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Examples

• Math
• natural numbers related 

by divisibility
• subsets related by 

inclusion
• functions
• nodes in a directed 

acyclic graph
• Others

• intervals, Cartesian 
squares

• ancestry relation among 
family members

26 http://en.wikipedia.org/wiki/Lattice_(order)

Lattice 
theories form 
a lattice

Lattice

• A semi-lattice
• ∧: idempotent, commutative, 

and associative
• a ∧ a = a
• a ∧ b = b ∧ a
• a ∧ (b ∧ c) = (a ∧ b) ∧ c

• a partially ordered set (poset) 
• every pair has a greatest lower 

bound and a lowest upper 
bound

• a ≥ b ⇔ a ∧ b = b
• a > b ⇔ a ≥ b and a ≠ b

• A power set forms a semi-lattice 
• under union or intersection

28

Properties of Partial Order

• Reflexive
• a ≤ a

• Antisymmetric
• if a ≤ b and b ≤ a then a = b 

• Transitive
• if a ≤ b and b ≤ c then a ≤ c

29 http://www.nkschools.org/15992081514623543/lib/
15992081514623543/Miracle_proof.jpg

Semi-lattice for Avail and Live
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• Remember the initialization for Avail and Live?
• Do you see any relation with the structure of the lattice?



Requirement
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• Monotonicity
(1) u ≤ v ⇒ f(u) ≤ f(v)
(2) f(u ∧ v) ≤ f(u) ∧ f(v)

• Avail
• f(x) = (x ∩ c1) ∪ c2

• Live
• f(x) = (x ∩ c1) ∪ c2

Monotonicity

 Are u ≤ v ⇒ f(u) ≤ f(v)  and f(u ∧ v) ≤ f(u) ∧ f(v) equivalent?
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Monotone Means Convergence

• Kam and Ullman, JACM 1976
•Proof: every step of the iterative algorithm, increment time 

by 1. At[n] is the result of block n at time t.
Initially, A0[n] = T and A0[n0] = ⊥
Induction to prove Am+1[n] ≤ Am[n]
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Distributive and Rapid Data Flow

• Distributive
• f(u ∧ v) = f(u) ∧ f(v) 
• unique fixed point

• Rapid
• f(g(⊥)) > g(⊥) ∧ f(x) ∧ x
• converge in d(G)+3 iterations
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Brouwer Fixed Point 
Theorem

• A continuous function from 
and to the same compact 
convex domain must have a 
fixed point

• Kakutani’s extension to set-
valued logic

• Used by Nash to prove the 
existence of Nash equilibrium

35

Luitzen Egbertus Jan Brouwer  
( 1 8 8 1 - 1 9 6 6 ) , a D u t c h 
mathematician and philosopher

Global Value Numbering 
using

Random Interpretation

Sumit Gulwani          George C. Necula
CS Department

University of California, Berkeley

The 31st Annual

 ACM SIGPLAN - SIGACT

 Symposium

on 
Principles of Programming Languages

Venice, Italy

January 14-16, 2004

 Home

Conference Hotels

Registration

Advance Program

Call For Papers
(past due)

Conference
Organizers

Affiliated Events

Conference Venue

Getting to Venice

 

Welcome to POPL 2004

POPL is the ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages.

POPL 2004 PICTURES from the Banquet

POPL 2004 Critical Information

Scope of the Conference Conference Organizers & Program
Committee

Advance Program Affiliated Events
Conference Hotels Conference Location
Conference Registration (online reg.
closed)  

Scope of the Conference

The annual Symposium on Principles of Programming Languages is a forum for the
discussion of fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages,
programming systems, and programming abstractions. Both practical and theoretical
papers on principles and innovations are welcome, ranging from formal frameworks to
reports on experiences with their use.

Submissions on a diversity of topics are sought, particularly ones that identify new
research directions. POPL 2004 is not limited to topics discussed in previous symposia or
to formal approaches. In particular, papers integrating new principles into widely used
systems are encouraged. Authors concerned about the appropriateness of a topic may
communicate by electronic mail with the program chair prior to submission. The official
call for papers is available here (the deadline has passed).



