF THERMAL
CONDUCTION IN A STATIC TANGLED

MAGNETIC FIELD

We assume that the magnetic fluctuations possess an inertial
range extending from an outer scale lB to a much smaller inner
scale ld with the magnetic energy dominated by scales ’ lB.
Except where specified, the discussion focuses on the case
relevant for clusters in which the mean magnetic field is
negligible.
A tangled magnetic field line is essentially a random walk

path through space. If a particle is tied to a single field line and
travels a distance l3 lB along the static magnetic field, it
takes �l/lB random walk steps of length �lB, resulting in a
mean square three-dimensional displacement of

hð�xÞ2i ¼ � lBl; ð5Þ

where � is a constant of order unity (values of � for the
numerical simulations used in this paper are listed in Table 2).
When there is a mean field B0 comparable to the rms field,
hð�xÞ2i in equation (5) is interpreted as the mean square

TABLE 1

Definitions

Notation Meaning

lB.......................................... Dominant length scale of the magnetic Beld
ld .......................................... Magnetic dissipation scale

hli ........................................ Average distance in units of lB that a Beld-line pair must be

followed before separating by a distance lB
hl2i....................................... Average square of the distance in units of l2B that a Beld-line

pair must be followed before separating by a distance lB
LS(r0) ................................... lBhl2i=hli—characteristic distance a pair of field lines sepa-

rated by a distance r0 must be followed before separating to lB
�e ......................................... Electron gyroradius

�T......................................... Thermal conductivity

�S......................................... Spitzer thermal conductivity in a nonmagnetized plasma

D.......................................... Three-dimensional single-electron diAusion coeDcient

D0 ........................................ Three-dimensional single-electron diAusion coeDcient in a

nonmagnetized plasma

Dk ........................................ DiAusion coeDcient for electron motion along the magnetic

Beld
k........................................... Thermal electron Coulomb mean free path

u........................................... rms turbulent velocity

TABLE 2

Simulation Parameters

Simulation Grid Points Bh ij j Hm lB/ld � Prm ¼ �=�

A1................... 2563 0 0.1 23 2.4 1

A2................... 5123 0 0.1 50 2.4 1

Note.— Bh ij j is the strength of the mean magnetic field, Hm is the magnetic helicity divided by
the maximum possible magnetic helicity at that level of magnetic energy, lB/ld is the ratio of outer
scale to inner scale, � is the single–field-line diffusion coefficient in eq. (5), and Prm ¼ �=� is the
magnetic Prandtl number, where � and � are the viscosity and resistivity, respectively.
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displacement perpendicular to B0. If the particle’s motion
along the field is diffusive with diffusion coefficient Dk, then

l �
ffiffiffiffiffiffiffi
Dkt

p
; ð6Þ

and (Rechester & Rosenbluth 1978; Krommes et al. 1983)

hð�xÞ2i / t1=2; ð7Þ

indicating subdiffusion: D � limt!1hð�xÞ2i=6t ! 0 (see
also Qin, Matthaeus, & Bieber 2002a, 2002b). This process is
called double diffusion: the particle diffuses along the field
line, and the field line itself is a random walk path through
space.

The vanishing of D for a particle tied to a single field line
can be understood by considering a particle starting out at
point P in Figure 1. If this particle moves one Coulomb mean
free path k along its field line F1 toward point Q and then
randomizes its velocity as a result of collisions, it has a �50%
chance of changing its direction of motion along the magnetic
field and returning to its initial point P. In contrast, in a
Markovian three-dimensional random walk, the second step is
uncorrelated from the first and there is a vanishing probability
that a particle will return to its initial location. In a cluster,
�e=lB ’ 10�15, and thus it is tempting to assume that electrons
are tied to field lines. The importance of equation (7) is that
any study that assumes that electrons are perfectly tied to field
lines will conclude that �T ¼ D ¼ 0.

Of course, an electron is not tied to a single field line. As
pointed out by Rechester & Rosenbluth (1978), small cross
field motions enhanced by the divergence of neighboring field
lines lead to a nonzero D. This can be seen with the aid of
Figure 1.

Suppose an electron starts out at point P on field line F1
traveling toward point Q. After moving a short distance, field
gradients and collisions cause the particle to take a step of
length ��e across the magnetic field, from F1 to a new field
line F2. Although the electron continuously drifts across the
field to new field lines, let us assume for the moment that it

remains attached to F2. As the electron follows F2, F2 diverges
from F1. Let z be the distance that F2 must be followed before
F2 separates from F1 by a distance lB. (Because the electron
continuously drifts across the field, it typically separates from
F1 after traveling a distance somewhat less than z along the
field; this effect, however, is ignored in this paper.) After the
electron moves a distance z along F2, its subsequent motion is
not correlated with F1. The electron proceeds to point R, and
then its collisional random walk along the magnetic field
changes direction, bringing it back toward point Q. Instead of
following F2 back to point Q, however, the electron drifts
across the field and ends up on a new field line F3. After
following F3 for a distance �z, the electron separates from F2
by a distance �lB and proceeds to point S.

