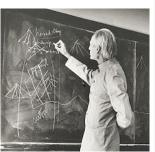
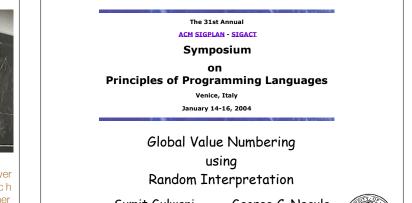


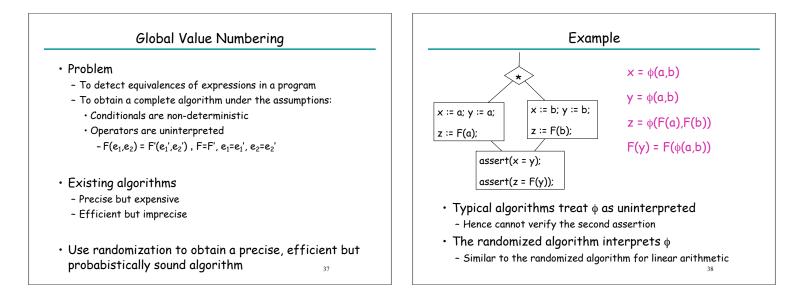
- A continuous function from and to the same compact convex domain must have a fixed point
- Kakutani's extension to setvalued logic
- Used by Nash to prove the existence of Nash equilibrium

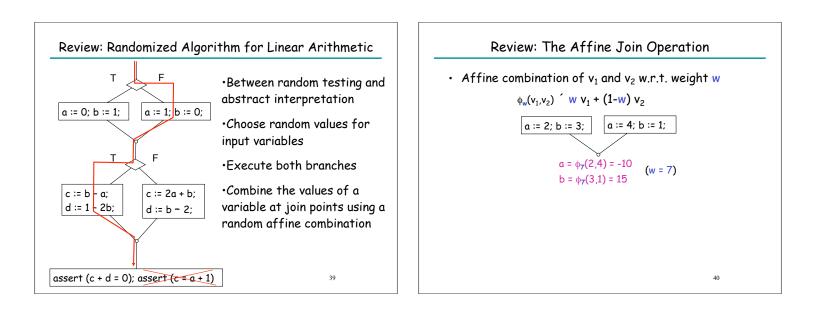


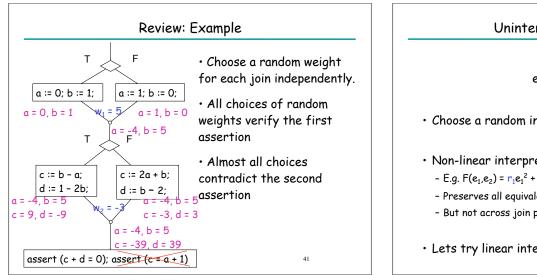
Luitzen Egbertus Jan Brouwer (1881-1966), a Dutch mathematician and philosopher

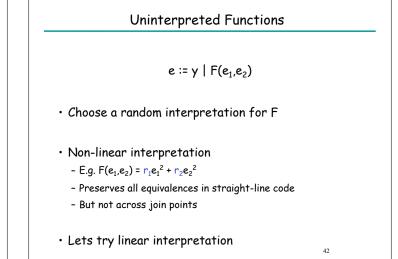


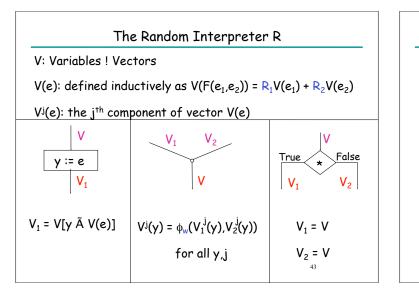
Sumit Gulwani George C. Necula CS Department University of California, Berkeley

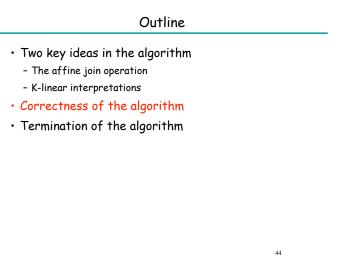


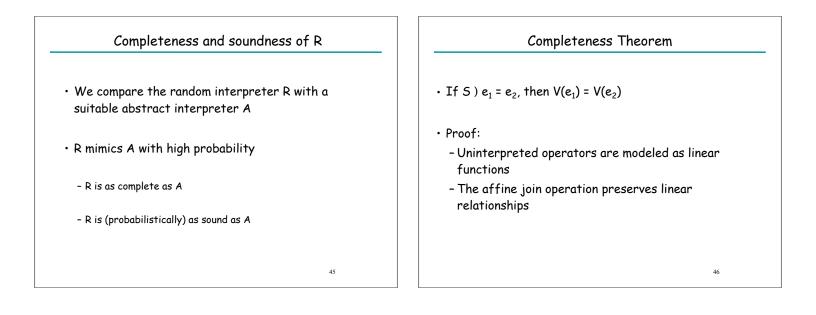


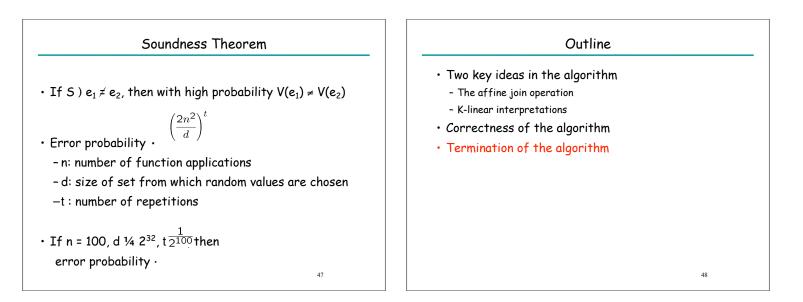












Loops and Fixed Point Computation

- The lattice of sets of equivalences has finite height n. Thus, the abstract interpreter A converges to a fixed point.
- Thus, the random interpreter R also converges (probabilistically)
- We can detect convergence by comparing the set of symbolic relationships implied by vectors in two successive iterations

49

Related Work

• Efficient but imprecise algorithms

- Congruence partitioning [Rosen, Wegman, Zadeck, POPL 88]
- Rewrite rules [Ruthing, Knoop, Steffen, SAS 99]
- Balanced algorithms [Gargi PLDI 2002]
- Precise but inefficient algorithms
 - Abstract interpretation on uninterpreted functions [Kildall 73]

• Affine join operation

Random interpretation for linear arithmetic [Gulwani, Necula POPL 03]

50

Conclusion and Future Work

- Key ideas in the paper
 - $\phi(e_1, e_2) = w e_1 + (1-w) e_2$
 - Linearity , Preserves equivalences across a join point
 - $F(e_1,e_2) = R_1 e_1 + R_2 e_2$
 - Vectors) Introduce no false equivalence
- Random interpretation vs. deterministic algorithms
 - Linear arithmetic
 - O(n²) vs. O(n⁴) [POPL 2003]
 - Uninterpreted functions
 - O(n³) vs. O(n⁵ log n) [this talk]
- Future work
 - Inter-procedural analysis using random interpretation 51