Hyperbolic Fixed Points, Topological Equivalence, and
Structural Stability

If Re(A)# 0 for both eigenvalues, the fixed point is often called hyperbolic.
(This is an unfortunate name—it sounds like it should mean “saddle point”—but it
has become standard.) Hyperbolic fixed points are sturdy; their stability type is un-
affected by small nonlinear terms. Nonhyperbolic fixed points are the fragile ones.

We’ve already seen a simple instance of hyperbolicity in the context of vector
fields on the line. In Section 2.4 we saw that the stability of a fixed point was accu-
rately predicted by the linearization, as long as f’(x*)= 0. This condition is the
exact analog of Re(4) #0.

These ideas also generalize neatly to higher-order systems. A fixed point of an
nth-order system is hAyperbolic if all the eigenvalues of the linearization lie off the
imaginary axis, i.e., Re(4,)#0 for i=1, ..., n. The important Hartman—
Grobman theorem states that the local phase portrait near a hyperbolic fixed point
is “topologically equivalent” to the phase portrait of the linearization; in particular,
the stability type of the fixed point is faithfully captured by the linearization. Here
topologically equivalent means that there is a homeomorphism (a continuous de-
formation with a continuous inverse) that maps one local phase portrait onto the
other, such that trajectories map onto trajectories and the sense of time (the direc-
tion of the arrows) is preserved.

Intuitively, two phase portraits are topologically equivalent if -one is a distorted
version of the other. Bending and warping are allowed, but not ripping, so closed or-
bits must remain closed, trajectories connecting saddle points must not be broken, etc.

Hyperbolic fixed points also illustrate the important general notion of structural
stability. A phase portrait is structurally stable if its topology cannot be changed
by an arbitrarily small perturbation to the vector field. For instance, the phase por-
trait of a saddle point is structurally stable, but that of a center is not: an arbitrarily
small amount of damping converts the center to a spiral.

6.4 Rabbits versus Sheep

In the next few sections we’ll consider some simple examples of phase plane
analysis. We begin with the classic Lotka—Volterra model of competition between
two species, here imagined to be rabbits and sheep. Suppose that both species are
competing for the same food supply (grass) and the amount available is limited.
Furthermore, ignore all other complications, like predators, seasonal effects, and
other sources of food. Then there are two main effects we should consider:

1. Each species would grow to its carrying capacity in the absence of the
other. This can be modeled by assuming logistic growth for each
species (recall Section 2.3). Rabbits have a legendary ability to repro-
duce, so perhaps we should assign them a higher intrinsic growth rate.
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2. When rabbits and sheep encounter each other, trouble starts. Some-
times the rabbit gets to eat, but more usually the sheep nudges the
rabbit aside and starts nibbling (on the grass, that is). We’ll assume
that these conflicts occur at a rate proportional to the size of each
population. (If there were twice as many sheep, the odds of a rabbit
encountering a sheep would be twice as great.) Furthermore, we as-
sume that the conflicts reduce the growth rate for each species, but
the effect is more severe for the rabbits.

A specific model that incorporates these assumptions is

x=x3-

y=y(2-

where

x—2y)
X=y)

x(t) = population of rabbits,
y(¢) = population of sheep

and x,y = 0. The coefficients have been chosen to reflect this scenario, but are oth-_
erwise arbitrary. In the exercises, you’ll be asked to study what happens if the co-
efficients are changed.

To find the fixed points for the system, we solve x=0 and y=0 simultane-
ously. Four fixed points are obtained: (0,0), (0,2), (3,0), and (1,1). To classify
them, we compute the Jacobian:
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Now consider the four fixed points in turn:

30
(0,0): Then A= .
0 2

The eigenvalues are A =3, 2 so (0,0) is an unstable node. Trajectories leave

Figure 6.4.1

the origin parallel to the eigenvector for A =2, i.e. tangential to
v =(0,1), which spans the y-axis. (Recall the general rule: at a
node, trajectories are tangential to the slow eigendirection,
which is the eigendirection with the smallest |4|.) Thus, the
phase portrait near (0,0) looks like Figure 6.4.1.