In this example, the electron’s small cross field motions and
the divergence of neighboring field lines allow the electron to
escape from its initial field line and undergo a Markovian
random walk in three dimensions. The fundamental random
walk step is a displacement of length mz along the magnetic
field, where m is some constant of order unity, perhaps 2 or 3.
From equation (5), when mz3 lB, a single random step cor-
responds to a three-dimensional displacement of

ð�xÞ2 � �mzlB: ð8Þ

[When mz3 lB, the difference between the actual value of
(�x)2 and its mean becomes small.] When mz3k, where k is
the Coulomb mean free path, a single step takes a time

�t � m2z2

Dk
: ð9Þ

When mz is only moderately greater than lB or k, equations (8)
and (9) remain approximately valid. During successive ran-
dom steps, a particle will find itself in regions of differing
magnetic shear, and thus z will vary. The diffusion coefficient
is given by D ¼ hð�xÞ2i=6h�ti, where h: : :i is an average
over a large number of steps (Chandrasekhar 1943). Ignoring
factors of order unity, we obtain5

D �
DklB

LS
; ð10Þ

with

LS ¼
hz2i
hzi : ð11Þ

In general, LS, hzi, and hz2i are functions of the initial sepa-
ration of a field-line pair, r0, but for electron thermal con-
duction we have set r0 ¼ �e. If there is a mean magnetic field
comparable to the fluctuating field, equation (10) is recovered

Fig. 1.—Trajectory of a diffusing electron

5 In applying eq. (8) first and then averaging z and z2, we are averaging
separately over the wandering of a single field line through space and the
separation of neighboring field lines. This is justified to some extent since the
former is dominated by the value of B at the outer scale and the latter depends
on the magnetic shear throughout the inertial range. Although some error is
introduced by averaging separately, eqs. (10) and (11) are sufficient for
estimating �T.
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provided that D is replaced by D?, the coefficient of diffusion
perpendicular to the mean field. We note that taking LS ¼ hzi
leads to similar results since hzi � hz2i=hzi in our direct nu-
merical simulations and Fokker-Planck and Monte Carlo cal-
culations. In clusters Dk � D0 as discussed in x 3, where D0 is
the electron diffusion coefficient in a nonmagnetized plasma.
As a result, equations (2) and (11) give

�T ’ �SlB
LS

: ð12Þ

3. ELECTRON DIFFUSION ALONG THE
MAGNETIC FIELD

For monoenergetic electrons subject to a fixed Coulomb
pitch-angle scattering frequency, the diffusion coefficient Dk;0
for motion along a uniform magnetic field is equal to the
three-dimensional diffusion coefficient D0 for motion in a
nonmagnetized plasma. Two mechanisms for suppressing Dk
relative to Dk;0 have been discussed in the literature: magnetic
mirrors and wave pitch-angle scattering. Magnetic mirrors
associated with a cluster’s turbulent magnetic field signifi-
cantly reduce Dk only when kk lB, where k is the Coulomb
mean free path of thermal electrons (Chandran & Cowley
1998; Malyshkin & Kulsrud 2001). In cluster cores, however,
k is significantly less than lB; thus, mirrors have only a small
effect (for Hydra A and 3C 295, k � 1 kpc at 100 kpc from
cluster center, and k ¼ 0:02 0:05 kpc at 10 kpc from cluster
center; Narayan & Medvedev 2001). When the Knudsen
number NK � k=LT ;k approaches 1, where LT ;k ¼ T=jb̂ G HT j
and b̂ is a unit vector pointing along the magnetic field, the
heat flux becomes large and excites whistler waves that en-
hance the pitch-angle scattering of electrons and reduce Dk
(Pistinner & Eichler 1998).6 However, for heat conduction
into a cluster core, HTj j � T=Rc with Rc � 100 kpc, and
NKT1. Thus, wave pitch-angle scattering has only a small
effect, and

Dk � D0: ð13Þ

We note that the chaotic trajectories of field lines cause LT ;k to
be larger than T= HTj j.

