O decreases linearly as it approaches the fixed point; therefore Q(r) is increasing
and concave down, as shown in Figure 2.2.5. m

Q
EXAMPLE 2.2.3:

Sketch the phase portrait corre-
sponding to x =x—cosx, and deter-
mine the stability of all the fixed points.

Solution: One approach would be to
plot the function f(x)=x-cosx and
I then sketch the associated vector field.
Figure 2.2.5 This method is valid, but it requires you
to figure out what the graph of

Y —— — — — — — — — —

x —cos x looks like.

There’s an easier solution, which exploits the fact that we know how to graph
y=x and y=cosx separately. We plot both graphs on the same axes and then
observe that they intersect in exactly one point (Figure 2.2.6).

y==x

N D :
\_/ |\/

!

Figure 2.2.6

This intersection corresponds to a fixed point, since x* =cosx* and therefore
f(x*)=0. Moreover, when the line lies above the cosine curve, we have x > cosx
and so x > O: the flow is to the right. Similarly, the flow is to the left where the line is
below the cosine curve. Hence x * is the only fixed point, and it is unstable. Note that
we can classify the stability of x *, even though we don’t have a formula for x * it-
self! m

2.3 Population Growth

The simplest model for the growth of a population of organisms is N =rN,
where N(r) is the population at time ¢, and r > 0 is the growth rate. This model
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Growth rate ' predicts exponential growth:
N(tr)= Nye", where N, is the
4 population at £ =0.

Of course such exponential
growth cannot go on forever.
To model the effects of over-
K N crowding and limited resources,

population biologists and de-

mographers often assume that

~ the per capita growth rate N, / N

decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For

small N, the growth rate equals r, just as before. However, for populations larger

than a certain carrying capacity

Growth rate K, the growth rate actually be-

comes negative; the death rate is
higher than the birth rate.

A mathematically convenient
way to incorporate these ideas is
to assume that the per capita

I\N growth rate N/N decreases lin-
early with N (Figure 2.3.2).
This leads to the logistic equation

Ner(l—ﬁ)
K

Figure 2.3.1

r

Figure 2.3.2

first suggested to describe the growth of human populations by Verhulst in 1838.
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a
graphical approach. We plot N versus N to see what the vector field looks like.
Note that we plot only N = 0, since it makes no sense to think about a negative pop-
ulation (Figure 2.3.3). Fixed points occur at N* =0 and N* = K, as found by set-
ting N =0 and solving for N. By looking at the flow in Figure 2.3.3, we see that
N*=0 is an unstable fixed point and N* = K is a stable fixed point. In biological
terms, N =0 is an unstable equilibrium: a small population will grow exponen-
tially fast and run away from N = 0. On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(¢) - K as t — o
In fact, Figure 2.3.3 shows that if we start a phase point at any N, > 0, it will al-
ways flow toward N = K. Hence the population always approaches the carrying
capacity.
~ The only exception is if N, = 0; then there’s nobody around to start reproducing,
and so N =0 for all time. (The model does not allow for spontaneous generation!)
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K/2 K

Figure 2.3.3

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions. For
example, if N, < K/2, the phase point moves faster and faster until it crosses
N = K/2 , where the parabola in Figure 2.3.3 reaches its maximum. Then the phase
point slows down and eventually creeps toward N = K. In biological terms, this
means that the population initially grows in an accelerating fashion, and the graph
of N(t) is concave up. But after N = K/2, the derivative N begins to decrease,
and so N(¢) is concave down as it asymptotes to the horizontal line N = K (Figure
2.3.4). Thus the graph of N(t) is S-shaped or sigmoid for N, < K/2.

N

_

K/2 -

Figure 2.3.4

Something qualitatively different occurs if the initial condition N, lies between
K/2 and K; now the solutions are decelerating from the start. Hence these solu-
tions are concave down for all 7. If the population initially exceeds the carrying ca-
pacity (N, > K), then N(¢) decreases toward N = K and is concave up. Finally, if
N, =0 or N, = K, then the population stays constant.

Critique of the Logistic Model
Before leaving this example, we should make a few comments about the biological
validity of the logistic equation. The algebraic form of the model is not to be taken lit-
erally. The model should really be regarded as a metaphor for populations that have a
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tendency to grow from zero population up to some carrying capacity K.

Originally a much stricter interpretation was proposed, and the model was ar-
gued to be a universal law of growth (Pearl 1927). The logistic equation was tested
in laboratory experiments in which colonies of bacteria, yeast, or other simple or-
ganisms were grown in conditions of constant climate, food supply, and absence of
predators. For a good review of this literature, see Krebs (1972, pp. 190-200).
These experiments often yielded sigmoid growth curves, in some cases with an im-
pressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour beetles,
and other organisms that have complex life cycles, involving eggs, larvae, pupae,
and adults. In these organisms, the predicted asymptotic approach to a steady car-
rying capacity was never observed—instead the populations exhibited large, per-
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a
discussion of the possible causes of these fluctuations, including age structure and
time-delayed effects of overcrowding in the population.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein—Keshet (1988) and Murray (1989) are excellent textbooks on mathemat-
ical biology in general.

2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let 77(f) = x(¢)— x * be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 1. Differentiation yields

N=4&x-x9=1x

since x * is constant. Thus 17=x = f(x) = f(x *+ n). Now using Taylor’s expan-
sion we obtain

F*+m= f*)+nf(x%)+0m),

where O(n°) denotes quadratically small terms in 77 . Finally, note that f(x*)=0
since x * is a fixed point. Hence

n=nf'(x*+00).

Now if f’(x*)# 0, the O(17°) terms are negligible and we may write the approxi-
mation
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