Data Flow II

DOM and LIVE

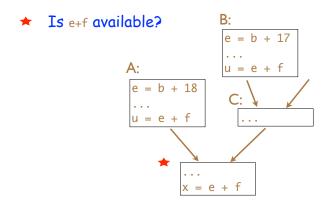
Chen Ding

Course page: http://www.cs.rochester.edu/drupal/u/cding/csc-255455advanced-programming-systems-spring-2014

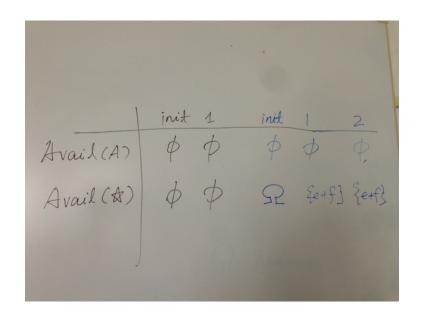
Data Flow Framework

- 1. Build control flow graph (single function)
- 2. Compute local information, e.g. ExprKill
- 3. Iterative solution
 - 1. initialize the MOP sets
 - 2. changed = true
 - 3. while changed
 - 1. changed = false
 - 2. for each block x, re-compute the MOP sets
 - 3. changed = true if any result differs

u = e + fv = a + b


- · How many choices for initial AVAIL(n)?
- · What are the implications for the resulting fixed point?

Review of Last Class


- · What is the purpose of data flow analysis?
 - · why is it called a framework?
- · What are the three steps?
- · What are the local sets computed for AVAIL?
- · What is the data flow equation for AVAIL?
- · Can you draw the two basic cases of control flow merge?
- · Define the following for avail analysis
 - expression e, program point pe is available/kill at point p

 - · Avail equation
 - · how many unknowns

14

AVAIL(*) =

Computing DOM

- Dominator
 - \cdot x dominates y iff every path from the root to y includes x
 - DOM(y) includes x
- Equation
 - DOM(y) =
- Initialization

19

LIVE Analysis

- · Local sets
 - UEVar(n): variables used in n before any re-definition in n
 - · VarKill(n): variables defined in n
- · MOP se
 - · Live(n): variables live at the end of block n
 - v is in Live(n) iff there is a path from the end of n to a user of v along which v is not redefined.
 - · used by a compiler to find un-initialized uses
- · Comparison with AVAIL
 - · live is a property of variables
 - · availability is a property of expressions
 - · live variables are used in some succeeding path
 - · available expressions are defined in all preceding paths

20

Local info for Live

- · Local sets
- UEVar(n): variables used in n before any re-definition in n
- · VarKill(n): variables defined in n

for $i \leftarrow 1$ to number of operations assume op_i is " $x \leftarrow y$ op z"

if $i \in Leader$ then $b \leftarrow block$ number for i $UEVAR(b) \leftarrow \emptyset$ $VARKILL(b) \leftarrow \emptyset$ if $y \notin VARKILL(b)$ then $UEVAR(b) \leftarrow UEVAR(b) \cup \{y\}$ if $z \notin VARKILL(b)$ then $UEVAR(b) \leftarrow UEVAR(b) \cup \{z\}$ $VARKILL(b) \leftarrow VARKILL(b) \cup \{x\}$ Gathering Initial Information

A: $\begin{bmatrix} a = b + c \\ d = a \end{bmatrix}$

source: EAC figure 8.8

Comparison

MOP set Avail(n)

Live(n)

info flow local sets

.

2 examples

equation

initialization

algorithm

22

Review Questions

- · What is data flow analysis?
- · What are the steps of data flow analysis?
- · Give the following for AVAIL analysis
 - · expression e, program point p
 - · e is available at program p
 - AVAIL equation
 - AVAIL algorithm (initialization)
- · Give the following for DOM and LIVE analysis
 - · local information sets
 - equations
 - initialization
- · Define forward and backward data flow analysis