4. FOKKER-PLANCK AND MONTE CARLO MODELS OF
FIELD-LINE SEPARATION IN STRONG

MHD TURBULENCE

We adopt the Goldreich & Sridhar (1995) model of strong
locally anisotropic MHD turbulence, which is supported by
direct numerical simulations (Cho & Vishniac 2000; Maron &
Goldreich 2001; Cho & Lazarian 2003). We assume that the
fluctuating field is equal to or greater than any mean field in
the system. The separation of neighboring magnetic field lines
in strong MHD turbulence is dominated by shear Alfvén
modes. On scales smaller than lB, an Alfvén-mode eddy is
elongated along the direction of the average of the magnetic
field within the volume of the eddy, denoted Blocal, with
(Goldreich & Sridhar 1995; Cho & Vishniac 2000; Maron &
Goldreich 2001; Lithwick & Goldreich 2001)

Bk? � Blocal

k?
lB

� �1=3

ð14Þ

and

kk � k2=3? l
1=3
B ; ð15Þ

where Bk? is the rms magnetic fluctuation of an Alfvén-mode
eddy of width k? measured across Blocal and length kk mea-
sured along Blocal. In fully ionized plasmas, the dissipation
scale ld for Alfvén modes is set by collisionless effects and is
comparable to the proton gyroradius �i (Quataert 1998). The
magnetic field perturbation of an Alfvén mode is perpendic-
ular to Blocal. Equations (14) and (15) thus imply that when
two field lines separated by a distance r are followed for a
distance r2=3l

1=3
B , r either increases or decreases by a factor of

order unity assuming ld < r < lB (Narayan & Medvedev
2001; Maron & Goldreich 2001; Lithwick & Goldreich 2001).
If r < ld , the separation or convergence of the field lines is
dominated by the eddies of width ld, and r increases or
decreases by a factor of order unity when the field lines are
followed a distance l

2=3
d l

1=3
B (Narayan & Medvedev 2001). We

define

�l ¼

r

lB

� �2=3

if ld < r < lB;

ld

lB

� �2=3

if r < ld;

ð16Þ

8>>><
>>>:

y ¼ ln
r

lB

� �
; ð17Þ

�y to be the change in y when the field lines are followed a
distance �l,

a ¼ h�yi; ð18Þ

with a taken to be positive, and

b ¼ hð�yÞ2i
2

; ð19Þ

where a and b are of order unity.
To obtain Monte Carlo and analytic solutions for LS, we

make several approximations. The changes in r over a distance
r2=3l

1=3
B along the field associated with eddies of width much

smaller or larger than r (or ld if r < ld) are small compared to
the changes arising from eddies of width r (or ld if r < ld) and
are neglected. We also take a and b to be independent of l and
y and consecutive values of �y to be uncorrelated. To obtain
an approximate analytic solution for LS, we make the further
approximation of describing the stochastic variation of y with
the Fokker-Planck equation

@P

@l
¼ � @

@y

h�yi
�l

� �
P

� �
þ @2

@y2
hð�yÞ2i
2�l

" #
P

( )
; ð20Þ

where Pðy0; lÞ dy is the probability that y is in the interval
ðy0; y0 þ dyÞ and l is distance along the magnetic field in units
of lB. The additional approximation in introducing equation
(20) is associated with y changing by order unity during a
single random step (eq. [20] assumes infinitesimal steps).

6 The formula in Pistinner & Eichler (1998) is �T=�S � 1=½1þ
250�eðk=LT ;kÞ�, but the factor of 250 should be corrected to a factor of 10
(S. Pistinner 2000, private communication).
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We now solve equation (20) to obtain an analytic solution
for LS. Substituting equations (16), (18), and (19) into
equation (20) yields

@P

@l
¼ � @�

@y
; ð21Þ

where

� ¼
ae�2y=3P � @

@y
be�2y=3P

� �
if yd < y < 0

ae�2yd=3P � be�2yd=3
@P

@y
if y < yd

ð22Þ

8>><
>>:

is the probability flux and

yd ¼ ln
d

lB

� �
; ð23Þ

which is the value of y at the dissipation scale. We solve
equation (21) with initial condition Pð yÞ ¼ �ð y� y0Þ at l ¼ 0
and boundary conditions P ¼ 0 at y ¼ 0, P ! 0 as y ! �1,
and P and � continuous at y ¼ yd . For electron thermal con-
duction in galaxy clusters, the quantity of interest is LS when
the initial separation r0 is the electron gyroradius, and thus we
take y0 < yd . The boundary condition P ¼ 0 at y ¼ 0 means
that �ðl; y ¼ 0Þ dl gives the probability that a field-line pair
separates to a distance lB for the first time after a distance
between l and l þ dl along the field.