-1 0
(0,2): Then A= ..
-2 -2

This matrix has eigenvalues A =—1,—2, as can be seen from inspection, since
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the matrix is triangular. Hence the fixed point is a stable node. Trajectories ap-
proach along the eigendirection associated with A = -1 ; you can check that this di-
rection is spanned by v =(1,—2). Figure 6.4.2 shows the phase portrait near the
fixed point (0,2).
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X

Figure 6.4.2

-3
(3,0): Then A :[0

1) and A =-3,-1.

This is also a stable node. The trajectories approach along the slow eigendirec-

tion spanned by v =(3,-1), as shown in Figure 6.4.3.

=Y

Figure 6.4.3

-1 2
1], which has 7=-2, A=—1, and A=-1£+2.

(1L1): Then A=(

Hence this is a saddle point. As you can check, the phase portrait near (1,1) is as
shown in Figure 6.4.4.

>

Figure 6.4.4

Combining Figures 6.4.1-6.4.4, we get Figure 6.4.5, which already conveys a
good sense of the entire phase portrait. Furthermore, notice that the x and y axes
contain straight-line trajectories, since x =0 when x=0, and y =0 when y=0.
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Figure 6.4.5

Now we use common sense to fill in the rest of the phase portrait (Figure 6.4.6).
For example, some of the trajectories starting near the origin must go to the stable
node on the x-axis, while others must go to the stable node on the y-axis. In be-
tween, there must be a special trajectory that can’t decide which way to turn, and
so it dives into the saddle point. This trajectory is part of the stable manifold of the
saddle, drawn with a heavy line in Figure 6.4.6.

Figure 6.4.6

The other branch of the stable manif61d consists of a trajectory coming in “from in-
finity.” A computer-generated phase portrait (Figure 6.4.7) confirms our sketch.
The phase portrait has an inter-

sheep esting biological interpretation. It
shows that one species generally
2 drives the other to extinction. Tra-

jectories starting below the stable
manifold lead to eventual extinc-

L tion of the sheep, while those start-

ing above lead to eventual

—— . extinction of the rabbits. This di-

1 2 3 @abbits  ¢hotomy occurs in other models of

Figure 6.4.7 competition and has led biologists

to formulate the principle of com-
petitive exclusion, which states that two species competing for the same limited re-
source typically cannot coexist. See Pianka (1981) for a biological discussion, and
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Pielou (1969), Edelstein—Keshet (1988), or Murray (1989) for additional refer-
ences and analysis.

Our example also illustrates some general mathematical concepts. Given an at-
tracting fixed point x *, we define its basin of attraction to be the set of initial con-
ditions x, such that x(#) — x* as t — oo . For instance, the basin of attraction for
the node at (3,0) consists of all the points lying below the stable manifold of the
saddle. This basin is shown as the shaded region in Figure 6.4.8.

basin boundary =
stable manifold of saddle

basin for (3, 0)

1 2 3 rabbits
Figure 6.4.8

Because the stable manifold separates the basins for the two nodes, it is called the
basin boundary. For the same reason, the two trajectories that comprise the stable
manifold are traditionally called separatrices. Basins and their boundaries are im-
portant because they partition the phase space into regions of different long-term
behavior.

6.5 Conservative Systems

Newton’s law F = ma is the source of many important second-order systems. For
example, consider a particle of mass m moving along the x-axis, subject to a non-
linear force F(x). Then the equation of motion is

mx = F(x).

Notice'?that we are assuming that F is independent of both x and ¢ ; hence there is
no damping or friction of any kind, and there is no time-dependent driving force.
Under these assumptions, we can show that energy is conserved, as follows. Let
V(x) denote the potential energy, defined by F(x)=—dV/dx. Then
dv

x+—=0. 1
mx+dx )
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