37

Global Value Numbering

• Problem
– To detect equivalences of expressions in a program
– To obtain a complete algorithm under the assumptions: 

• Conditionals are non-deterministic
• Operators are uninterpreted

– F(e1,e2) = F’(e1’,e2’) , F=F’, e1=e1’, e2=e2’

• Existing algorithms
– Precise but expensive
– Efficient but imprecise

• Use randomization to obtain a precise, efficient but 
probabistically sound algorithm 38

assert(x = y); 

assert(z = F(y)); 

Example 

* x = φ(a,b)

y = φ(a,b)

z = φ(F(a),F(b))

F(y) = F(φ(a,b))

• Typical algorithms treat φ as uninterpreted
– Hence cannot verify the second assertion

• The randomized algorithm interprets φ
– Similar to the randomized algorithm for linear arithmetic

x := a; y := a;

z := F(a); 

x := b; y := b;

z := F(b); 
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Review: Randomized Algorithm for Linear Arithmetic

a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

c := 2a + b; 
d := b – 2;

T

T F

F

•Between random testing and 
abstract interpretation

•Choose random values for 
input variables 

•Execute both branches

•Combine the values of a 
variable at join points using a 
random affine combination 
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Review: The Affine Join Operation

• Affine combination of v1 and v2 w.r.t. weight w
                 φw(v1,v2) ´ w v1 + (1-w) v2

a := 2; b := 3; a := 4; b := 1;

a = φ7(2,4) = -10
b = φ7(3,1) = 15

(w = 7)
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a := 0; b := 1; a := 1; b := 0;

c := b – a;  
d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5

a = -4, b = 5
c = -39, d = 39 

c := 2a + b; 
d := b – 2;

a = 1, b = 0a = 0, b = 1

a = -4, b = 5
c = -3, d = 3

a = -4, b = 5 
c = 9, d = -9

T

T F

F

w1 = 5

w2 = -3

Review: Example

• Choose a random weight 
for each join independently.

• All choices of random 
weights verify the first 
assertion

• Almost all choices 
contradict the second 
assertion
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Uninterpreted Functions

e := y | F(e1,e2)

• Choose a random interpretation for F

• Non-linear interpretation
– E.g. F(e1,e2) = r1e1

2 + r2e2
2

– Preserves all equivalences in straight-line code
– But not across join points

• Lets try linear interpretation
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The Random Interpreter R

  y := e
V1

V

*
True False

V

V1 V2

V1 V2

V

V1 = V[y Ã V(e)] V1 = V

V2 = V

V: Variables ! Vectors

V(e): defined inductively as V(F(e1,e2)) = R1V(e1) + R2V(e2)

Vj(e): the jth component of vector V(e)

 Vj(y) = φw(V1 (y),V2(y))

for all y,j

jj
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Outline

• Two key ideas in the algorithm
– The affine join operation
– K-linear interpretations

• Correctness of the algorithm
• Termination of the algorithm
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 Completeness and soundness of R

• We compare the random interpreter R with a 
suitable abstract interpreter A

• R mimics A with high probability

– R is as complete as A 

– R is (probabilistically) as sound as A
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Completeness Theorem

• If S ) e1 = e2, then V(e1) = V(e2)

• Proof:
– Uninterpreted operators are modeled as linear 

functions
– The affine join operation preserves linear 

relationships
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Soundness Theorem

• If S ) e1 = e2, then with high probability V(e1) ≠ V(e2)

• Error probability ·  
– n: number of function applications
– d: size of set from which random values are chosen
–t : number of repetitions

• If n = 100, d ¼ 232, t = 5, then 
    error probability ·
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Outline

• Two key ideas in the algorithm
– The affine join operation
– K-linear interpretations

• Correctness of the algorithm
• Termination of the algorithm
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Loops and Fixed Point Computation

• The lattice of sets of equivalences has finite height 
n. Thus, the abstract interpreter A converges to a 
fixed point.

• Thus, the random interpreter R also converges 
(probabilistically)

• We can detect convergence by comparing the set 
of symbolic relationships implied by vectors in two 
successive iterations
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Related Work

• Efficient but imprecise algorithms
– Congruence partitioning [Rosen, Wegman, Zadeck, POPL 88]
– Rewrite rules [Ruthing, Knoop, Steffen, SAS 99]
-  Balanced algorithms [Gargi PLDI 2002]

• Precise but inefficient algorithms
– Abstract interpretation on uninterpreted functions [Kildall 73]

• Affine join operation
– Random interpretation for linear arithmetic [Gulwani, Necula POPL 

03]
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Conclusion and Future Work

• Key ideas in the paper
 φ(e1,e2) = w e1 + (1-w) e2

– Linearity , Preserves equivalences across a join point
• F(e1,e2) = R1 e1 + R2 e2

– Vectors ) Introduce no false equivalence

• Random interpretation vs. deterministic algorithms 
– Linear arithmetic

• O(n2) vs. O(n4) [POPL 2003]
– Uninterpreted functions

• O(n3) vs. O(n5 log n)  [this talk]

• Future work
– Inter-procedural analysis using random interpretation