We proceed by making the substitution

P ¼ xmf ; ð24Þ

with

x ¼ ey=3 ð25Þ

and

m ¼ 2þ 3a

2b
: ð26Þ

We then take the Laplace transform of equation (21), with the
Laplace transform of f defined by

f̄ ðsÞ ¼
Z 1

0

f ðlÞe�sl dl: ð27Þ

For xd < x < 1, where xd ¼ eyd=3 is the value of x at the dis-
sipation scale,

@2 f̄

@x2
þ 1

x

@ f̄

@x
� �2

x2
þ 9s

b

� �
f̄ ¼ 0; ð28Þ

with

� ¼ 3a

2b
: ð29Þ

Since f ð1Þ ¼ 0,

f̄ ¼ c1 I�ð xÞK�ð Þ � K�ð xÞI�ð Þ½ �; ð30Þ

where I� and K� are modified Bessel’s functions,

 ¼ 3

ffiffiffi
s

b

r
; ð31Þ

and c1 is a constant to be determined by applying the boundary
conditions at xd after the solution of f̄ for x < xd has been
obtained.

For x < xd,

@2 f̄

@x2
þ 5

x

@ f̄

@x
þ 4� �2 � �ð Þf̄

x2
¼ � 3x2dx

�m�1
0 � x� x0ð Þ

b
; ð32Þ

where

� ¼ 9x2ds

b
ð33Þ

and

x0 ¼ ey0=3: ð34Þ

For x < x0,

f̄ ¼ c2x
�2þ

ffiffiffiffiffiffiffiffi
�2þ�

p
þ c3x

�2�
ffiffiffiffiffiffiffiffi
�2þ�

p
: ð35Þ

For x0 < x < xd,

f̄ ¼ c4x
�2þ

ffiffiffiffiffiffiffiffi
�2þ�

p
þ c5x

�2�
ffiffiffiffiffiffiffiffi
�2þ�

p
: ð36Þ

For ReðsÞ � 0, the boundary condition at y ¼ �1 implies
that c3 ¼ 0. Integrating equation (32) from x0 � 	 to x0 þ 	
yields the jump condition for @ f̄ =@x at x ¼ x0. After applying
this jump condition and the continuity of f and � at x ¼ xd , we
find that

c1 ¼
3x

��þ
ffiffiffiffiffiffiffiffi
�2þ�

p
0 x

�
ffiffiffiffiffiffiffiffi
�2þ�

p
d

bðhT �  xdUÞ ; ð37Þ

where

T ¼ I�ð xdÞK�ð Þ � K�ð xdÞI�ð Þ ð38Þ

and

U ¼ I 0�ð xdÞK�ð Þ � K 0
�ð xdÞI�ð Þ: ð39Þ

Since I 0�ð ÞK�ð Þ � K 0
�ð ÞI�ð Þ ¼ 1= , we find that

�̄ðx ¼ 1Þ ¼ � bc1

3
: ð40Þ

Since

lnh i ¼
Z 1

0

dl ln�

����
x¼1

¼ @

@s

� �n

�̄

����
x¼1; s¼0

; ð41Þ

where n is a nonnegative integer, we have

hlni ¼ � b

3

@nc1
@sn

����
s¼0

: ð42Þ
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Thus,

hli ¼ 9

b

1

4ð� þ 1Þ þ
x2d
2�

ln
xd

x0

� �
� x2d

4�2
� � 1þ x2�d

� þ 1

� �� �
:

ð43Þ

For fixed positive a in the limit xd ! 0, equation (43) gives

hli ¼ 9

2ð2bþ 3aÞ : ð44Þ

The full equation for hl2i is very long and will not be quoted
here. However, for fixed positive a in the limit xd ! 0, we
find that

hl2i ¼ 81ð3aþ 6bÞ
4ð3aþ 2bÞ2ð3aþ 4bÞ

; ð45Þ

with LS=lB ¼ hl2i=hli given by

LS

lB
¼ 9ð3aþ 6bÞ

2ð3aþ 2bÞð3aþ 4bÞ : ð46Þ

From equation (43) hli diverges for fixed xd as a ! 0 (i.e.,
� ! 0).

