Garbage Collection
A Fixed Point Problem

Brian Gernhardt - 2014-02-16

A Unified Theory of Garbage Collection

David F. Bacon

dfb@watson.ibm.com

Perry Cheng

perryche@us.ibm.com

V.T. Rajan

vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

ABSTRACT

Tracing and reference counting are uniformly viewed as being fun-

damentally different approaches to garbage collection that possess

very distinct performance properties. We have implemented high-

performance collectors of both types, and in the process observed

that the more we optimized them, the more similarly they behaved
that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-

1. INTRODUCTION

By 1960, the two fundamental approaches to storage reclama-
tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8. 14, 26, 30. 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

A Unified Theory of Garbage Collection
Bacon, Cheng, and Rajan, OOPSLA 2004

Object Graph

V - Vertices, Objects
E - Edges, Pointers
R - Roots, Globals

p - Reference Count

p = Reference Count ‘ ‘

p(z) = |z :z € R]| + |[(w,z) : (w,z) € E A p(w) > 0]

Live:p>0
Dead: p=0

roots + # links from
live objects

Cycles

What are the counts
for the cycle here?

Reference Counting ‘_,‘

Create a pointer:

Increment count .

Remove pointer: . ’

Decrement count \‘

Circular List Example

¢
¢

Increment count as
we add each node to
the list.

Circular List Example

Increment count when
we create cycle

}

Circular List Example

Decrement count
when we are done
with list

}

Tracing

Set all counts to 0
Add roots to list
For each object on
list:
Increment count
add connected
objects to list

Comparison

Reference Counting

e [ast
e Immediate Update
e Cycle Problems

Greatest Fixed-Point

Tracing

e Simple
e Accurate
o Slow

Least Fixed-Point