We now check the analytic results with a Monte Carlo so-
lution of equation (20) with initial conditions Pðy; l ¼ 0Þ ¼
�ðy� y0Þ and with y0 ¼ �10 and yd ¼ �8. The Monte Carlo
solution consists of iteratively incrementing a pair of numbers
(l, y). During each step, we increase l by an amount �l ¼
e2y=3’ (or �l ¼ e2yd=3’ if y < yd) and increase y by an amount
�y ¼ a’ � k, where the � sign is determined randomly with
equal chance for either sign and ’ is a constant. As ’! 0,
each step becomes infinitesimal as is assumed in the Fokker-

Planck equation. The value of k is chosen so that hð�yÞ2i ¼
2b’ [i.e., k ¼ ð2b’� a2’2Þ1=2]. We stop incrementing l and
y once y reaches 0 and record the value of l at the final step.
We repeat this for 2000 ordered pairs to obtain hli and hl2i.
The results of this procedure with ’ ¼ 10�4 and a ¼ 0:3
for various values of b are shown in Figure 2, along with
the analytic results of equations (44) and (45). We also plot
Monte Carlo results with ’ ¼ 1, which provide a measure
of the error associated with using a Fokker-Planck equation
to describe the discrete stochastic process described by
equations (16), (18), and (19).
In Figure 3 we plot Monte Carlo calculations of hli as a

function of initial field-line separation r0 for b ¼ 0:17,
lB=ld ¼ 50, ’ ¼ 10�4, and two values of a: a ¼ 0:01 ( filled
triangles) and 0.29 (open triangles). The solid line is a plot of
equation (44) for a ¼ 0:01, and the dashed line is a plot of
equation (44) for a ¼ 0:29. The figure shows the increase in
hli as a ! 0 for fixed xd.

5. DIRECT NUMERICAL SIMULATIONS

In this section we study field-line separation in a static
magnetic field using data obtained from direct numerical
simulations of MHD turbulence. Galaxy clusters have very
small mean magnetic fields, little rotation and thus little
helicity, and very large magnetic Prandtl number Prm, where
Prm ¼ �=�, � is the viscosity,7 and � is the resistivity. Ideally,
we would like to generate cluster-like magnetic fields self-
consistently within a direct numerical simulation. However, at
present it is not clear how to do this. Numerical simulations of
turbulent dynamos in high-Prm plasmas driven by nonhelical
forcing find that amplified magnetic fields remain concen-
trated on very small (resistive) spatial scales (Maron, Cowley,
& McWilliams 2004). Yet the Faraday rotation produced by in-
tracluster plasmas indicates that clusters possess considerable

Fig. 3.—Monte Carlo calculations of hli with b ¼ 0:17, lB=ld ¼ 50,
’ ¼ 10�4, and two values of a: a ¼ 0:01 ( filled triangles) and 0.29 (open
triangles). The solid line is the analytic result (eq. [43]) with a ¼ 0:01, and the
dashed line is the analytic result with a ¼ 0:29.

Fig. 2.—Values of hli from eq. (44) (solid line) and hl2i from eq. (45)
(dashed line), values of hli (crosses) and hl2i (squares) from Monte Carlo
calculations with ’ ¼ 10�4, and values of hli (triangles) and hl2i (circles)
from Monte Carlo calculations with ’ ¼ 1. For all data in the plot, a ¼ 0:3.

7 For clusters with anisotropic plasma viscosity, � is taken to be the par-
allel viscosity.
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amounts of magnetic energy on large scales of order 1–10 kpc.
We are thus faced with several alternatives. We can choose a
numerical model that matches the helicity, mean magnetic
field, and magnetic Prandtl number conditions of clusters, in
which case the spatial scale of the model magnetic field is far
too small, or we can choose a numerical model that produces a
large-scale field by, for example, including a mean magnetic
field, using helical forcing, or choosing initial conditions that
ensure that the magnetic field remains large scale.8

In this paper we follow the latter course. We initialize a
simulation with a random-phase magnetic field containing
some amount of magnetic helicity, as well as random veloci-
ties with kinetic energies comparable to the magnetic energy.
We allow the system to decay, leaving behind a large-scale
magnetic field, which contains 10% of the maximum magnetic
helicity for that magnetic energy. We then force the system
nonhelically at wavenumbers between 2
/Lbox and 4
/Lbox,
where L3box is the volume of the simulation cube. The forcing
sustains a Kolmogorov-like spectrum of magnetic and kinetic
energy. The result is a turbulent magnetic field that is domi-
nated by large-scale fluctuations, has a Kolmogorov-like in-
ertial range extending to small scales, has zero mean, and has
relatively little magnetic helicity, which we take to be a rea-
sonable model for magnetic fields in clusters. We carry out a
first simulation (simulation A1) on 2563 grid points and then

use A1 as an initial condition for a higher resolution version
(simulation A2) on 5123 grid points with reduced resistivity
and viscosity. We use incompressible simulations, which are a
reasonable approximation for subsonic turbulence in clusters.
The simulations are three-dimensional and periodic, and the
pseudospectral numerical method is described by Maron &
Goldreich (2001). We use Newtonian viscosity and resistivity
with Prm ¼ 1, since simulating Prm 31 in our isotropic
viscosity simulations requires a large viscosity that damps
small-scale Alfvén waves; small-scale Alfvénic turbulence is
present in clusters as a result of anisotropic plasma viscosity
(Goldreich & Sridhar 1995; Quataert 1998) and plays an im-
portant role in field-line separation. In a companion paper
(Maron et al. 2003) we study field-line separation in numeri-
cal simulations of different types of MHD turbulence and dy-
namo-generated fields.

The simulation parameters for A1 and A2 are summarized
in Table 2. In Figure 4 we plot time averages of the magnetic
power spectrum Eb(k) [the total magnetic energy is

R
EbðkÞ dk],

the kinetic power spectrum EvðkÞ [the total kinetic energy isR
EvðkÞ dk], and the total energy spectrum EtotalðkÞ ¼ EvðkÞ þ

EbðkÞ in simulation A2. We set 
/lB equal to the maximum of
kEb(k), giving lB ¼ 0:25Lbox, and we set 
/ld equal to the
maximum of k3Eb(k).

We run each simulation until the power spectrum reaches a
statistical steady state before we start analyzing field lines.
For simulation A1, we take 17 snapshots of the magnetic
field separated in time by an interval 0.4lB/u, where u is the
rms turbulent velocity. To calculate LS and hli for an initial
field-line separation r0, we introduce into each snapshot of
the magnetic field 2000 pairs of field-line tracers whose
initial separation vector r0 is perpendicular to the local field.
We use linear interpolation to obtain the magnetic field be-
tween grid points, employ second-order Runge-Kutta to in-
tegrate field lines, and iteratively reduce the length step in
the field-line integrations to achieve convergence. For simu-
lation A2, we carry out the same procedure, but we use five

Fig. 4.—Power spectra in simulation A2. The dotted line shows the magnetic
power spectrum Eb(k), the dashed line shows the kinetic power spectrum EvðkÞ,
and the solid line shows the total energy spectrum Etotal ¼ EvðkÞ þ EbðkÞ.

Fig. 5.—Average distance in units of lB that a field-line pair must be followed
before separating by a distance lB, denoted hli, as a function of initial field-line
separation r0 for simulations A1 (small circles) and A2 (large circles).

8 Haugen, Brandenburg, & Dobler (2003) found that nonhelical dynamos
with Prm up to 30 result in a magnetic power spectrum Eb(k) proportional to
k�1. Such a spectrum is neither large-scale dominated nor small-scale domi-
nated, since each logarithmic interval of order unity in k-space contains the
same amount of energy. However, they suggest that when both the ordinary
Reynolds number Re and Prm are large, there is a k�5/3 spectrum at large scales
followed by a k�1 spectrum at smaller scales, with the magnetic energy
dominated by large-scale fluctuations. If this suggestion is correct, a very high
resolution nonhelical dynamo simulation with large Re and large Prm would be
a self-consistent way to generate a large-scale magnetic field in cluster-like
conditions. Such a simulation, however, would be beyond our current com-
putational resources.

THERMAL CONDUCTION AND PARTICLE TRANSPORT 177No. 1, 2004



snapshots of the magnetic field separated in time by an in-
terval 0.2lB/u, and we use 20,000 pairs of field-line tracers
per snapshot.

We first seek to test the qualitative prediction of the Fokker-
Planck model and previous theoretical treatments (Jokipii
1973; Skilling et al. 1974; Narayan & Medvedev 2001) that
hli and LS/lB asymptote to a constant of order a few as r0 is
decreased toward ld in the large-lB/ld limit. In Figure 5 we plot
hli for simulation A1 and simulation A2. The lower resolution
data of simulation A1 suggest the scaling hli / ln ðlB=r0Þ
for ld < r0 < 0:25lB, in contradiction to the theoretical treat-

ments. On the other hand, for simulation A2, the curve
through the data is concave downward for ld < r0 < lB.
Moreover, Figure 5 shows that the simulation A1 data, and
probably also the A2 data, have not converged to the high
Reynolds number values of hli for lB=16 < r0 < lB, values of
r0 that are within the inertial ranges (ld to lB) of both simu-
lations. In addition, the slope dhli=dðln ðlB=r0ÞÞ for both r0 <
ld and r0 < lB=10 decreases significantly when lB/ld is dou-
bled. A comparison of the data for A1 and A2 thus suggests
that in the large-lB/ld limit hli asymptotes to a value of order
several lB as r0 is decreased toward ld, as in the Fokker-Planck
model and previous studies. The same comments apply to the
data for LS, which are plotted in Figure 6.
Because the definition of lB is not unique, we recalculate

hli and LS, setting 2
/lB equal to the maximum of kEb(k), so
that lB is twice its former value. Note that this affects both
the unit for measuring distance along the field and also the
distance to which field lines must separate. We plot the results
in Figures 7 and 8, which are qualitatively similar to the results
based on our original definition of lB.
We note that for r0 ¼ lB, hli and LS are by definition 0. The

numerical simulation data points that appear to be plotted
above lB=r0 ¼ 1 actually correspond to r0 just slightly smaller
than lB, indicating that hli and LS are discontinuous at r0 ¼ lB
in the numerical simulations. The reason is that for r0 just
slightly less than lB, some fraction of the field-line pairs are
initially converging and must be followed a significant dis-
tance before they start to diverge.
We evaluate characteristic values of a and b, defined in

equations (18) and (19), in simulation A2 by calculating the
mean and mean square increments to y ¼ ln ðr=lBÞ for field-
line pairs initially separated by a distance lB/8 during a dis-
placement of lB/4 along the magnetic field, using our original
definition of lB [
/lB equal to maximum of kEb(k)]. We find
that a ¼ 0:29 and b ¼ 0:17. These values are used to obtain
the Fokker-Planck results plotted in Figure 9. The Monte
Carlo results in Figure 9 use the same values of a and b and
employ many small random steps (’ ¼ 10�4) and are thus
expected to reproduce the Fokker-Planck results. We also plot

Fig. 8.—Same as Fig. 6, except that lB is redefined to be twice as large

Fig. 7.—Same as Fig. 5, except that lB is redefined to be twice as large

Fig. 6.—Value of LS as a function of initial field-line separation r0 in
simulations A1 (small circles) and A2 (large circles).
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hli for a random-phase version of A2, which is obtained by
assigning each Fourier mode in simulation A2 a random phase
without changing the modes’ amplitudes. The figure shows
that hli is moderately larger in the direct numerical simulations
than in both the random-phase data and the Fokker-Planck
model. If we take a ¼ 0:29, b ¼ 0:17, ld ¼ �i ¼ 43�e, and
lB=ld 3 1, the Fokker-Planck model yields LSð�eÞ ’ LSðldÞ ’

4:5lB and the Monte Carlo model with order-unity random
increments to ln ðr=lBÞ (i.e., ’ ¼ 1) yields LSð�eÞ ’ LSðldÞ ’
6:5lB.

In Figure 10 we plot the probability distribution of the
distance in units of lB that a pair of field lines in simulation A2
with initial separation r0 ¼ ld must be followed before the
field lines separate by a distance lB. We define the function
PDF(l ) so that the probability that l lies in some interval is
proportional to the corresponding area under the plotted curve.

For clusters, lB=ld ’ lB=�i ’ 1013. In the large-lB/ld limit,
the numerical simulations and theoretical models indicate that
LS asymptotes to a value of order several lB as r0 is decreased
toward ld, and LS is not expected to increase appreciably as r0
is further decreased from ld ¼ �i to �e. Thus, LSð�eÞ ’ LSðldÞ.
To estimate LS(ld) in clusters, we note that LSðldÞ ’ 11lB in
simulation A1 and LSðldÞ ’ 10lB in simulation A2. When the
definition of lB is changed as in Figure 8, so that 2
/lB cor-
responds to the maximum of kEb(k), then LSðldÞ ’ 7lB in
simulation A1 and LSðldÞ ’ 6:5lB in simulation A2. As men-
tioned previously, it is not clear which definition of lB leads to
a more accurate prediction of �T. We conclude from the direct
numerical simulations that LSð�eÞ ’ LSðldÞ ’ 5lB 10lB in
the large-lB/ld limit.

6. THERMAL CONDUCTION IN TIME-VARYING
TURBULENT MAGNETIC FIELDS

In this section we develop a phenomenology of particle
diffusion in time-varying turbulent magnetic fields under the
questionable assumption that the magnetic field is completely
randomized and reconnected on the eddy turnover time � at
scale lB, � ¼ lB=u, where u is the rms velocity and the velocity
outer scale l0 is assumed equal to lB. A similar assumption was
explored by Gruzinov (2002). For simplicity, we assume that
the magnetic field randomization occurs instantaneously at
regular time intervals of duration � . We assume � 3 k=vte,
where vte is the electron thermal velocity and k is the Coulomb
mean free path, so that particle motion along the field over a
time interval � is diffusive. We assume that kTLS, so that
particle motion along the field over a distance LS is diffusive.
We also assume that vte 3u.

There are three limiting cases. First, if � 3L2S=Dk, a par-
ticle escapes its initial field line through parallel motion and
slow cross field diffusion before the field is randomized. The
‘‘fundamental random walk step’’ is of length LS along the
field, as in x 2, and takes a time L2S=Dk. There are nsteps ¼
�Dk=L

2
S such steps during each time interval � . The three-

dimensional distance traveled by an electron along the
magnetic field during one ‘‘fundamental random walk step’’
is � ðLSlBÞ1=2, and the three-dimensional distance traveled
during nsteps steps is � ðnstepsLSlBÞ1=2. On the other hand, a
fluid element travels a distance lB during a time � . Since
LS > lB and nsteps 31, the distance traveled by a single
electron during a time � is much greater than the distance
traveled by a fluid element, and the fluid motion can be
ignored. The electron diffusion coefficient is then the same as
in the static field case.

At the other extreme is the limit �Tl2B=Dk. Since lB < LS,
a particle escapes a field line through field-line randomization
before it escapes through parallel motion and slow cross
field diffusion, and the fundamental random walk step is of
duration � . The distance an electron travels along the field due
to parallel diffusion, ðDk�Þ1=2, is less than the distance lB that
a fluid element travels. The net displacement of an electron

Fig. 10.—Probability distribution of the distance (in units of lB) a field-line
pair in simulation A2 initially separated by a distance ld must be followed
before separating by a distance lB.

Fig. 9.—Average distance in units of lB that a field-line pair must be fol-
lowed before separating by a distance lB as a function of initial field-line
separation r0 for simulation A2 ( filled circles), the random-phase version of
A2 (open squares), Monte Carlo simulations with ’ ¼ 10�4 ( filled triangles),
and the analytic Fokker-Planck model (solid line). The Monte Carlo and
Fokker-Planck solutions use a ¼ 0:29, b ¼ 0:17, and lB=ld ¼ 50, values
corresponding to simulation A2.
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(or ion) during one fundamental random step, denoted �r, is
then given by

�r � lB: ð47Þ

Since the field is completely randomized after a time � ,
magnetic tension does not inhibit the wandering of fluid par-
cels over times 3� , as in Vainshtein & Rosner (1991) and
Cattaneo (1994). Successive random steps are thus uncorre-
lated, giving a diffusion coefficient �r2=� � l2B=� ¼ ulB, as in
hydrodynamical turbulent diffusion. In this limit, the parallel
diffusion of electrons plays no role.

The third and intermediate case is l2B=DkT�TL2S=Dk. In
this case, the field is again randomized before a particle can
escape its initial field line through parallel motion and slow
cross field diffusion, and the fundamental random walk step is
of duration � . During one such step, a particle moves an rms
distance �ðDk�Þ1=2 along the field, which corresponds to an
rms three-dimensional displacement

�r � lB
ffiffiffiffiffiffiffiffi
Dk�

p	 
1=2
: ð48Þ

The diffusion coefficient �r2/� is then

D �
ffiffiffiffiffiffiffiffiffiffiffiffi
DkulB

q
: ð49Þ

As an example, we consider the cluster A1795 at a dis-
tance of 100 kpc from cluster center, with an electron density
of 0.01 cm�3 and a temperature of 5 keV (Ettori et al. 2002).
We consider slightly superthermal electrons with Dk ¼ �S ¼
1031 cm2 s�1. Churazov et al. (2004) find evidence for tur-
bulent velocities of order one-half the sound speed in the hot
intracluster plasma of the Perseus Cluster, which we take to
be typical of A1795 as well, giving u ’ 350 km s�1. We also

assume lB ¼ 10 kpc at this distance from cluster center and
take LS ¼ 6lB. For these parameters, the plasma satisfies
l2B=Dk < � < L2S=Dk. Equations (2), (13), and (49) then give

�T �
ffiffiffiffiffiffiffiffiffiffiffi
�SulB

p
; ð50Þ

which is about 0.3�S, or 3ulB. This value is roughly twice the
estimate �SlB/LS, but given the uncertainties in both estimates
and the untested assumption that field lines are completely
randomized and reconnected on the timescale � , it is not clear
that turbulent resistivity in fact enhances the thermal con-
ductivity in clusters.

7. SUMMARY

In this paper we consider the effects of field-line tangling and
turbulent resistivity on the thermal conductivity �T in galaxy
clusters. In the static magnetic field approximation, tangled
field lines force electrons to move greater distances in traveling
from hotter regions to colder regions, reducing �T by a factor
of �5–10 relative to the Spitzer thermal conductivity �S of a
nonmagnetized gas for typical cluster parameters. It is possible
that turbulent resistivity enhances �T by a moderate amount
relative to the static field estimate for typical cluster conditions,
but further work is needed to investigate this possibility.
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